
Prof. George Candea

School of Computer & Communication Sciences

The Client/Server Design Pattern

Outline

• Local procedure calls (module = procedure)

• Program objects / types (module = memory object)

• Client/server architecture (different address spaces)

• Example: RPC

George Candea Principles of Computer Systems Fall 2023

same address space

separate address spaces

(Local) Procedure Calls

George Candea Principles of Computer Systems Fall 2023

Basic mechanism for modularizing a program
(Modules = procedures)

Local Procedure Calls

• Modules = procedures of the same program

• Modularization requires an inter-module communication protocol

• Protocol for procedure calls = calling convention

George Candea Principles of Computer Systems Fall 2023

Stack-based calling convention ("interaction protocol")

George Candea Principles of Computer Systems Fall 2023

M
em

ory addrs increase

Stack pointer (RSP)

Caller’s
stack
frame

Callee’s
stack
frame

Stack

Program code

Program data

Heap

Program memory layout

Stack-based calling convention ("interaction protocol")

RSP

Saved temp registers

Call arguments

Return address

Space for local vars

Caller’s local vars
Caller’s
stack
frame

Callee’s
stack
frame

S
ta

ck
 g

ro
w

s

M
em

ory addrs increase

George Candea Principles of Computer Systems Fall 2023

• ABI = interface between binary modules
• Modularization

• Depends on programmers doing the right thing
(= “soft modularization”)

• Compilers and runtimes help

• Caller and callee trust each other
• Callee could corrupt caller’s stack (e.g., buffer overflow)

• Callee might return to wrong addr (e.g., stack smashing)

• Callee might fail (e.g., SIGFPE due to div by zero)
= “fate sharing"

• Callee might leave return addr in wrong register

• …

Stack-based calling convention ("interaction protocol")

RSP

Caller’s local vars
Caller’s
stack
frame

S
ta

ck
 g

ro
w

s

M
em

ory addrs increase

George Candea Principles of Computer Systems Fall 2023

Saved temp registers

Call arguments

Return address

Space for local vars

Outline

• Local procedure calls (module = procedure)

• Program objects & types (module = memory objects)

• Client/server architecture (different address spaces)

• Example: Remote procedure calls

George Candea Principles of Computer Systems Fall 2023

same address space

separate address spaces

Program Objects & Types

George Candea Principles of Computer Systems Fall 2023

Strong modularization within the same address space
(Modules = objects within the program)

Program objects

George Candea Principles of Computer Systems Fall 2023

class Rectangle {

 private int length, width;

 public Rectangle(int l, int b)
 {
 length = l;
 width = b;
 }

 public int area()
 {
 return length * width;
 }
}

struct Rectangle {
 int length;
 int width;
}

int area(struct Rectangle r)
{
 return r.length * r.width;
}

Program objects

George Candea Principles of Computer Systems Fall 2023

class Rectangle {

 private int length, width;

 public Rectangle(int l, int b)
 {
 length = l;
 width = b;
 }

 public int area()
 {
 return length * width;
 }
}

struct Rectangle {
 int length;
 int width;
}

int area(struct Rectangle r)
{
 return r.length * r.width;
}

Data

Behavior

 vs.

 Data + Behavior
 inseparable

Encapsulation

Im
ag
e
co
ur
te
sy
 o
f
ht
tp
s:
//
cs
16
0d
eb
at
ab
le
.w
ee
bl
y.
co
m

Objects & type safety = stronger intra-program modularity

• Untyped languages

• Weakly typed languages (e.g., C)
• Have types, but can change (e.g., explicitly cast data from one type to another)

• Strongly typed languages (e.g., Lisp)
• Each chunk of memory has well defined type, no Object or void
• Python, C#, C++, Rust, ... might qualify

• Ensuring type safety
• Static (Rust, Haskell) vs. dynamic (Python, Ruby)

George Candea Principles of Computer Systems Fall 2023

Soft vs. enforced modularization

• Programmers are humans
• Trusting gives you at best a “soft” modularization

• Better to trust compilers, runtimes, libraries, operating systems, …
• E.g., modularize using Docker-style containers (OS-level virtualization)
• Lower layers are widely used and robust (even though they too are buggy…)

• Better to trust hardware
• Cheap way to (sort of) do this: modularize using virtual machines
• Widely used and robust (even though it too is buggy…)

George Candea Principles of Computer Systems Fall 2023

The lower the layer where modularity is enforced, the stronger the modularity

Outline

• Local procedure calls (module = procedure)

• Program objects & types (module = memory object)

• Client/server architecture (different address spaces)

• Example: Remote procedure calls

George Candea Principles of Computer Systems Fall 2023

same address space

separate address spaces

Clients/Servers Interacting via Messages

George Candea Principles of Computer Systems Fall 2023

Modularization across different address spaces

Splitting into Clients and Servers

• Is the foundation for many system architecture patterns
• event-driven, microservices (formerly SOA), action–domain–responder (e.g.,

MVVM), multi-tiered, peer-to-peer, publish-subscribe, etc.

