=PFL

The Glient/Server Design Pattern

Prof. George Candea
School of Computer & Communication Sciences

* Local procedure calls (module = procedure)

* Program objects / types (module = memory object)
o Client/server architecture (different address spaces)
o Example: RPC

(Local) Procedure Galls

Basic mechanism for modularizing a program
(Modules = procedures)

* Modules = procedures of the same program
* Modularization requires an inter-module communication protocol

* Protocol for procedure calls = calling convention

oseaJoul sippe Alowsn

<

Stack pointer (RSP)

Callee’s .
stack
frame

Caller’s
stack

P
—_—
—_
—_—
—_—
—_—
—_—
P
—_—
—_
—_—
—_—
—_—
—_—
—_
—_—
—_—
—_—
—_—
—_
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_
—_— -
—_—

Program memory layout

Program code

Program data

Heap

Stack

e
—_—

0 A
=
o
O < RSP
'
@)
S
» Space for local vars
Callee’s
= rame
c3> Return address
ﬁ Call arguments
% Saved temp registers
0p)
=] Caller’s
o) stack
QO
0 frame
Dy

Stack grows

oseaJoul sippe Alowsn

>

<

RSP

Caller’s
stack
frame

* ABI = interface between binary modules
* Modularization

* Depends on programmers doing the right thing
(= “soft modularization’)

o Compilers and runtimes help

o (Caller and callee trust each other

o (allee could corrupt caller’s stack (e.g., buffer overflow)
o (allee might return to wrong addr (e.g., stack smashing)

o (Callee might fail (e.g., SIGFPE due to div by zero)
= "fate sharing”

o (Callee might leave return adadr in wrong register

* Program objects & types (module = memory objects)
o Client/server architecture (different address spaces)

o Example: Remote procedure calls

Program Ohjects & Types

Strong modularization within the same address space
(Modules = objects within the program)

struct Rectangle {
int length;
int width;

}

| class Rectangle {
int area(struct Rectangle r)

d | private int length, width;
r.length * r.width;
¥ public Rectangle(int 1, int b)
ommm — {
length = 1;
width = b:
}
public int area()
{
return length x width;
}

struct Rectangle {
int length; 1
/, o widih: Encapsulation
s

class Rectangle {
Data int area(struct Rectangle r) g

1 | private int length, width;
r.length * r.width;
¥ public Rectangle(int 1, int b)
e — {
length = 1;
width = b:
}
_ public int area()
Behavior {
return length x width;
}
VS. ;

Data + Behavior
Inseparable

Objects & tyne safety = stronger intra-program modularity

o Untyped languages
o Weakly typed languages (e.g., C)

* Have types, but can change (e.q., explicitly cast data from one type to another)
o Strongly typed languages (e.g., Lisp)

* Each chunk of memory has well defined type, no Object or void
o Python, C#, C++, Rust, ... might qualify

* Ensuring type safety
o Static (Rust, Haskell) vs. dynamic (Python, Ruby)

* Programmers are humans

* Trusting gives you at best a “soft” modularization

o Better to trust compilers, runtimes, libraries, operating systems, ...

* E.g., modularize using Docker-style containers (OS-level virtualization)
o [ower layers are widely used and robust (even though they too are buggy...)

o Better to trust hardware

* Cheap way to (sort of) do this: modularize using virtual machines
o Widely used and robust (even though it too is buggy...)

The lower the layer where modularity is enforced, the stronger the modularity

o Client/server architecture (different address spaces)

* Example: Remote procedure calls

Clients/Servers Interacting via Messages

Modularization across different address spaces

* |s the foundation for many system architecture patterns

* event-driven, microservices (formerly SOA), action—-domain-responder (e.q.,
MVVM), multi-tiered, peer-to-peer, publish-subscribe, etc.

o Key ideas

* place modules in separate, strongly isolated domains, and have them communicate
via messages

