
Hardware-Software Codesign
Thomas Bourgeat - POCS - Fall 2025 - EPFL

Outline

Some historical perspective on the HW/SW dance.

Cost of Abstraction - Value of Specialization

Canonical Hw/Sw Co-Design

Dally’s Principle of Accelerators

Hardware/Human Codesign
Pre-Turing Era - 1930s

Fancy tabulating machine could High Value Computations: or even

Technology was electromechanical relays

Typically, quite a few “telescoping" (pipelining) tricks (example)

Humans interact with the kernel performed by the machine:

Machine Input: Feed it punchcards with data

Machine Outputs:

• New punchcards (write once medium, for partially accumulated data)

• Human readable summary on fan-fold paper

Cool computations: SELECT/WHERE/GROUP BY !

Performance: Could ingest 150 punch cards per minutes

∑
!
𝑤!. 𝑥!%

!

𝑥!"

Source: www.columbia.edu/cu/computinghistory/packard.html

1945 - Vacuum Tube’s Era
Von Neumann’s magic - Death of hardware, birth of Software
Reports on Building an “Automatic Computing Device” (C[entral], M[emory], R[ecording] (for IO))

Von Neumann’s Insight/Suggestion (Mechanical - ms, Vacuum tube - us)

(https://web.mit.edu/STS.035/www/PDFs/edvac.pdf)

Very rich paper: why binary is best, thoughts about errors in computing, JIT, biomimetics, brain VS computer, synchrony/asynchrony …

https://web.mit.edu/STS.035/www/PDFs/edvac.pdf

Feynman’s observation
Plenty of Room at the Bottom
1959 Feynman mentally explores the future of miniaturisation:

In the future (present) we should be able to do insanely small machines!

Transistor Free Lunch Party!

Smaller transistor ~ faster clock ~ no effort, same design go faster

Smaller transistor ~ more transistors, what do we do with them?

https://web.pa.msu.edu/people/yang/RFeynman_plentySpace.pdf

https://web.pa.msu.edu/people/yang/RFeynman_plentySpace.pdf

Feynman was right

The Hard Floor: Landauer Limit
Moore's Law is an economic observation.

Landauer's Principle is a physical law

(Feynman actually derives it in his Lectures on Computation)

The Law: The minimum energy required to erase one bit of information is:

The Numbers:

At room temp min energy to erase 1 bit ≈ 2.8 × 10-21 J.

kT ln 2

What will happen?
Hypothesis 1: Landauer’s limit is wrong

Hypothesis 2: We will just cool down our computers better and our phone will
be running at 100K, 10K, 1K, 0.1K…

Hypothesis 3: Reversible Computing: Quantum/Adiabatic

Hypothesis 4: Computing systems stop riding an exponential, become like
many other engineering and scientific discipline

There was plenty of room at the bottom, maybe now there is plenty of
room at the top?

Mid 2010s, after 70 years of free lunch:
Let’s assess the bloat

Cost of Abstraction
There is Plenty of Room at The Top

Source: https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf

TPUv1/Processor: 28/22nm, ˜350mm2, ˜700MHz/˜3GHZ

TPU v1 (2016) ˜90,000.000 100% (???)˜270~15,000,000<0.001

https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Leiserson-et-al-Theres-plenty-of-room-at-the-top.pdf

Von Neumann’s suggestion of a simple, fully general, and programmable machine is
dead.

-

Before we get to accelerators and co-design, let’ s understand why

The Danse Between Memory and
Processor

First Insight: "It's the Memory, Stupid"
Richard Sites, 1996 (DEC Alpha Architect)

“across the industry, today's chips are largely able to execute code faster than
we can feed them with instructions and data.”

In other words, high-performance microprocessors are often high-speed no-ops
machine.

Little's Law: How to Balance A System

Little's Law is a fundamental theorem from queuing theory that relates three variables
in a stationary system:

𝐿 = 𝜆×𝑊

L (Concurrency): The amount of data "in flight" (Queue Length).
λ (Throughput): The rate of data delivery (Bandwidth).
W (Wait Time): The round-trip time for a request (Latency).