• Key ideas
• place modules in separate, strongly isolated domains, and have them communicate

via messages
• messages typically need to be marshalled/unmarshalled for send/receive

George Candea Principles of Computer Systems Fall 2023

Physical (and virtual) servers

https://www.omnisci.com/technical-glossary/client-server

• Rely on physics

• Reduce fate sharing

• Improve encapsulation

George Candea Principles of Computer Systems Fall 2023

Physical (and virtual) servers

• Rely on physics

• Reduce fate sharing

• Improve encapsulation

George Candea Principles of Computer Systems Fall 2023

https://www.nakivo.com/blog/wp-content/uploads/2018/12/Virtual-server-architecture.webp

Physical (and virtual) servers

https://www.pluribusnetworks.com/blog/what-is-network-segmentation/

• Rely on physics

• Reduce fate sharing

• Improve encapsulation

George Candea Principles of Computer Systems Fall 2023

Microkernels

• An exercise in modularization of otherwise monolithic kernels
• Liedtke's minimality principle

• Servers = trusted intermediaries
• Essentially daemon programs with some extra privileges
• e.g., can access physical memory that would otherwise be off-limits

George Candea Principles of Computer Systems Fall 2023

Monolithic kernel

Microkernel

Microkernels

• An exercise in modularization of otherwise monolithic kernels
• Liedtke's minimality principle

• Servers = trusted intermediaries
• Essentially daemon programs with some extra privileges
• e.g., can access physical memory that would otherwise be off-limits

• Talks to servers over IPC (inter-process communication)
• Instead of syscalls in monolithic kernels

• How is fate sharing? How is encapsulation?

George Candea Principles of Computer Systems Fall 2023

Benefits of Client/Server

• Narrow channels for error propagation
• Isolation between “caller” and “callee”

• Decoupling
• Can fail independently —> the opposite of “fate sharing”
• Rely on timeouts to infer remote failure

• Forcing function to document interfaces

George Candea Principles of Computer Systems Fall 2023

Drawbacks of Client/Server

• Marshalling/unmarshalling messages incurs overheads

• Unnatural interaction between modules

• Semantic coupling may render functional decoupling moot
• E.g., caller cannot make progress without an answer

George Candea Principles of Computer Systems Fall 2023

A couple of examples of client/server architectures

George Candea Principles of Computer Systems Fall 2023

Pub/Sub

ht
tp
s:
//
da
sh
bi
rd
.i
o/
kn
ow
le
dg
e-
ba
se
/w
el
l-
ar
ch
it
ec
te
d/
pu
b-
su
b-
me
ss
ag
in
g/

ht
tp
s:
//
mi
cr
os
er
vi
ce
s.
io
/i
/M
ic
ro
se
rv
ic
e_
Ar
ch
it
ec
tu
re
.p
ng

A couple of examples of client/server architectures

George Candea Principles of Computer Systems Fall 2023

Pub/Sub

ht
tp
s:
//
da
sh
bi
rd
.i
o/
kn
ow
le
dg
e-
ba
se
/w
el
l-
ar
ch
it
ec
te
d/
pu
b-
su
b-
me
ss
ag
in
g/

Microservices
& Tiered Arch ht

tp
s:
//
mi
cr
os
er
vi
ce
s.
io
/i
/M
ic
ro
se
rv
ic
e_
Ar
ch
it
ec
tu
re
.p
ng

Outline

• Local procedure calls (module = procedure)

• Program objects & types (module = memory object)

• Client/server architecture (different address spaces)

• Example: Remote procedure calls

George Candea Principles of Computer Systems Fall 2023

same address space

separate address spaces

Remote Procedure Calls (RPC)

George Candea Principles of Computer Systems Fall 2023

Get benefits of client/server organization
with the comfort of a procedure call

RPC is everywhere

George Candea Principles of Computer Systems Fall 2023

Mechanics of RPC

George Candea Principles of Computer Systems Fall 2023

Im
ag
e
co
ur
te
sy
 o
f
ht
tp
s:
//
ww
w.
ib
m.
co
m/
su
pp
or
t/
kn
ow
le
dg
ec
en
te
r

Client Server

Mechanics of RPC

George Candea Principles of Computer Systems Fall 2023

Im
ag
e
co
ur
te
sy
 o
f
ht
tp
s:
//
ww
w.
ib
m.
co
m/
su
pp
or
t/
kn
ow
le
dg
ec
en
te
r

Client Server

Mechanics of RPC

George Candea Principles of Computer Systems Fall 2023

Im
ag
e
co
ur
te
sy
 o
f
ht
tp
s:
//
ww
w.
ib
m.
co
m/
su
pp
or
t/
kn
ow
le
dg
ec
en
te
r

Client Server

Mechanics of RPC

George Candea Principles of Computer Systems Fall 2023

Im
ag
e
co
ur
te
sy
 o
f
ht
tp
s:
//
ww
w.
ib
m.
co
m/
su
pp
or
t/
kn
ow
le
dg
ec
en
te
r

Client Server

Mechanics of RPC

George Candea Principles of Computer Systems Fall 2023

Im
ag
e
co
ur
te
sy
 o
f
ht
tp
s:
//
ww
w.
ib
m.
co
m/
su
pp
or
t/
kn
ow
le
dg
ec
en
te
r

Client Server

Mechanics of RPC

George Candea Principles of Computer Systems Fall 2023

Im
ag
e
co
ur
te
sy
 o
f
ht
tp
s:
//
ww
w.
ib
m.
co
m/
su
pp
or
t/
kn
ow
le
dg
ec
en
te
r

Client Server

Mechanics of RPC

George Candea Principles of Computer Systems Fall 2023

Im
ag
e
co
ur
te
sy
 o
f
ht
tp
s:
//
ww
w.
ge
ek
sf
or
ge
ek
s.
or
g/
re
mo
te
-p
ro
ce
du
re
-c
al
l-
rp
c-
in
-o
pe
ra
ti
ng
-s
ys
te
m/

Parameters -> message Message -> parameters

Message -> packet Packet -> message

Local procedure call Local procedure invocation

Client address space Server address space

• NFS and

• Java RMI and Google Web Toolkit

• Go's rpc package

• Cassandra, HBase, Couchbase

• Apache Thrift

• gRPC (uses Google Protocol Buffers IDL)
• microservices, mobile, real-time, IoT, ...

