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Some historical perspective on the HW/SW dance.
Cost of Abstraction - Value of Specialization
Canonical Hw/Sw Co-Design

Dally’s Principle of Accelerators



Hardware/Human Codesign
Pre-Turing Era - 1930s

IPER CONPUTING
MACHNES SHOWN

olumbia Experts Bulld Deviece Humans interact with the kernel performed by the machine:
Equal to 100 Mathematicians

Fancy tabulating machine could High Value Computations: Ex_z or even Ywi.x;

Technology was electromechanical relays

Typically, quite a few “telescoping” (pipelining) tricks (example)

R Machine Input: Feed it punchcards with data
DNE DOES 12 PROBLEMS

Another Determines Frequency Machine Outputs:

and One Computes Squares * New punchcards (write once medium, for partially accumulated data)

. New statistical machines with the

s ol oy dnpuesen * Human readable summary on fan-fold paper

, ns in solving even highly complex
algebraic problems were demonstrated

S5 il s Cool computations: SELECT/WHERE/GROUP BY |
B s & vt dhain Dtntty

Btatistical Buresu in Hamilton Hall. Performance: Could ingest 150 punch cards per minutes

Source: www.columbia.edu/cu/computinghistory/packard.html



1945 - Vacuum Tube’s Era

Von Neumann’s magic - Death of hardware, birth of Software

Reports on Building an “Automatic Computing Device” (Clentral], M[emory], R[ecording] (for |10))

The orders which are received by CC come from M, i.e. from the same place where the numerical
material is stored.

Von Neumann’s Insight/Suggestion (Mechanical - ms, Vacuum tube - us)

Thus it seems worthwhile to consider the following viewpoint: The device should be as simple

IR .

as possible, that is, contain as few elements as possible. This can be achieved by never performing

S ane . ot s aseaniantie oo aan ) T

two operations simultaneously, if this would cause a significant increase in the number of elements
required. v

It is also worth emphasizing that up to now all thinking about high speed digital computing
devices has tended in the opposite direction: Towards acceleration by telescoping processes at the
price of multiplying the number of elements required. It would therefore seem to be more 1nstructive

to try to think out as completely as possible the opposite viewpoint

(https://web.mit.edu/STS.035/www/PDFs/edvac.pdf)

Very rich paper: why binary is best, thoughts about errors in computing, JIT, biomimetics, brain VS computer, synchrony/asynchrony ...


https://web.mit.edu/STS.035/www/PDFs/edvac.pdf

Feynman’s observation

Plenty of Room at the Bottom
1959 Feynman mentally explores the future of miniaturisation:

In the future (present) we should be able to do insanely small machines!

Transistor Free Lunch Party!
Smaller transistor ~ faster clock ~ no effort, same design go faster

Smaller transistor ~ more transistors, what do we do with them??

https://web.pa.msu.edu/people/yang/RFeynman_plentySpace.pdf



https://web.pa.msu.edu/people/yang/RFeynman_plentySpace.pdf

Feynman was right

Moore's Law

is alive and well
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The Hard Floor: Landauer Limit

Moore's Law Is an economic observation.
Landauer's Principle is a physical law

(Feynman actually derives it in his Lectures on Computation)

The Law: The minimum energy required to erase one bit of information Iis:

KT In 2

The Numbers:

At room temp min energy to erase 1 bit = 2.8 x 10-21 J.
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What will happen?

Hypothesis 1: Landauer’s limit is wrong

Hypothesis 2: We will jJust cool down our computers better and our phone will
be running at 100K, 10K, 1K, 0.1K...

Hypothesis 3: Reversible Computing: Quantum/Adiabatic

Hypothesis 4: Computing systems stop riding an exponential, become like
many other engineering and scientific discipline

There was plenty of room at the bottom, maybe now there is plenty of
room at the top?



Mid 2010s, after 70 years of free lunch:
L et’s assess the bloat




Cost of Abstraction
There iIs Plenty of Room at The Top

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. "Running time” is the running time of the version. “GFLOPS” is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
s time relative to the preceding line. “Fraction of peak™ is GFLOPS relative to the computer's peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup o fF;z::o(:/o)
L Python 2555248 0005 oLl I 0.00
2 Java 2,372.68 0.058 0.01

3 s G D82BT 0253 i B 003
4 Parallel loops 69.80 1.969 0.24
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Source: https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf

TPU v1 (2016)

100% (?2?)

TPUv1/Processor: 28/22nm, "350mm2, “"700MHz/3GHZ
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Von Neumann’s suggestion of a simpleafully general, and programmable machine is
ead.