To achieve a target Bandwidth (λ), the system must maintain sufficient Concurrency (L)
to cover the Latency (W). If you don't have enough requests in flight, your throughput
cannot reach the peak bandwidth.

Little’s Law In Practice
Memory viewpoint

System: 100 GB/s BW, 100 ns Latency.

Requirement: You need 10,000 Bytes of active requests (Processor needs to
emit many concurrent requests) at all times to stop the bus from going idle.

Evaluating the Speed of Light
Hw/Sw Co-Design from First Principle

Processor vs. Memory

At a hardware level, two distinct operations are constantly (potentially
simultaneously) costing time:

Compute (Work): The processor/computing unit executing operations (FLOPs)
on data present in registers/caches.

Memory Traffic (Movement): Moving bytes between DRAM (Memory) and the
Processor.

The core question of efficiency is:

Once the processor pays the 'cost' to fetch a chunk of data, how
much 'work' can the processor do with it before it needs to fetch more?

Arithmetic Intensity

Arithmetic Intensity is the ratio of total floating-point operations performed to
total data bytes moved.

AI =
Total FLOPs

Total Bytes Accessed

This is an average metric over a specific kernel or time window. It aggregates
all math done and divides it by all memory traffic incurred during that period.

Examples of Intensity
Vector Addition: A[i] + B[i]

You load 2 numbers and store 1 result for just 1 addition. AI is ~ !
"!

= 𝑂(1)

The processor is constantly asking for more data,
Low FLOPs/Byte (Memory Bound)

Matrix Multiplication: C = A x B

If the full matrices fit in the local memory/registers, AI is ~ !&

"!' = 𝑂(𝑚)

The high reuse rate drives up the average work per byte.
High FLOPs/Byte (Compute Bound)

The Roofline Model
Map of Speed of Light

1. What is the Peak FLOP/s your hardware can
achieve

2. What is the peak Bandwidth your hardware
can achieve?

3. What is the arithmetic intensity of your
problem?

We will focus on the first two questions

Roofline Complexity

• What is the peak Bandwidth your hardware can achieve?

• Different answers!

• What is the Peak FLOP/s your hardware can achieve?

Compute L1

Compute L2

Compute DRAM

MatrixMultiplication Unit
+ Vector Unit

+ Standard Pipeline
Memory

Things look simple? 1024x1024 Int8 matmul

In a naive implementation, a matmul must read an entire row of Matrix A and an entire
column of Matrix B directly from the main memory to compute one element:

Read 2*(1024 + 1024) bytes for each output: 2*2048*1024^2 bytes total

Compute 1024^3 multiplications (if we don’t count additions)

This gives 0.25 FLOPs/byte

But if we tile with a size of tile of 128, we only count moving the data from main
memory into the cache (where we assume it can fit)?

Exercise left to the student

What is the AI

Arithmetic Intensity is not a property of a problem, but a
property of a specific implementation (on a specific machine).
One must carefully tile the problems to increase reuse in fast
memory to increase arithmetic intensity and reach the roof

To make things harder

In Von Neumann’s model of computing, moving things to and from memory … utilizes
Ops!!

Ld and St instructions

We need to compute to be allowed to compute more, but due to the fact that we
compute, we loose some compute resources. 😖

In other words, the Peak FLOP/s cannot be attained because we need to use
“FLOPs” of the processor to request data (not just waiting for it)!

A concrete example
Vanilla LLM Inference

The math of an LLM is :

Doing multiplications and additions

Doing a few softmax (exp), and vector normalization (square root?)

How can we achieve speed-of-light on this kind of workload?

Roofline and Little’s Law
Step 1: Build a high roof

Specialized units for matrix multiplication, and semi-specialized units for exp,
square roots and the rest of the less common arithmetic

CUDA cores are semi-general purpose cores.