Examples of RPC systems

George Candea Principles of Computer Systems Fall 2023

Google Cloud Filestore

• NFS and

• Java RMI and Google Web Toolkit

• Go's rpc package

• Cassandra, HBase, Couchbase

• Apache Thrift

• gRPC (uses Google Protocol Buffers IDL)
• microservices, mobile, real-time, IoT, ...

Examples of RPC systems

George Candea Principles of Computer Systems Fall 2023

Google Cloud Filestore

George Candea Principles of Computer Systems Fall 2023

read

write

Zanzibar serving cluster

Check, Read,
Expand, Write

aclserver aclserver

aclserver aclserver

client

watchserver

...

Spanner global database system

client

Watch

read/write append tail

changelognamespace
configs

read/write

namespace 1
relation tuples

namespace N
relation tuples

periodic offline
pipeline

dump

namespace
snapshots

Leopard
indexing system

readWatch

optimized set
computation

Figure 2: Zanzibar architecture. Arrows indicate the direction of data flow.

tamp. Another is to garbage-collect tuple versions older than
a threshold configured per namespace.

Leopard is an indexing system used to optimize operations
on large and deeply nested sets. It reads periodic snapshots
of ACL data and watches for changes between snapshots. It
performs transformations on that data, such as denormaliza-
tion, and responds to requests from aclservers.

The rest of this section presents the implementation of
these architectural elements in more detail.

3.1 Storage

3.1.1 Relation Tuple Storage

We store relation tuples of each namespace in a separate
database, where each row is identified by primary key (shard
ID, object ID, relation, user, commit timestamp). Multi-
ple tuple versions are stored on different rows, so that we
can evaluate checks and reads at any timestamp within the
garbage collection window. The ordering of primary keys
allows us to look up all relation tuples for a given object ID
or (object ID, relation) pair.

Our clients configure sharding of a namespace according
to its data pattern. Usually the shard ID is determined solely
by the object ID. In some cases, for example, when a names-
pace stores groups with very large numbers of members, the
shard ID is computed from both object ID and user.

3.1.2 Changelog

Zanzibar also maintains a changelog database that stores a
history of tuple updates for the Watch API. The primary
keys are (changelog shard ID, timestamp, unique update ID),
where a changelog shard is randomly selected for each write.

Every Zanzibar write is committed to both the tuple stor-

age and the changelog shard in a single transaction. We des-
ignate the Spanner server hosting the changelog shard as the
transaction coordinator to minimize blocking of changelog
reads on pending transactions.

3.1.3 Namespace Config Storage

Namespace configs are stored in a database with two ta-
bles. One table contains the configs and is keyed by names-
pace IDs. The other is a changelog of config updates and is
keyed by commit timestamps. This structure allows a Zanz-
ibar server to load all configs upon startup and monitor the
changelog to refresh configs continuously.

3.1.4 Replication

To reduce latency, Zanzibar data is replicated to be close to
our clients. Replicas exist in dozens of locations around the
world, with multiple replicas per region. The 5 voting repli-
cas are in eastern and central United States, in 3 different
metropolitan areas to isolate failures but within 25 millisec-
onds of each other so that Paxos transactions commit quickly.

3.2 Serving

3.2.1 Evaluation Timestamp

As noted in §2.4, clients can provide zookies to ensure a
minimum snapshot timestamp for request evaluation. When
a zookie is not provided, the server uses a default staleness
chosen to ensure that all transactions are evaluated at a times-
tamp that is as recent as possible without impacting latency.

On each read request it makes to Spanner, Zanzibar re-
ceives a hint about whether or not the data at that timestamp
required an out-of-zone read and thus incurred additional la-
tency. Each server tracks the frequency of such out-of-zone
reads for data at a default staleness as well as for fresher

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 6

Service to determine
whether a user is
authorized to access a
particular object or not

Externally consistent
transactional database

George Candea Principles of Computer Systems Fall 2023

read

write

Zanzibar serving cluster

Check, Read,
Expand, Write

aclserver aclserver

aclserver aclserver

client

watchserver

...

Spanner global database system

client

Watch

read/write append tail

changelognamespace
configs

read/write

namespace 1
relation tuples

namespace N
relation tuples

periodic offline
pipeline

dump

namespace
snapshots

Leopard
indexing system

readWatch

optimized set
computation

Figure 2: Zanzibar architecture. Arrows indicate the direction of data flow.

tamp. Another is to garbage-collect tuple versions older than
a threshold configured per namespace.

Leopard is an indexing system used to optimize operations
on large and deeply nested sets. It reads periodic snapshots
of ACL data and watches for changes between snapshots. It
performs transformations on that data, such as denormaliza-
tion, and responds to requests from aclservers.

The rest of this section presents the implementation of
these architectural elements in more detail.

3.1 Storage

3.1.1 Relation Tuple Storage

We store relation tuples of each namespace in a separate
database, where each row is identified by primary key (shard
ID, object ID, relation, user, commit timestamp). Multi-
ple tuple versions are stored on different rows, so that we
can evaluate checks and reads at any timestamp within the
garbage collection window. The ordering of primary keys
allows us to look up all relation tuples for a given object ID
or (object ID, relation) pair.