* messages typically need to be marshalled/unmarshalled for send/receive

Physical (and virtuall servers

* Rely on physics
* Reduce fate sharing

* |mprove encapsulation

Client

Client

=

Client

Physical (and virtuall servers

* Rely on physics
* Reduce fate sharing

* |mprove encapsulation

— o

R
Jirtual
Vi Lual

1
e o ol s & PO eI .
ﬂkh:)*"vr‘ "B

o)\ A'E - -
)'v-*‘-\\)'x-: :-:5.“*_ :.Q?—-f

Physical (and virtuall servers

O Rely on phyS|CS Physical Router
* Reduce fate sharing |

* |mprove encapsulation Data Center Gateway

Runs as multiple vRouters
in existing top of rack

switch for N-S traffic
Tenant A / \ Tenant B

Logical Router / \ Logical Router
(distributed VRF

‘i‘ (distributed VRF
running in overlay) /[\ i
g Y [=) running in overlay)
~_ T /.Jo0111/24
[0[ﬁ
VM ‘ VM | VM

10.1.1.14/24

* An exercise In modularization of otherwise monolithic kernels
o Liedtke's minimality principle
o Servers = trusted intermediaries

o Essentially daemon programs with some extra privileges
* e.g., can access physical memory that would otherwise be off-limits

Monolithic kernel

Application

System Call

Microkernel

* An exercise In modularization of otherwise monolithic kernels
o [Liedtke's minimality principle
o Servers = trusted intermediaries

o Essentially daemon programs with some extra privileges
* e.g., can access physical memory that would otherwise be off-limits

* Talks to servers over IPC (inter-process communication)

* Instead of syscalls in monolithic kernels

* How Is fate sharing”? How is encapsulation?

Benefits of Glient/Server

* Narrow channels for error propagation
* [solation between “caller” and “callee”
* Decoupling

* (Can fail independently —> the opposite of “fate sharing”
* Rely on timeouts to infer remote failure

* Forcing function to document interfaces

Drawhacks of Glient/Server

* Marshalling/unmarshalling messages incurs overheads
o Unnatural interaction between modules

* Semantic coupling may render functional decoupling moot

o E.g., caller cannot make progress without an answer

A couple of examples of client/server architectures

Pub/Sub Subscriberj
[Publisher]\ @
msg
msg.—b[Subscriber j
[Publisher

Subscriber)

A couple of examples of client/server architectures

Pub/Sub suscriver |

[Publisher j\ @
msg

/T [R

msg
, 6 . REST ' REST > Account
Publisher AP APt Account
Service

Mobile app

> Inventory

Inventory
Service

' '

AM
.
Browser ‘

8
Microservices | shipping
& Tiered Arch

Shipping
4’

(19 i (14

same address space

o Example: Remote procedure calls
separate address spaces

Get benefits of client/server organization
with the comfort of a procedure call

RPG is everywhere

juniper Google

<||I

Ir
CISCO.

Square

Dropbox

S » zalando Core OS

Spotify

apparent flow
call
Client Server

apparent flow B
_ call
Client Server

apparent flow
call
Client

Server

apparent flow)
call
Client Server

apparent flow)
call
Cliént Server

I R PN PN

apparent flow s
I —

call

Client Ll ___ [rewnt | Server

i
call return I return call
Interface —

Server Stub

return | | call

RPC Runtime -_ RPC Runtime
Library Library
network
messages

Client process Server process

Client address space Server address space

Client Server

Local procedure call Return Call Call Execse Return Local procedure invocation

Client stub Server stub

Parameters -> message Unpack Pack Unpack Pack Message -> parameters

RPC Runtimé RPC Runtimg
Call Packet
_ _J
_)

Result Packet

Examples of RPC systems

e NFS and &) Google Cloud Filestore
o Java RMI and Google Web Toolkit

* (Go's rpc package

o (Cassandra, HBase, Couchbase

* Apache Thrift
o gRPC (uses Google Protocol Buffers IDL)

* microservices, mobile, real-time, lo1. ...

Examples of RPC systems

e NFS and &) Google Cloud Filestore
o Java RMI and Google Web Toolkit

* (Go's rpc package

Google

JUNIPEL

I
CISCO.