Before we get to accelerators and co-design, let’ s understand why

5.6 Accelerating these arithmetical operations does therefore not seem necessary —at least not until
we have become thoroughly and practically familiar with the use of very high speed devices of this
kind, and also properly understood and started to exploit the entirely new possibilities for numerical

S oty v

treatment of complicated problems which they open up. Furthermore it seems questionable whether
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The Danse Between Memory and
Processor




First Insight: "It's the Memory, Stupid"
Richard Sites, 1996 (DEC Alpha Architect)

“across the industry, today's chips are largely able to execute code faster than
we can feed them with instructions and data.”

In other words, high-performance microprocessors are often high-speed no-ops
machine.



Little's Law: How to Balance A System

Little's Law is a fundamental theorem from queuing theory that relates three variables
In a stationary system:

L =AXW

L (Concurrency): The amount of data "in flight" (Queue Length).
A (Throughput): The rate of data delivery (Bandwidth).
W (Wait Time): The round-trip time for a request (Latency).

To achieve a target Bandwidth (A), the system must maintain sufficient Concurrency (L)
to cover the Latency (W). If you don't have enough requests in flight, your throughput
cannot reach the peak bandwidth.



Little’s Law In Practice

Memory viewpoint

System: 100 GB/s BW, 100 ns Latency.

Requirement: You need 10,000 Bytes of active requests (Processor needs to
emit many concurrent requests) at all times to stop the bus from going idle.



Evaluating the Speed of Light

Hw/Sw Co-Design from First Principle



Processor vs. Memory

At a hardware level, two distinct operations are constantly (potentially
simultaneously) costing time:

Compute (Work): The processor/computing unit executing operations (FLOPS)
on data present in registers/caches.

Memory Traffic (Movement): Moving bytes between DRAM (Memory) and the
Processor.

The core question of efficiency Is:

Once the processor pays the 'cost' to fetch a chunk of data, how
much 'work' can the processor do with it before it needs to fetch more?



Arithmetic Intensity

Arithmetic Intensity is the ratio of total floating-point operations performed to
total data bytes moved.

Total FLOPs

Al = Total Bytes Accessed

This Is an average metric over a specific kernel or time window. It aggregates
all math done and divides it by all memory traffic incurred during that period.



Examples of Intensity

Vector Addition: A[i] + B[]

m

You load 2 numbers and store 1 result for just 1 addition. Al is ~o— = 0(1)

The processor is constantly asking for more data,
Low FLOPs/Byte (Memory Bound)

Matrix Multiplication: C = Ax B

3
If the full matrices fit in the local memory/registers, Al is ~2";12 = 0(m)

The high reuse rate drives up the average work per byte.
High FLOPs/Byte (Compute Bound)



The Roofline Model

Map of Speed of Light
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What is the Peak FLOP/s your hardware can
achieve

What is the peak Bandwidth your hardware
can achieve?

What is the arithmetic intensity of your
problem?

We will focus on the first two questions



Roofline Complexity

 What is the peak Bandwidth your hardware can achieve?

 Different answers!

___Compute R L1
___Compute R L2
Sl DRAM

 What is the Peak FLOP/s your hardware can achieve?

MatrixMultiplication Unit
+ Vector Unit

+ Standard Pipeline



Things look simple? 1024x1024 Int8 matmul

What is the Al

In a naive implementation, a matmul must read an entire row of Matrix A and an entire
column of Matrix B directly from the main memory to compute one element:

Read 2*(1024 + 1024) bytes for each output: 2*2048*1024/2 bytes total
Compute 102423 multiplications (if we don’t count additions)
This gives 0.25 FLOPs/byte

But if we tile with a size of tile of 128, we only count moving the data from main
memory into the cache (where we assume it can fit)?

Exercise left to the student



Arnithmetic Intensity is not a property of a problem, but a
property of a specific implementation (on a specific machine).

One must carefully tile the problems to increase reuse in fast
memory to increase arithmetic intensity and reach the roof



To make things harder

In Von Neumann’s model of computing, moving things to and from memory ... utilizes
Ops!!

Ld and St instructions

We need to compute to be allowed to compute more, but due to the fact that we
compute, we loose some compute resources. &

In other words, the Peak FLOP/s cannot be attained because we need to use
“FLOPs” of the processor to request data (not just waiting for it)!



A concrete example

Vanilla LLM Inference

The math of an LLM is :
Doing multiplications and additions

Doing a few softmax (exp), and vector normalization (square root?)

How can we achieve speed-of-light on this kind of workload®?