Our clients configure sharding of a namespace according
to its data pattern. Usually the shard ID is determined solely
by the object ID. In some cases, for example, when a names-
pace stores groups with very large numbers of members, the
shard ID is computed from both object ID and user.

3.1.2 Changelog

Zanzibar also maintains a changelog database that stores a
history of tuple updates for the Watch API. The primary
keys are (changelog shard ID, timestamp, unique update ID),
where a changelog shard is randomly selected for each write.

Every Zanzibar write is committed to both the tuple stor-

age and the changelog shard in a single transaction. We des-
ignate the Spanner server hosting the changelog shard as the
transaction coordinator to minimize blocking of changelog
reads on pending transactions.

3.1.3 Namespace Config Storage

Namespace configs are stored in a database with two ta-
bles. One table contains the configs and is keyed by names-
pace IDs. The other is a changelog of config updates and is
keyed by commit timestamps. This structure allows a Zanz-
ibar server to load all configs upon startup and monitor the
changelog to refresh configs continuously.

3.1.4 Replication

To reduce latency, Zanzibar data is replicated to be close to
our clients. Replicas exist in dozens of locations around the
world, with multiple replicas per region. The 5 voting repli-
cas are in eastern and central United States, in 3 different
metropolitan areas to isolate failures but within 25 millisec-
onds of each other so that Paxos transactions commit quickly.

3.2 Serving

3.2.1 Evaluation Timestamp

As noted in §2.4, clients can provide zookies to ensure a
minimum snapshot timestamp for request evaluation. When
a zookie is not provided, the server uses a default staleness
chosen to ensure that all transactions are evaluated at a times-
tamp that is as recent as possible without impacting latency.

On each read request it makes to Spanner, Zanzibar re-
ceives a hint about whether or not the data at that timestamp
required an out-of-zone read and thus incurred additional la-
tency. Each server tracks the frequency of such out-of-zone
reads for data at a default staleness as well as for fresher

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 6

Service to determine
whether a user is
authorized to access a
particular object or not

Externally consistent
transactional database

gRPC

George Candea Principles of Computer Systems Fall 2023

read

write

Zanzibar serving cluster

Check, Read,
Expand, Write

aclserver aclserver

aclserver aclserver

client

watchserver

...

Spanner global database system

client

Watch

read/write append tail

changelognamespace
configs

read/write

namespace 1
relation tuples

namespace N
relation tuples

periodic offline
pipeline

dump

namespace
snapshots

Leopard
indexing system

readWatch

optimized set
computation

Figure 2: Zanzibar architecture. Arrows indicate the direction of data flow.

tamp. Another is to garbage-collect tuple versions older than
a threshold configured per namespace.

Leopard is an indexing system used to optimize operations
on large and deeply nested sets. It reads periodic snapshots
of ACL data and watches for changes between snapshots. It
performs transformations on that data, such as denormaliza-
tion, and responds to requests from aclservers.

The rest of this section presents the implementation of
these architectural elements in more detail.

3.1 Storage

3.1.1 Relation Tuple Storage

We store relation tuples of each namespace in a separate
database, where each row is identified by primary key (shard
ID, object ID, relation, user, commit timestamp). Multi-
ple tuple versions are stored on different rows, so that we
can evaluate checks and reads at any timestamp within the
garbage collection window. The ordering of primary keys
allows us to look up all relation tuples for a given object ID
or (object ID, relation) pair.

Our clients configure sharding of a namespace according
to its data pattern. Usually the shard ID is determined solely
by the object ID. In some cases, for example, when a names-
pace stores groups with very large numbers of members, the
shard ID is computed from both object ID and user.

3.1.2 Changelog

Zanzibar also maintains a changelog database that stores a
history of tuple updates for the Watch API. The primary
keys are (changelog shard ID, timestamp, unique update ID),
where a changelog shard is randomly selected for each write.

Every Zanzibar write is committed to both the tuple stor-

age and the changelog shard in a single transaction. We des-
ignate the Spanner server hosting the changelog shard as the
transaction coordinator to minimize blocking of changelog
reads on pending transactions.

3.1.3 Namespace Config Storage

Namespace configs are stored in a database with two ta-
bles. One table contains the configs and is keyed by names-
pace IDs. The other is a changelog of config updates and is
keyed by commit timestamps. This structure allows a Zanz-
ibar server to load all configs upon startup and monitor the
changelog to refresh configs continuously.

3.1.4 Replication

To reduce latency, Zanzibar data is replicated to be close to
our clients. Replicas exist in dozens of locations around the
world, with multiple replicas per region. The 5 voting repli-
cas are in eastern and central United States, in 3 different
metropolitan areas to isolate failures but within 25 millisec-
onds of each other so that Paxos transactions commit quickly.

3.2 Serving

3.2.1 Evaluation Timestamp

As noted in §2.4, clients can provide zookies to ensure a
minimum snapshot timestamp for request evaluation. When
a zookie is not provided, the server uses a default staleness
chosen to ensure that all transactions are evaluated at a times-
tamp that is as recent as possible without impacting latency.