* (Cassandra, HBase, Couchbase
* Apache Thrift
o gRPC (uses Google Protocol Buffers IDL)

* microservices, mobile, real-time, lol. ...

SEPFLERERA=PRASEESIES2DY
COREBANMMBO[OAAGAWCARDNTE SO

client
_ y,

Check, Read,
Expand, Write

\

—>

| |

| |

| |

: aclserver < > aclserver :

Service to determine | |
whether a user is : I >< I :
authorized to access a | :
. . | |
particular object ornot el B > selpruel :
| |

| |

| |

Zanzibar serving cluster

client

.

J
Check, Read,
LgRP Expand, Write I)

\

—>

| |

| |

| |

: aclserver < > aclserver :

Service to determine | |
whether a user is : I >< I :
authorized to access a | :
. . | |
particular object ornot el B > selpruel :
| |

| |

| |

Zanzibar serving cluster

client

.

J
Check, Read,
@RP Expand, Write I)

\

—>

| |

| |

| |

: aclserver -t > aclserver :

Service to determine | |
whether a user is : I >< I :
. |
authorized to accessa .
. . | |
particular object or not : aclserver < > aclserver :
| |

| |

| |

Zanzibar serving cluster

A

read/write
C y ~
. b= o N == =
I |
Externallly consistent | namespace namespace 1 namespace N chanaelo l
transactional database | | configs | | relatontuples | | relationtuples | | kN
I |
\ - Spanner global database system |

client

.

J
Check, Read,
@RP Expand, Write I)

\

—>

| |

| |

| |

: aclserver -t > aclserver :

Service to determine | |
whether a user is : I >< I :
authorized to access a | :
. . | |
particular object ornot selorvel B > g el :
| |

| |

| |

Zanzibar serving cluster

A

(g RPC |[read/write
C y ~
: b = S = - |

|

EXtemallly consistent | namespace namespace 1 namespace N chanaelo :
transactional database | | configs | | relatontuples | | relationtuples | | kN
I |
\ - Spanner global database system |

Workilow for writing RPCG-hased systems

Client address space Server address space o Define the service in an IDL file

Client Server

Execute
Return Call Call : Return

Client stub Server stub

Unpack Pack Unpack Pack

RPC Runtimé RPC Runtimeg
Call Packet
_ _J
- J

Result Packet

Workilow for writing RPCG-hased systems

Client address space Server address space o Define the service in an IDL file

Client

Return Call

Server

Generate message implementations using
the IDL compiler

Call Return

Client stub Server stub

Unpack Pack Unpack Pack

RPC Runtime¢

Receive clait Send

RPC Runtimg

Call Packet

Result Packet

Workilow for writing RPCG-hased systems

Client address space Server address space o Define the service in an IDL file

Client

Return Call

Server

Generate message implementations using
the IDL compiler

Call E : Return

Server sE Generate server and client code using the
RPC compiler

Client stub

Unpack Pack

RPC Runtime

Receive (Wait Send

RPC Runtimg

Call Packet

Result Packet

Workilow for writing RPCG-hased systems

Client address space Server address space o Define the service in an IDL file

Client

Return Call

Server

Generate message implementations using
the IDL compiler

Call E : Return

Server sE Generate server and client code using the
RPC compiler

Client stub

Unpack Pack

Write the server to implement the generated

RPC Runtimg

Interface

RPC Runtime

Receive (Wait Send

Call Packet

Result Packet

Workilow for writing RPCG-hased systems

Client address space

Return Call

Receive (Wait Send

=

Unpack Pack

Client

Client stub

RPC Runtime

Call Packet

Server address space

Server

Call E Return

o>

Server stub

RPC Runtimg

Result Packet

Define the service in an IDL file

Generate message implementations using
the IDL compiler

Generate server and client code using the
RPC compiler

Write the server to implement the generated
interface

Write the client to use the interface

Workilow for writing RPCG-hased systems

Client address space

Return Call

Receive (Wait Send

=

Unpack Pack

Client

Client stub

RPC Runtime

Call Packet

Server address space

Server

Call E Return

o>

Server stub

RPC Runtimg

Result Packet

Define the service in an IDL file

Generate message implementations using
the IDL compiler

Generate server and client code using the
RPC compiler

Write the server to implement the generated
interface

Write the client to use the interface

Compile, deploy, run

Methods

BatchCreateSessions Creates multiple new sessions.