They are up to ~100x faster than a CPU for FLOP heavy

They are > ~100x slower on irregular, control-heavy code (running Scala)

GPU Architecture CUDA Cores (FP32) Tensor Cores (FP8) % FLOPs in Tensor

NVIDIA H100 ~67 TFLOPS ~1,979 TFLOPS ~96%

RTX 4090 ~83 TFLOPS ~330 TFLOPS ~80%

Roofline and Little’s Law

Step 2: Build a big pipe to these units

Feature NVIDIA A100
Architecture Ampere

HBM Bandwidth 2.03 TB/s (HBM2e)
HBM Capacity 80 GB

L2 Cache Bandwidth ~4.8 TB/s
L2 Cache Capacity 40 MB

L1 Cache Bandwidth ~19.5 TB/s
L1 Cache Capacity 20.7 MB (192KB/SM)

NVLink/Fabric 600 GB/s (NVLink 3)
PCIe Bandwidth 64 GB/s (Gen 4)

Roofline and Little’s Law

Step 3: Build little workers to move data around

Maybe we could use semi-general purpose CUDA cores, but if we use
them for that, we might not have enough FLOPs for EXP computations!

Step 4: Orchestrate all these players!

(Currently still using semi-general purpose CUDA cores, but for how
long?)

Canonical Example of HW codesigns: a GPU

Step 5. Program the Machine 😢

An End-To-End Simple Example

A very simple pipeline:

Someone upload a JPEG image (1024x1024) to a server

We want to process it:

Decompress it

Apply a neural network to it

Principles of Accelerators

Guidelines for accelerators
(Borrowed from Bill Dally’s talk)

1. Parallelism

2. Locality

3. Optimize Memory Orchestration and Control

4. Custom datatypes and operations

Parallelism

1. Look at the dataflow graph of your computation, at a fine
granularity

2. What is the critical path of your computation, compared to
the amount of compute nodes?

3. Even if there is a long chain of data dependencies, does it
make sense to pipeline the computation?

M

Key

Optimize memory orchestration and Control
Application specific “memory pipelining” / Decoupled execution

• Software orchestration can become the bottleneck (CPU spinning on memory
location to wait an accelerator is done)

• Simply copying data around, decompressing data, are commonly bottlenecks

• The instructions of general-purpose machines can be bottlenecks as well

Specialized Datatypes
Domain specific analysis of structure of computation:

Modern ML -> lot to gain if reducing number of bits in representation

In Robotics, same opportunities? (To appear, RA/L and ICRA),

The Cost of Specialization

Remarks

Flame war between C/Java is a fight between 0.01% efficiency and 0.03% efficiency (This
depends from program to program, compiler to compiler!)

Modern processors already embed a whole bunch of accelerators: Vector unit, often vastly
underused

The size of employable workforce drastically decreases when going to harder-to-program
machines

Software Integration

Having defined new instructions is not the end of the story:
If I add AESENC, my libssl library won’t suddenly start using it
Have to worry about cross-platform

If I have matmul 16x16, or matmul (nxm forall n,m<64),
512x512 matmul?
convolution?
Arbitrary linear/tensor algebra operator

First drawback of HW/SW codesign

Take application X, handwrite code that leverage Accelerator W (V1), performs
great

[…] Time elapse

10 years later, Accelerator W (V13)

-> Handwritten code performs poorly (when it works)

Second drawback of HW/SW codesign

Take application X, handwrite code that leverage Accelerator W (V1), performs great

[…] 3 months happens, DeepSeek releases DeepSeek Sparse Attention

Oops, completely bottleneck on an operation that I do not have accelerator for.

Hw/Sw co-designs are often performance fragile because driven by 1 high-value
application

Compilation – Sync issues

Sync issues:
Need to add explicit data movement instructions if I want to use the data

computed on CPU

Hot research ideas:
Decoupling functionality and scheduling/performance [Halide/Exo]

Maybe not a fully push-button compilation, more an “assistant-compiler”

Maybe enable user to augment the compiler - easily add transformations with
triggers

Conclusion

“Accelerators" and Codesigns are not new - Yesterday they enabled census, today
they are enabling AI

There are costs to abstraction

There are good guidelines/models for what can be accelerated

There are costs to specialization