On each read request it makes to Spanner, Zanzibar re-
ceives a hint about whether or not the data at that timestamp
required an out-of-zone read and thus incurred additional la-
tency. Each server tracks the frequency of such out-of-zone
reads for data at a default staleness as well as for fresher

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 6

Service to determine
whether a user is
authorized to access a
particular object or not

Externally consistent
transactional database

gRPC

George Candea Principles of Computer Systems Fall 2023

read

write

Zanzibar serving cluster

Check, Read,
Expand, Write

aclserver aclserver

aclserver aclserver

client

watchserver

...

Spanner global database system

client

Watch

read/write append tail

changelognamespace
configs

read/write

namespace 1
relation tuples

namespace N
relation tuples

periodic offline
pipeline

dump

namespace
snapshots

Leopard
indexing system

readWatch

optimized set
computation

Figure 2: Zanzibar architecture. Arrows indicate the direction of data flow.

tamp. Another is to garbage-collect tuple versions older than
a threshold configured per namespace.

Leopard is an indexing system used to optimize operations
on large and deeply nested sets. It reads periodic snapshots
of ACL data and watches for changes between snapshots. It
performs transformations on that data, such as denormaliza-
tion, and responds to requests from aclservers.

The rest of this section presents the implementation of
these architectural elements in more detail.

3.1 Storage

3.1.1 Relation Tuple Storage

We store relation tuples of each namespace in a separate
database, where each row is identified by primary key (shard
ID, object ID, relation, user, commit timestamp). Multi-
ple tuple versions are stored on different rows, so that we
can evaluate checks and reads at any timestamp within the
garbage collection window. The ordering of primary keys
allows us to look up all relation tuples for a given object ID
or (object ID, relation) pair.

Our clients configure sharding of a namespace according
to its data pattern. Usually the shard ID is determined solely
by the object ID. In some cases, for example, when a names-
pace stores groups with very large numbers of members, the
shard ID is computed from both object ID and user.

3.1.2 Changelog

Zanzibar also maintains a changelog database that stores a
history of tuple updates for the Watch API. The primary
keys are (changelog shard ID, timestamp, unique update ID),
where a changelog shard is randomly selected for each write.

Every Zanzibar write is committed to both the tuple stor-

age and the changelog shard in a single transaction. We des-
ignate the Spanner server hosting the changelog shard as the
transaction coordinator to minimize blocking of changelog
reads on pending transactions.

3.1.3 Namespace Config Storage

Namespace configs are stored in a database with two ta-
bles. One table contains the configs and is keyed by names-
pace IDs. The other is a changelog of config updates and is
keyed by commit timestamps. This structure allows a Zanz-
ibar server to load all configs upon startup and monitor the
changelog to refresh configs continuously.

3.1.4 Replication

To reduce latency, Zanzibar data is replicated to be close to
our clients. Replicas exist in dozens of locations around the
world, with multiple replicas per region. The 5 voting repli-
cas are in eastern and central United States, in 3 different
metropolitan areas to isolate failures but within 25 millisec-
onds of each other so that Paxos transactions commit quickly.

3.2 Serving

3.2.1 Evaluation Timestamp

As noted in §2.4, clients can provide zookies to ensure a
minimum snapshot timestamp for request evaluation. When
a zookie is not provided, the server uses a default staleness
chosen to ensure that all transactions are evaluated at a times-
tamp that is as recent as possible without impacting latency.

On each read request it makes to Spanner, Zanzibar re-
ceives a hint about whether or not the data at that timestamp
required an out-of-zone read and thus incurred additional la-
tency. Each server tracks the frequency of such out-of-zone
reads for data at a default staleness as well as for fresher

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 6

Service to determine
whether a user is
authorized to access a
particular object or not

Externally consistent
transactional database

gRPC

George Candea Principles of Computer Systems Fall 2023

gRPC

read

write

Zanzibar serving cluster

Check, Read,
Expand, Write

aclserver aclserver

aclserver aclserver

client

watchserver

...

Spanner global database system

client

Watch

read/write append tail

changelognamespace
configs

read/write

namespace 1
relation tuples

namespace N
relation tuples

periodic offline
pipeline

dump

namespace
snapshots

Leopard
indexing system

readWatch

optimized set
computation

Figure 2: Zanzibar architecture. Arrows indicate the direction of data flow.

tamp. Another is to garbage-collect tuple versions older than
a threshold configured per namespace.

Leopard is an indexing system used to optimize operations
on large and deeply nested sets. It reads periodic snapshots
of ACL data and watches for changes between snapshots. It
performs transformations on that data, such as denormaliza-
tion, and responds to requests from aclservers.

The rest of this section presents the implementation of
these architectural elements in more detail.

3.1 Storage

3.1.1 Relation Tuple Storage

We store relation tuples of each namespace in a separate
database, where each row is identified by primary key (shard
ID, object ID, relation, user, commit timestamp). Multi-
ple tuple versions are stored on different rows, so that we
can evaluate checks and reads at any timestamp within the
garbage collection window. The ordering of primary keys
allows us to look up all relation tuples for a given object ID
or (object ID, relation) pair.

Our clients configure sharding of a namespace according
to its data pattern. Usually the shard ID is determined solely
by the object ID. In some cases, for example, when a names-
pace stores groups with very large numbers of members, the
shard ID is computed from both object ID and user.

3.1.2 Changelog

Zanzibar also maintains a changelog database that stores a
history of tuple updates for the Watch API. The primary
keys are (changelog shard ID, timestamp, unique update ID),
where a changelog shard is randomly selected for each write.

Every Zanzibar write is committed to both the tuple stor-

age and the changelog shard in a single transaction. We des-
ignate the Spanner server hosting the changelog shard as the
transaction coordinator to minimize blocking of changelog
reads on pending transactions.

