

The “Free computation” fallacy
You buy a 4GHz CPU. What percentage of the time is it actually doing
useful work?

Reality check:
* Theoretical peak: 4 billion operations/second
e Actual useful work: Often < 10%

e Rest: Waiting for data

Obsess over O(n) algorithmic complexity

But in systems, the constants (latency) dominate

Efficient data movement is all that matters

e Fundamental cost associated with data movement

* Time/energy = Moving data between compute &> storage
e Bandwidth =» Communication links have limited capacity
* Queueing =@ Contention induces delay

* Some reported numbers wrt data movement:

* Google datacenter tax: 50—60% CPU cycles
* Google consumer device workloads: ~62.7% of total system energy

Why can’t we just make things faster?

https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html

Kanev et al., "Profiling a warehouse-scale computer," ISCA 2015

Ghose et al., "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks," ASPLOS 2018

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/44271.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/44271.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/44271.pdf
https://dl.acm.org/doi/10.1145/3296957.3173177
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html

The hardware wall

* Fundamental limitations exist:

e Dennard scaling has failed
* Power density limits clock speeds
* Dark silicon exists

* Cooling constraints
e Even 3D chips can’t pack more compute

e Speed of light

* Signals take time to cross a chip

The latency hierarchy

L1 cache ~1 ns 1x 1 second
L2 cache ~4 ns 4x

L3 cache (local) ~12-20 ns 12-20x

L3 cache (remote socket) ~30-90 ns 30-90x

Local DRAM ~80 ns 80x 1.5 minutes
Remote DRAM (NUMA) ~120-200ns 130-200x

CXL memory (new) ~150-300ns 150-300x

NVMe SSD ~2-40 us 2,000-40,000x 6—11 hours
Network (remote machine) ~2+ us 2,000+x

HDD ~10ms 10,000,000x 4 months

These gaps have existed since the beginning of computing!
How did we learn to deal with them?

=PrL
What is locality?
The general principle:

Locality refers to the idea that interactions or effects are limited to
immediate, adjacent areas

In computing:

Locality refers to the efficiency of data access and processing—the
tendency of a process to access a relatively small subset of its total
address space over a short period

=PrL
Why locality matters
Modern computers are designed using the principle of locality:
* Caches (keep recently used data close)
* Predictive loading (prefetch what’s likely needed)

* Faster storage transfer (batch nearby data)

Locality isn’t just an optimization—it’s a design assumption baked
into hardware

Goal: Minimize data movement or have data ready before it’s needed

Historical context: The birth of virtual memory

Atlas Computer (University of Manchester, 1962)
* First implementation of virtual memory
* Problem: Main memory was expensive and small

* Insight: Programs don’t need ALL data ALL the time

Main memory demand Main memory
M
(fast, small) paging (slow, large)

One-level store: Appeared as a single, contiguous, high-speed memory space

Background: “Paging to death” = thrashing

Q. A system is running N jobs. As N Throughpu DISK
. . (jobs/sec) ‘.:
increases, throughput rises ... then

suddenly crashes. Why?

At Ny, more paging =2 CPU idle

- scheduler adds jobs = collapse

“thrashing was unexpected, a sudden drop in throughput of a multiprogrammed
system... | explained the phenomenon in 1968 and showed that a working-set

memory controller would stabilize the system.”
- Peter Denning

10

Working set model

The working set describes the set of information a process needs to
access in a given period to carry out its computation

* Models program behavior over time
* Two perspectives:

Programmer’s view Smallest collection of data needed in memory for
efficient execution

System’s view Set of pages referenced in recent time window

11

Working Set: Visual Example

Time: 1 2 3 4 5 o 7 8 9 10 11 12 13 14 15

Pages: A B A C A B D D E F E F E G G

Window T = 4:

At t=06: W(o,4) = {A, B, C} (pages 1n t=3..06)

At t=10: W(10,4) = {D, E, F} (pages 1n t=7..10)

At t=15: W(1l5,4) = {E, F, G} (pages 1n t=12..15)
Key property:

* If physical memory > working set - few page faults
* If physical memory < working set - thrashing

12

Question ...

Imagine you are playing an open-world game (like GTA or Zelda).
Describe how the working set changes in these three phases:

* The loading screen: You are loading 'Level 1'

 Gameplay: You are walking around a specific town square

 Fast travel: You teleport to a completely different city on the map

* Loading screen: Data being streamed from disk to memory

 Gameplay: Stable working set (textures and geometry for nearby
buildings)

* Fast travel: Phase change = old working set (town A) to new working
set (town B)

13

Relationship: Working set and locality

* The working set is a reflection of the current active locality of
reference for a process

Concept _______[Role

Locality Dictates which resources are critical

Working set Leverages locality to maintain useful resources

* The working set fluctuates based on locality pattern changes
throughout execution

* Without locality: cannot predict future resource requirements =2
inefficient system

14

Working set in modern systems

Working set “Paging” equivalent

Virtual memory
CPU cache

TLB

Database buffer
Web cache

CDN

Recently-used pages
Hot cache lines
Active translations
Hot pages

Popular objects

Regional content

Page faults
Cache misses
TLB misses
Storage I/O
Origin fetch

Cross-region fetch

15

Three types of locality

1. Temporal

* Recently accessed =2 likely accessed again

2. Spatial

* Nearby addresses = likely accessed together

3. Network
* Physically close = faster access

16

Temporal locality: Repeated access over time

* Repeatedly accessing the same location over a short time

sum
array
1 1 1
sum array/|i // 'sum’ accessed 10,000 times!