BatchWrite Batches the supplied mutation groups in a collection of efficient transactions.
BeginTransaction Begins a new transaction.

Commit Commits a transaction.

CreateSession Creates a new session.

DeleteSession Ends a session, releasing server resources associated with it.

ExecuteBatchDml Executes a batch of SQL DML statements.

ExecuteSql Executes an SQL statement, returning all results in a single reply.
ExecuteStreamingSql Like ExecuteSql, except returns the result set as a stream.

GetSession Gets a session.

ListSessions Lists all sessions in a given database.

PartitionQuery Creates a set of partition tokens that can be used to execute a query operation in parallel.
PartitionRead Creates a set of partition tokens that can be used to execute a read operation in parallel.
Read Reads rows from the database using key lookups and scans, as a simple key/value style alternative

to ExecuteSql.
Rollback Rolls back a transaction, releasing any locks it holds.

StreamingRead Like Read, except returns the result set as a stream.

M7 -

rpc ExecuteSql(ExecuteSqlRequest) returns (ResultSet)

Executes an SQL statement, returning all results in a single reply. This method cannot be used to return a result set larger
than 10 MiB; if the query yields more data than that, the query fails with a FAILED_PRECONDITION error.

Operations inside read-write transactions might return ABORTED. If this occurs, the application should restart the
transaction from the beginning. See Transaction for more details.

Larger result sets can be fetched in streaming fashion by calling ExecuteStreamingSql instead.

I ————————— N

rpc ExecuteSql(ExecuteSqlRequest) returns (ResultSet)

Executes an SQL statement, returning all results in a single reply. This method cannot be used to return a result set larger
than 10 MiB; if the query yields more data than that, the query fails with a FAILED_PRECONDITION error.

Operations inside read-write transactions might return ABORTED. If this occurs, the application should restart the
. transaction from the beginning. See Transaction for more details.

| Larger result sets can be fetched in streaming fashion by calling ExecuteStreamingSql instead.

void QueryDataWithStruct(google::cloud: :spanner::Client client) {
namespace spanner = ::google::cloud::spanner;
using NameType = std::tuple<std::string, std::string>;

ll

S~

"SELECT SingerId FROM Singers WHERE (FirstName, LastName) = @name",§
{{"name", spanner::Value(singer_info)}})); :

for (auto& row : spanner::StreamOf<std::tuple<std::int64 _t>>(rows)) {
if (!row) throw std::move(row).status();
std::cout << "SingerId: " << std::get<0>(*row) << "\n";

}
}

o Strong modularity with the convenience of a procedure call

* Reduce fate sharing by exposing callee failures in a controlled manner

* This means the caller can now recover easily (esp. if asynchronous RPC)

* RPCs typically take longer than a local procedure call

* [eaky abstraction

o |ssues of trust

* How do | know who is making the request?

* How do | know the message was not tampered with?
o .7

o What does “no response” imply?

o At-least-once semantics =1 execution

o At-most-once semantics <1 executions

o Exactly-once semantics =1 execution

HOW to Impiement
exactly-once RPG semantics 2

RPC Tax in Data GCenters

o Network latency and transmission overhead
* (Context switching on both client and server
* Memory and serialization overheads

* Network load

o Security and authentication

* Error handling and retries

* Local procedure calls (module = procedure)
Memory safety

* Program objects & types (module = memory objects)

* (Client/server architecture (different address spaces) Message-based

communication

THEEND

Memory Safety

* Memory can be defined (allocated) or undefined (not allocated)

* Deallocated memory cannot be reused prior to (re)allocation b
o Pointeris a capability (p, b, e) 0—>
* Base b, extent e, pointer p e

o *pis safe iff it accesses memory within the target obj that p is based on

* An execution is memory-safe <=> all ptr derefs in that exec are safe

* Aprogram is memory-safe <=> all possible executions (for all possible
inputs) are memory-safe