3.1.3 Namespace Config Storage

Namespace configs are stored in a database with two ta-
bles. One table contains the configs and is keyed by names-
pace IDs. The other is a changelog of config updates and is
keyed by commit timestamps. This structure allows a Zanz-
ibar server to load all configs upon startup and monitor the
changelog to refresh configs continuously.

3.1.4 Replication

To reduce latency, Zanzibar data is replicated to be close to
our clients. Replicas exist in dozens of locations around the
world, with multiple replicas per region. The 5 voting repli-
cas are in eastern and central United States, in 3 different
metropolitan areas to isolate failures but within 25 millisec-
onds of each other so that Paxos transactions commit quickly.

3.2 Serving

3.2.1 Evaluation Timestamp

As noted in §2.4, clients can provide zookies to ensure a
minimum snapshot timestamp for request evaluation. When
a zookie is not provided, the server uses a default staleness
chosen to ensure that all transactions are evaluated at a times-
tamp that is as recent as possible without impacting latency.

On each read request it makes to Spanner, Zanzibar re-
ceives a hint about whether or not the data at that timestamp
required an out-of-zone read and thus incurred additional la-
tency. Each server tracks the frequency of such out-of-zone
reads for data at a default staleness as well as for fresher

Proc. of 2019 USENIX Annual Technical Conference (USENIX ATC ’19) 6

Service to determine
whether a user is
authorized to access a
particular object or not

Externally consistent
transactional database

George Candea Principles of Computer Systems Fall 2018

Im
ag

e	
co
ur

te
sy
	o
f	

ht
tp
s:

//
ww
w.

ge
ek
sf

or
ge

ek
s.

or
g/

re
mo

te
-p
ro

ce
du

re
-c

al
l-

rp
c-

in
-o

pe
ra

ti
ng

-s
ys

te
m/

Client address space Server address space

Workflow for writing RPC-based systems

• Define the service in an IDL file

George Candea Principles of Computer Systems Fall 2023

George Candea Principles of Computer Systems Fall 2018

Im
ag

e	
co
ur

te
sy
	o
f	

ht
tp
s:

//
ww
w.

ge
ek
sf

or
ge

ek
s.

or
g/

re
mo

te
-p
ro

ce
du

re
-c

al
l-

rp
c-

in
-o

pe
ra

ti
ng

-s
ys

te
m/

Client address space Server address space

Workflow for writing RPC-based systems

• Define the service in an IDL file

• Generate message implementations using
the IDL compiler

George Candea Principles of Computer Systems Fall 2023

George Candea Principles of Computer Systems Fall 2018

Im
ag

e	
co
ur

te
sy
	o
f	

ht
tp
s:

//
ww
w.

ge
ek
sf

or
ge

ek
s.

or
g/

re
mo

te
-p
ro

ce
du

re
-c

al
l-

rp
c-

in
-o

pe
ra

ti
ng

-s
ys

te
m/

Client address space Server address space

Workflow for writing RPC-based systems

• Define the service in an IDL file

• Generate message implementations using
the IDL compiler

• Generate server and client code using the
RPC compiler

George Candea Principles of Computer Systems Fall 2023

George Candea Principles of Computer Systems Fall 2018

Im
ag

e	
co
ur

te
sy
	o
f	

ht
tp
s:

//
ww
w.

ge
ek
sf

or
ge

ek
s.

or
g/

re
mo

te
-p
ro

ce
du

re
-c

al
l-

rp
c-

in
-o

pe
ra

ti
ng

-s
ys

te
m/

Client address space Server address space

Workflow for writing RPC-based systems

• Define the service in an IDL file

• Generate message implementations using
the IDL compiler

• Generate server and client code using the
RPC compiler

• Write the server to implement the generated
interface

George Candea Principles of Computer Systems Fall 2023

George Candea Principles of Computer Systems Fall 2018

Im
ag

e	
co
ur

te
sy
	o
f	

ht
tp
s:

//
ww
w.

ge
ek
sf

or
ge

ek
s.

or
g/

re
mo

te
-p
ro

ce
du

re
-c

al
l-

rp
c-

in
-o

pe
ra

ti
ng

-s
ys

te
m/

Client address space Server address space

Workflow for writing RPC-based systems

• Define the service in an IDL file

• Generate message implementations using
the IDL compiler

• Generate server and client code using the
RPC compiler

• Write the server to implement the generated
interface

• Write the client to use the interface

George Candea Principles of Computer Systems Fall 2023

George Candea Principles of Computer Systems Fall 2018

Im
ag

e	
co
ur

te
sy
	o
f	

ht
tp
s:

//
ww
w.

ge
ek
sf

or
ge

ek
s.

or
g/

re
mo

te
-p
ro

ce
du

re
-c

al
l-

rp
c-

in
-o

pe
ra

ti
ng

-s
ys

te
m/

Client address space Server address space

Workflow for writing RPC-based systems

• Define the service in an IDL file

• Generate message implementations using
the IDL compiler

• Generate server and client code using the
RPC compiler

• Write the server to implement the generated
interface

• Write the client to use the interface

• Compile, deploy, run

George Candea Principles of Computer Systems Fall 2023

George Candea Principles of Computer Systems Fall 2023

George Candea Principles of Computer Systems Fall 2023

George Candea Principles of Computer Systems Fall 2023

void QueryDataWithStruct(google::cloud::spanner::Client client) {
 namespace spanner = ::google::cloud::spanner;
 using NameType = std::tuple<std::string, std::string>;
 auto singer_info = NameType{"Elena", "Campbell"};
 auto rows = client.ExecuteQuery(spanner::SqlStatement(
 "SELECT SingerId FROM Singers WHERE (FirstName, LastName) = @name",
 {{"name", spanner::Value(singer_info)}}));

 for (auto& row : spanner::StreamOf<std::tuple<std::int64_t>>(rows)) {
 if (!row) throw std::move(row).status();
 std::cout << "SingerId: " << std::get<0>(*row) << "\n";
 }
}