Question: Which variable exhibits temporal locality?

sum: accessed every iteration =2 keep it in a register

* Other examples:
* Loop counters
* Function return addresses on the stack
* Hot objects in web caches (popular videos)

17

Spatial locality: Nearby access in space

e Access nearby memory locations within a small time frame

array
sum
i i i
sum array|1i // Consecutive memory locations

Q. Why is this efficient even though one variable is being accessed?

Memory array array array array
I one cache line |

* Access array[0] once, rest are already cached

e Other examples:
* Sequential access
* Instruction fetching (code is sequential)
* Database table scans

18

Network locality: Distance matters

* Accessing data that is physically "near" in the system topology is

faster

Multi-socket machine

Numa node O
CPU €<= DRAM
~80ns

e Local access: ~80 ns
* Remote access: ~¥130—200 ns

~50 ns

Numa node 1
CPU €<= DRAM
~80ns

 CPU from node 0 accesses memory on the remote socket

19

=PrL

Network locality examples
* CPU cache hierarchy (L1 - L2 - L3)

* NUMA memory placement
* CDN edge servers
e Database read replicas

* Distributed cache sharding

Engineering goal: Shorten the wire!

20

Exercise: Identify the locality type
nm

LRU keeping hot pages in RAM
2 Matrix multiply with loop tiling

3 CDN caching popular videos at
edge

4 jemalloc per-thread memory
caches

5 RSS steering packets to CPU cores

21

Exercise: Identify the locality type
nm

LRU keeping hot pages in RAM

2 Matrix multiply with loop tiling

3 CDN caching popular videos at
edge

4 jemalloc per-thread memory
caches

5 RSS steering packets to CPU cores

Recency predlcts
future access

Reuse blocks

Cache popular
content

Thread reuses its
cache

Connection state
reused

X

Access contiguous
submatrices

Prefetch video
segments

X
X

x
X

Nearby users
Cache is core-local

Pinned to core

22

=PrL

Approaches using locality principle
* Caching

* Prefer sequential access
* Partitioning

* Batching

23

Caching: The most basic optimization

* Keep a working set of data close to the CPU that is used frequently

e Ubiquitous in systems

e CPU caches: L1, L2, L3
MMUSs: TLB (translation lookaside buffer)
Networks: edge caches, CDNs

OS/DB: page cache, buffer pool
Storage device: DRAM in SSDs

24

Sequential acecss: Physical properties

e Sequential access is faster than random access

* Comes from the physical properties of devices

* Hard drives
* Mechanically moving parts: seek time >> transfer time
* Reading a byte is not cheaper than reading a page

* Flash/solid state devices
* Write unit is pages/blocks, not bytes

* DRAM

* Row buffer hits are fast; activations are slow

* Example: write-ahead log converts random writes to sequential

25

Partitioning: Divide and conquer

* Split resources and process independently

 Embarrassingly parallel jobs
* No synchronization required
e Can work independently
 Decompose large jobs, process in parallel
* Example: MapReduce

* Limitations
* Non-uniform distribution (hot keys in KV store)
* Tasks requiring synchronization
* Not always applicable

26

Batching: Amortize data movement

* Collect multiple operations and process them together
* Pay the movement cost once, use the data for many operations
* Data/code stays hot in cache during batch processing

* Examples:

e Storage 10: io_uring batches syscalls
e Databases: group commits, batched writes
* Locks: Cohort locks batch by NUMA node

27

=PrL

Examples in detail

1. Data layout

2. Locality in locking protocols

3. False sharing

4. Evolving memory hierarchy

28

The matrix access problem

Scenario: MxN matrix stored in row-major order
Memory: ,?\11 Ao Ais oo Ain As: Ay o vv Amn

row 1 'l row 2 —...
Two traversal patterns
// Loop A: Row-major traversal // Loop B: Column-major traversal
i i M: 1 j j N: j
j j N: j i i M: 4
INE AN Alill3]

Setup: 4-byte integers, 64-byte cache lines, 1000x1000 matrix
1. Which loop is faster?