Based on Nagarakatte et al., SoftBound: Highly Compatible and Complete Spatial Memory Safety for C, PLDI 2009

http://www.cis.upenn.edu/acg/papers/pldi09_softbound.pdf

* pisbased on memory object X iff p Is

1. obtained by allocating X at runtime on the heap, or P— D
2. obtained as &X where X is statically allocated, or X
* e.g, local or global variable, control flow target e

3. obtained as &X.foo (i.e., from field of X), or

4. the result of a computation involving operands that are ptrs based on X or non-ptrs

o copy of another pointer
o valid pointer arithmetic
e array indexing

Memory Safety

* Pointeris a capabllity (p,b,e)

* Base b, extent e, pointer p
o *pis safe Iff accesses memory within the target obj that p is based on
b <= p <= e

* An execution IS memory-safe <=>
all pointer dereferences in that execution are safe

* Aprogram is memory-safe <=>
all possible executions (for all possible inputs) are memory-safe

1 and that memory is defined

Memory Safety

* Memory safety is fundamental to in-memory client/server

* Apointeris a name for X => set of names for reaching X is transitive
closure over "pased-on” relationship

Around 70% of our high severity security bugs are memory

o Spatial vs. temporal violations of memory safety unsaet proviems iat s, mistakes witn cic++ pointers)

Half of those are use-after-free bugs.

Google Protobuf & gRPG

Example of how to write code that uses RPC

Interface Definition Language (Gooyle protohuf)

message Person {

required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE 0;
HOME
WORK

}

1;
2;

message PhoneNumber {

required string number = 1;

optional PhoneType type = 2 [default = HOME];
I3

repeated PhoneNumber phones = 4;

}

message AddressBook {
repeated Person people = 1;

}

contacts.proto

Interface Definition Language (Gooyle protohuf)

erson 1
gquired string name = 1,
required int32 id = 2;
optional string email = 3;

E enum PhoneType {
! MOBILE = 0;
| HOME

1;
WORK = 2;

}

honeNumber {
required string number = 1;

i optional PhoneType type = 2 [default = HOME];
-}

repeated PhoneNumber phones = 4;
I3
dd ressBook {
2d Person people = 1;
I3

contacts.proto

Interface Definition Language (Gooyle protohuf)

message Person {

required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE 0;
HOME
WORK

}

1;
2;

message PhoneNumber {

required string number = 1;

optional PhoneType type = 2 [default = HOME];
I3

repeatediPhoneNumber fphones = 4;
s
message AddressBook {

repeatec beople = 1;

}

contacts.proto

Interface Definition Language (Gooyle protohuf)

on {

required tring name = 1;
required fint32 id = 2;
optional string email = 3;

enum PhoneType {

MOBILE = 0;
HOME = 1;
WORK = 2:
I
messade PhoneNumber <

string number = 1;
optionalfPhoneType type = 2 [default = HOME];
repeated PhoneNumber phones = 4;

message AddressBook {
repeated Person people = 1;

}

contacts.proto

Interface Definition Language (Gooyle protohuf)

message Person {

required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE 0;
HOME
WORK

}

1;
2;

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

¥
PhoneNumber phones = 4;
s

message AddressBook {
Person people = 1;
I3

contacts.proto

Interface Definition Language (Gooyle protohuf)

message Person {

required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE = 0; —— protoc --cpp_out=$DST _DIR contacts.proto —— contacts.pb.h
oL contacts.pb.cc
HOME = 1;
WORK = 2;

}

message PhoneNumber {

required string number = 1;

optional PhoneType type = 2 [default = HOME];
I3

repeated PhoneNumber phones = 4;

}

message AddressBook {
repeated Person people = 1;
I3

contacts.proto

http://contacts.pb.cc

Interface Definition Language (Gooyle protohuf)

message Person {

required string name = 1;
required int32 id = 2;
optional string email = 3;