Benefits of RPC

• Strong modularity with the convenience of a procedure call

• Reduce fate sharing by exposing callee failures in a controlled manner
• This means the caller can now recover easily (esp. if asynchronous RPC)

George Candea Principles of Computer Systems Fall 2023

Drawbacks of RPC

• RPCs typically take longer than a local procedure call
• Leaky abstraction

• Issues of trust
• How do I know who is making the request?
• How do I know the message was not tampered with?
• … ?

• What does “no response” imply?

George Candea Principles of Computer Systems Fall 2023

RPC Semantics

• At-least-once semantics

• At-most-once semantics

• Exactly-once semantics

George Candea Principles of Computer Systems Fall 2023

≤1 executions

≥1 execution

=1 execution

How to implement
exactly-once RPC semantics ?

George Candea Principles of Computer Systems Fall 2023

RPC Tax in Data Centers

• Network latency and transmission overhead

• Context switching on both client and server

• Memory and serialization overheads

• Network load

• Security and authentication

• Error handling and retries

• ...

George Candea Principles of Computer Systems Fall 2023

Recap

• Local procedure calls (module = procedure)

• Program objects & types (module = memory objects)

• Client/server architecture (different address spaces)

• Example: RPC

George Candea Principles of Computer Systems Fall 2023

Memory safety

Message-based
communication

same address space

separate address spaces

THE END
George Candea Principles of Computer Systems Fall 2023

Memory Safety

• Memory can be defined (allocated) or undefined (not allocated)
• Deallocated memory cannot be reused prior to (re)allocation

• Pointer is a capability (p,b,e)

• Base b, extent e, pointer p

• *p is safe iff it accesses memory within the target obj that p is based on

• An execution is memory-safe <=> all ptr derefs in that exec are safe

• A program is memory-safe <=> all possible executions (for all possible
inputs) are memory-safe

George Candea Principles of Computer Systems Fall 2023

p→

b

e

Based on Nagarakatte et al., SoftBound: Highly Compatible and Complete Spatial Memory Safety for C, PLDI 2009

http://www.cis.upenn.edu/acg/papers/pldi09_softbound.pdf

“Based on” relationship

1. obtained by allocating X at runtime on the heap, or

2. obtained as &X where X is statically allocated, or
• e.g., local or global variable, control flow target

3. obtained as &X.foo (i.e., from field of X), or

4. the result of a computation involving operands that are ptrs based on X or non-ptrs
• copy of another pointer
• valid pointer arithmetic
• array indexing

George Candea Principles of Computer Systems Fall 2023

p→ b

e
X

• p is based on memory object X iff p is

Memory Safety

• Pointer is a capability (p,b,e)
• Base b, extent e, pointer p

• *p is safe iff accesses memory within the target obj that p is based on1
 b <= p <= e

• An execution is memory-safe <=>
all pointer dereferences in that execution are safe

• A program is memory-safe <=>
all possible executions (for all possible inputs) are memory-safe

George Candea Principles of Computer Systems Fall 2023

1 and that memory is defined

Memory Safety

• Memory safety is fundamental to in-memory client/server

• A pointer is a name for X => set of names for reaching X is transitive
closure over "based-on" relationship

• Spatial vs. temporal violations of memory safety

George Candea Principles of Computer Systems Fall 2023

ht
tp
s:
//
ww
w.
ch
ro
mi
um
.o
rg
/H
om
e/
ch
ro
mi
um
-s
ec
ur
it
y/
me
mo
ry
-

Google Protobuf & gRPC

George Candea Principles of Computer Systems Fall 2023

Example of how to write code that uses RPC

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phones = 4;
}

message AddressBook {
 repeated Person people = 1;
}

contacts.proto

Interface Definition Language (Google protobuf)

George Candea Principles of Computer Systems Fall 2023

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phones = 4;
}

message AddressBook {
 repeated Person people = 1;
}

contacts.proto

Interface Definition Language (Google protobuf)

George Candea Principles of Computer Systems Fall 2023

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phones = 4;
}

message AddressBook {
 repeated Person people = 1;
}

contacts.proto

Interface Definition Language (Google protobuf)

George Candea Principles of Computer Systems Fall 2023

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phones = 4;
}

message AddressBook {
 repeated Person people = 1;
}

contacts.proto

Interface Definition Language (Google protobuf)

George Candea Principles of Computer Systems Fall 2023

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phones = 4;
}

message AddressBook {
 repeated Person people = 1;
}

contacts.proto

Interface Definition Language (Google protobuf)

George Candea Principles of Computer Systems Fall 2023

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phones = 4;
}

message AddressBook {
 repeated Person people = 1;
}

contacts.proto

Interface Definition Language (Google protobuf)

George Candea Principles of Computer Systems Fall 2023

protoc --cpp_out=$DST_DIR contacts.proto contacts.pb.h
contacts.pb.cc

http://contacts.pb.cc

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phones = 4;
}

message AddressBook {
 repeated Person people = 1;
}

contacts.proto

Interface Definition Language (Google protobuf)