Roofline and Little’s Law

Step 1: Build a high roof

Specialized units for matrix multiplication, and semi-specialized units for exp,
square roots and the rest of the less common arithmetic

GPU Architecture CUDA Cores (FP32) Tensor Cores (FP8) % FLOPs in Tensor

NVIDIA H100 ~67 TFLOPS ~1,979 TFLOPS ~96%

RTX 4090 ~83 TFLOPS ~330 TFLOPS ~80%

CUDA cores are semi-general purpose cores.
They are up to ~100x faster than a CPU for FLOP heavy

They are > ~100x slower on irregular, control-heavy code (running Scala)



Step 2: Build a big pipe to these units

Feature
Architecture
HBM Bandwidth
HBM Capacity
L2 Cache Bandwidth
L2 Cache Capacity
L1 Cache Bandwidth
L1 Cache Capacity
NVLink/Fabric
PCle Bandwidth

Roofline and Little’s Law

NVIDIA A100
Ampere
2.03 TB/s (HBM2e)
80 GB
~4.8 TB/s
40 MB
~19.5 TB/s
20.7 MB (192KB/SM)
600 GB/s (NVLink 3)
64 GB/s (Gen 4)



Roofline and Little’s Law

Step 3: Build little workers to move data around

Maybe we could use semi-general purpose CUDA cores, but if we use
them for that, we might not have enough FLOPs for EXP computations!

Step 4: Orchestrate all these players!

(Currently still using semi-general purpose CUDA cores, but for how
long?)



Canonical Example of HW codesigns: a GPU

INT32 INT32
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Figure 7. GA100 Streaming Multiprocessor (SM)




Step 5. Program the Machine &



An End-To-End Simple Example

A very simple pipeline;
Someone upload a JPEG image (1024x1024) to a server
We want to process It:
Decompress it

Apply a neural network to it






Principles of Accelerators



Guidelines for accelerators
(Borrowed from Bill Dally’s talk)

1. Parallelism

Locality

Optimize Memory Orchestration and Control

-l

Custom datatypes and operations



Parallelism

1. Look at the dataflow graph of your computation, at a fine
granularity

Byte Sub

2. What is the critical path of your computation, compared to
the amount of compute nodes?

Shift Row

Mix Column

3. Even if there is a long chain of data dependencies, does it
make sense to pipeline the computation?




Optimize memory orchestration and Control

Application specific “memory pipelining” / Decoupled execution

» Software orchestration can become the bottleneck (CPU spinning on memory
location to wait an accelerator is done)

« Simply copying data around, decompressing data, are commonly bottlenecks

* The instructions of general-purpose machines can be bottlenecks as well



Specialized Datatypes

Domain specific analysis of structure of computation:
Modern ML -> lot to gain if reducing number of bits in representation

In Robotics, same opportunities? (To appear, RA/L and ICRA),



10*

10!

o double

RP2350 (ARM)
CPU Peak Power: 1.8 mW
FLOP Support: float only

FK RNEA

o float
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e fixed32-uniform
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CPU Peak Power: N/A
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Analytically-Guaranteed Worst-Case Error Across Datatypes and Robots
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The Cost of Specialization



Remarks

Flame war between C/Java is a fight between 0.01% efficiency and 0.03% efficiency (This
depends from program to program, compiler to compiler!)

Modern processors already embed a whole bunch of accelerators: Vector unit, often vastly
underused

The size of employable workforce drastically decreases when going to harder-to-program
machines



Software Integration

Having defined new instructions is not the end of the story:
If | add AESENC, my libssl library won’t suddenly start using it
Have to worry about cross-platform

If | have matmul 16x16, or matmul (hxm forall n,m<64),
512x512 matmul?
convolution?
Arbitrary linear/tensor algebra operator



First drawback of HW/SW codesign

Take application X, handwrite code that leverage Accelerator W (V1), performs
great

[...] Time elapse

10 years later, Accelerator W (V13)

-> Handwritten code performs poorly (when it works)



Second drawback of HW/SW codesign

Take application X, handwrite code that leverage Accelerator W (V1), performs great
[...] 3 months happens, DeepSeek releases DeepSeek Sparse Attention
Oops, completely bottleneck on an operation that | do not have accelerator for.

Hw/Sw co-designs are often performance fragile because driven by 1 high-value
application



Compilation - Sync issues

Sync issues:

Need to add explicit data movement instructions if | want to use the data
computed on CPU

Hot research ideas:
Decoupling functionality and scheduling/performance [Halide/ExO]

Maybe not a fully push-button compilation, more an “assistant-compiler”

Maybe enable user to augment the compiler - easily add transformations with
triggers



Conclusion

“Accelerators” and Codesigns are not new - Yesterday they enabled census, today
they are enabling Al

There are costs to abstraction
There are good guidelines/models for what can be accelerated

There are costs to specialization