' enum PhoneType { contacts.pb.h
I MOBILE = 0 ——— protoc --cpp out=$DST DIR contacts.proto —— P

. ’ - ~ contacts.pb.cc
| HOME = 1;

! WORK = 2; 7/ name contacts.pb.h
-} inline bool has_name() const;

! inline void clear_name();

' message PhoneNumber { inline const ::std::string& name() const;

| required string number = 1; inline void set_name(const ::std::string& value);

| optional PhoneType type = 2 [default = HOME]; }nl}ne void set_name(const charx value);

Rt inline ::std::string*x mutable_name();

| // id

) repeated PhoneNumber phones = 4; inline bool has_id() const;

inline void clear_id();
inline int32 t id() const;
message AddressBook { inline void set_id(int32_t value);
repeated Person people = 1;

}

contacts.proto {/ ?mall)
—— — inline bool has _email() const;

inline void clear_email();

inline const ::std::string& email() const;

inline void set_email(const ::std::string& value);
inline void set_email(const charx value);

inline ::std::string*x mutable_email();

// phones

inline int phones_size() const;

inline void clear_phones();

inline const ::google::protobuf::RepeatedPtrField< ::pocs::Person_PhoneNumber >& phones() const;
inline ::google::protobuf::RepeatedPtrField< ::pocs::Person_PhoneNumber >x mutable_phones();
inline const ::Person_PhoneNumber& phones(int index) const;

inline ::Person_PhoneNumberx mutable_phones(int index);

inline ::Person_PhoneNumberx add_phones();

http://contacts.pb.cc

Interface Definition Language (Gooyle protohuf)

message Person {

}

required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE 0;
HOME
WORK

}

1;
2;

message PhoneNumber {
required string number = 1;

}

optional PhoneType type = 2 [default = HOME];

repeated PhoneNumber phones =

message AddressBook {

}

repeated Person people = 1;

contacts.proto

contacts.pb.h

— protoc --cpp_out=$DST DIR contacts.proto —— contacts.pb.cc

// serializes the message and stores the bytes in the given string.
// The bytes are binary, not text; we only use the string class as
// a convenient container.,

bool SerializeToString(stringx output) const;

// parses a message from the given string.
bool ParseFromString(const string& data);

// writes the message to the given C++ ostream.
bool SerializeToOstream(ostreamx output) const;

// parses a message from the given C++ istream.
bool ParseFromIstream(istreamx input);

http://contacts.pb.cc

// Interface exported by the server.
service Contacts {
// A simple RPC.
//
// Obtains the feature of a given Person.
rpc GetNumber(Person) returns (PhoneNumber) {}

//
// Obtains the PhoneNumbers available for the given Person.

E // A server—-to-client streaming RPC.
. rpc ListNumbers(Person) returns (stream PhoneNumber) {}

} e

message Person ... contacts.proto

// Interface exported by the server.
service Contacts {
// A simple RPC.
//
// Obtains the feature of a given Person.
rpc GetNumber(Person) returns (PhoneNumber) {}

//
// Obtains the PhoneNumbers available for the given Person.

E // A server—-to-client streaming RPC.
. rpc ListNumbers(Person) returns (stream PhoneNumber) {}

} e

message Person ...

|

protoc --grpc out=. --plugin=protoc-gen-grpc=$PLUGIN DIR contacts.proto ——

contacts.proto

contacts.grpc.pb.h
contacts.grpc.pb.cc

- remote interface type (“stub”) for clients
- abstract interface for servers to implement

REST vs. RPC

REST vS. RPC

REST vS. RPC

* =Representational State Transfer

» REST imposes a resource-oriented thinking, in contrast to RPC (action-oriented)
* CRUD, and the set of legal actions from any state is always controlled by the server