George Candea Principles of Computer Systems Fall 2023

// name
inline bool has_name() const;
inline void clear_name();
inline const ::std::string& name() const;
inline void set_name(const ::std::string& value);
inline void set_name(const char* value);
inline ::std::string* mutable_name();

// id
inline bool has_id() const;
inline void clear_id();
inline int32_t id() const;
inline void set_id(int32_t value);

// email
inline bool has_email() const;
inline void clear_email();
inline const ::std::string& email() const;
inline void set_email(const ::std::string& value);
inline void set_email(const char* value);
inline ::std::string* mutable_email();

// phones
inline int phones_size() const;
inline void clear_phones();
inline const ::google::protobuf::RepeatedPtrField< ::pocs::Person_PhoneNumber >& phones() const;
inline ::google::protobuf::RepeatedPtrField< ::pocs::Person_PhoneNumber >* mutable_phones();
inline const ::Person_PhoneNumber& phones(int index) const;
inline ::Person_PhoneNumber* mutable_phones(int index);
inline ::Person_PhoneNumber* add_phones();

contacts.pb.h

protoc --cpp_out=$DST_DIR contacts.proto contacts.pb.h
contacts.pb.cc

http://contacts.pb.cc

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phones = 4;
}

message AddressBook {
 repeated Person people = 1;
}

contacts.proto

Interface Definition Language (Google protobuf)

George Candea Principles of Computer Systems Fall 2023

protoc --cpp_out=$DST_DIR contacts.proto contacts.pb.h
contacts.pb.cc

// serializes the message and stores the bytes in the given string.
// The bytes are binary, not text; we only use the string class as
// a convenient container.
bool SerializeToString(string* output) const;

// parses a message from the given string.
bool ParseFromString(const string& data);

// writes the message to the given C++ ostream.
bool SerializeToOstream(ostream* output) const;

// parses a message from the given C++ istream.
bool ParseFromIstream(istream* input);

http://contacts.pb.cc

RPC stubs (gRPC)

George Candea Principles of Computer Systems Fall 2023

// Interface exported by the server.
service Contacts {
 // A simple RPC.
 //
 // Obtains the feature of a given Person.
 rpc GetNumber(Person) returns (PhoneNumber) {}

 // A server-to-client streaming RPC.
 //
 // Obtains the PhoneNumbers available for the given Person.
 rpc ListNumbers(Person) returns (stream PhoneNumber) {}

 ...
}
message Person ... contacts.proto

RPC stubs (gRPC)

George Candea Principles of Computer Systems Fall 2023

// Interface exported by the server.
service Contacts {
 // A simple RPC.
 //
 // Obtains the feature of a given Person.
 rpc GetNumber(Person) returns (PhoneNumber) {}

 // A server-to-client streaming RPC.
 //
 // Obtains the PhoneNumbers available for the given Person.
 rpc ListNumbers(Person) returns (stream PhoneNumber) {}

 ...
}
message Person ... contacts.proto

protoc --grpc_out=. --plugin=protoc-gen-grpc=$PLUGIN_DIR contacts.proto contacts.grpc.pb.h
contacts.grpc.pb.cc

- remote interface type (“stub”) for clients
- abstract interface for servers to implement

REST vs. RPC

George Candea Principles of Computer Systems Fall 2023

REST vs. RPC

George Candea Principles of Computer Systems Fall 2023

REST vs. RPC

• = Representational State Transfer
• REST imposes a resource-oriented thinking, in contrast to RPC (action-oriented)
• CRUD, and the set of legal actions from any state is always controlled by the server

George Candea Principles of Computer Systems Fall 2023

REST vs. RPC

• = Representational State Transfer
• REST has a resource-oriented thinking, while RPC is action-oriented
• CRUD, and the set of legal actions from any state is always controlled by the server

• All communication is stateless server-side and cacheable

George Candea Principles of Computer Systems Fall 2023

REST vs. RPC

• = Representational State Transfer
• REST has a resource-oriented thinking, while RPC is action-oriented
• CRUD, and the set of legal actions from any state is always controlled by the server

• All communication is stateless server-side and cacheable

• Most popular data representation = JSON

George Candea Principles of Computer Systems Fall 2023

REST vs. RPC

• = Representational State Transfer
• REST has a resource-oriented thinking, while RPC is action-oriented
• CRUD, and the set of legal actions from any state is always controlled by the server

• All communication is stateless server-side and cacheable

• Most popular data representation = JSON

• REST is often (~always) done over HTTP
• GET, POST/PUT or DELETE requests
• avoid reinventing the wheel (e.g., metadata for caching)

George Candea Principles of Computer Systems Fall 2023

George Candea Principles of Computer Systems Fall 2023

POST

Result
Spanner svc

HTTP client

George Candea Principles of Computer Systems Fall 2023

POST

Result
Spanner svc

HTTP client

POST https://spanner.googleapis.com/v1/{session=projects/*/instances/*/databases/*/sessions/*}:executeSql

HTTP method

API version Identifiers for project, instance, database, and session
Endpoint

API service

George Candea Principles of Computer Systems Fall 2023

Request body (JSON)

POST

Result
Spanner svc

HTTP client

POST https://spanner.googleapis.com/v1/{session=projects/*/instances/*/databases/*/sessions/*}:executeSql

HTTP method

API version Identifiers for project, instance, database, and session
Endpoint

API service