REST vS. RPC

* =Representational State Transfer

o REST has a resource-oriented thinking, while RPC is action-oriented
* CRUD, and the set of legal actions from any state is always controlled by the server

o All communication Is stateless server-side and cacheable

REST vS. RPC

* =Representational State Transfer

o REST has a resource-oriented thinking, while RPC is action-oriented
* CRUD, and the set of legal actions from any state is always controlled by the server

o All communication Is stateless server-side and cacheable

* Most popular data representation = JSON

REST vS. RPC

* =Representational State Transfer

o REST has a resource-oriented thinking, while RPC is action-oriented
* CRUD, and the set of legal actions from any state is always controlled by the server

o All communication Is stateless server-side and cacheable

* Most popular data representation = JSON

o REST is often (~always) done over HTTP

o GET POST/PUT or DELETE requests
* avoid reinventing the wheel (e.g., metadata for caching)

Methods

batchCreate

batchWrite

beginTransaction

commit

create

delete

executeBatchDml

executeSql

executeStreamingSql

get

list

partitionQuery

partitionRead

read

rollback

streamingRead

POST /v1/{database=projects/*/instances/*/databases/*}/
sessions:batchCreate
Creates multiple new sessions.

POST /v1/{session=projects/*/instances/*/databases/*/sessions/
*}:batchWrite
Batches the supplied mutation groups in a collection of efficient transactions.

POST /v1/{session=projects/*/instances/*/databases/*/sessions/
*}:beginTransaction
Begins a new transaction.

POST /v1/{session=projects/*/instances/*/databases/*/sessions/*}:commit
Commits a transaction.

POST /v1/{database=projects/*/instances/*/databases/*}/sessions
Creates a new session.

DELETE /v1/{name=projects/*/instances/*/databases/*/sessions/*}
Ends a session, releasing server resources associated with it.

POST /v1/{session=projects/*/instances/*/databases/*/sessions/
*} :executeBatchDml
Executes a batch of SQL DML statements.

POST /v1/{session=projects/*/instances/*/databases/*/sessions/
*}:executeSql
Executes an SQL statement, returning all results in a single reply.

POST /v1/{session=projects/*/instances/*/databases/*/sessions/
*}:executeStreamingSql
Like ExecuteSql, except returns the result set as a stream.

GET /v1/{name=projects/*/instances/*/databases/*/sessions/*}
Gets a session.

GET /v1/{database=projects/*/instances/*/databases/*}/sessions
Lists all sessions in a given database.

POST /v1/{session=projects/*/instances/*/databases/*/sessions/
*}:partitionQuery
Creates a set of partition tokens that can be used to execute a query operation in parallel.

POST /v1/{session=projects/*/instances/*/databases/*/sessions/
*}:partitionRead
Creates a set of partition tokens that can be used to execute a read operation in parallel.

POST /v1/{session=projects/*/instances/*/databases/*/sessions/*}:read
Reads rows from the database using key lookups and scans, as a simple key/value style alternative
to ExecuteSql.

POST /v1/{session=projects/*/instances/*/databases/*/sessions/*}:rollback
Rolls back a transaction, releasing any locks it holds.

POST /v1/{session=projects/*/instances/*/databases/*/sessions/
*}:streamingRead
Like Read, except returns the result set as a stream.

HTTP client —

POST

Result

‘b
~ Spanner svc

HTTP method

API service
API version Identifiers for project, instance, database, and session
\ W \I‘Endpointl

POST https://spanner.googleapis.com/vl/{session=projects/*/instances/*/databases/*/sessions/*}:executeSql

HTTP client — POST

—>
Lt ~ Spanner svc
Resu

HTTP method

API service
API version Identifiers for project, instance, database, and session
\ W \I‘Endpointl

POST https://spanner.googleapis.com/vl/{session=projects/*/instances/*/databases/*/sessions/*}:executeSql

Request body (JSON) |

"transaction": {

object (TransactionSelector)
i
"sql": string,
"params”: {

object
HE
"paramTypes”: {
string: {
object (Type)
}

resumeToken": string,
"queryMode" : enum (QueryMode),
"partitionToken": string,
"seqno”: string,
"queryOptions": {

object (QueryOptions)
}
"requestOptions”: {

object (RequestOptions)
}

"dataBoostEnabled" : boolean

}

HTTP client — POST

—>
Lt ~ Spanner svc
Resu