2. Predict the cache miss rate for each

3. Estimate the performance difference

29

Solution: Loop A (row-major)
Matches storage layout:

Access: A[0][0], A[O][1], A[0][2],

Cache line for A[0][0] contains A[@][0..15]
> Miss on A[0Q][0]
> Hit on A[0][1] through A[0][15]

Miss rate: 1 miss per 16 accesses = 6.25%

. .. (sequential)

30

Solution: Loop B (column-major)

Mismatches storage layout:
Access: A[0][0], A[1][0], A[2]1[0], ... (stride=4000 bytes)

Each cache access is on a different cache line
> Miss on A[0Q][0]
> Miss on A[1][0]
> Miss on A[2][0]

Miss rate: 100%
Performance difference: Typically 10-20x on modern CPUs!

Q. What if two matrices (10Kx10K) are multiplied? Does row-major approach work?
31

Beyond matrices: Row vs. column stores

* Row store (traditional OLTP)

Storage ID Name:Alice, Age City:LA
ID Name:Bob., Age City:NY

* Query: SELECT AVG(Age) FROM Users
* |ssue: must read Name and City =2 leads to cache pollution

e Column store (analytics/OLAP)

Storage: ID
Name Alice, Bob
Age ¢ contiguous

* Query: SELECT AVG(Age) FROM Users
* Benefit: Only Age column is loaded > spatial locality

32

=PrL

Takeaway: Row vs. column stores

* Optimal layout depends on access pattern
e Analytics = columns
* Transactions =2 rows

Q. What if you need BOTH? How do systems like SAP HANA handle
this?

Hybrid layouts, materialized views, or maintaining both formats

33

Why do locks care about locality?

* Locks serialize access — that’s the obvious cost
* Provide mutually exclusive access to shared data
* Orders waiters accessing the critical section uu
Threads

B

e Hidden cost: Locks induce massive data movement

 Example: Threads accessing a file protected by a lock

* Every lock handoff = cache line transfer

Lock algorithms try to minimize the movement of shared data!

34

Test-and-set: Locality disaster

Q. What happens with 4 threads on 2 NUMA nodes?

To
Ty
T
T3
To

Cache-line bouncing: ~200 ns per transfer x many transfers per acquire

L

L // spin

L L

Node acquires lock » cache line
Node spins, writes > cache line
Node spins, writes > cache line
Node spins, writes > cache line

unlocks > cache 1line moves to Node

moves
moves
moves
moves

* This saturates the memory interconnect

to
to
to
to

Node
Node
Node
Node

35

Queue locks: Reduce contention

 MCS lock idea: Each thread spins on its own cache line

Global: tail » Node D
N

Queue Node A| > |[Node B| > |[Node C > |Node D
done done spinning new
spins on own 'locked' field, not global

* Improvement: No cache line bouncing during spinning

e [ssue: Lock handoff crosses NUMA boundaries in arrival order

36

NUMA-oblivious vs. NUMA-aware ordering

* FIFO order (NUMA-oblivious)

Wl > W2 > W3 > W4 > W5 > W6
NO N1 NO N1 NO N1
00 00 00 00 00
5 cross—-node transfers!

* Batched by NUMA node (NUMA-aware)

Wl > W3 > W5 > W2 > W4 »> W6
NO NO NO N1l N1l N1l
+
1 cross—node transfer!

37

Design exercise

* We need to design a lock that batches waiters by NUMA node

* Constraints:

* Must eventually serve all waiters (no starvation)
e Should minimize cross-node transfers
e Can use multiple lock objects

* Hint: Think hierarchically — what if each node has its own lock?

38

Solution: Cohort locks

 Structure: One global lock + one local lock per NUMA node

& Global lock
I
v v
Numa node O Numa node 1
Local lock a Local lock
Wi, W3, W5 W2, W4, W6
(waiting) (waiting)
* Protocol:
1. Acquire: Get local lock first, then (if first in node) get global lock

2.
3.
4

Execute: Run critical section
Release: Pass to the next waiter on same node if any exist
Handoff: Only release global lock when local queue is empty

39

A step further with lock design

Even with NUMA-aware locks, critical section data still moves

* Traditional: move data to computation

Thread A > Lock > Data (data bounces!)
Thread B » Lock > Data

* Idea: Delegation (server-client model) = move computation to data

Thread A ——request——>1
Thread B —request » Server —» Data
Thread C ——reques’c——>—| (Node 0) (never moves!)

* Shared data stays in server’s (node 0) L1/L2 cache

40

False sharing: The anti-pattern

// The bug (looks innocent!)
thread_a_count: // 8 bytes
thread_b_count: // 8 bytes — SAME cache line!

* Two threads, two different variables, no locks, performance crashes

Cache Line (64 bytes):

thread_a_count | thread_b_count | ... unused ...

2 o
Thread A writes Thread B writes

* Each write invalidates the other thread’s cache = ping-pong effect

42

False sharing fix: Padding

// Bad

thread_a_count: // 8 bytes
thread_b_count: // 8 bytes — SAME cache line!

// Good: padding

thread_a_count: // Own cache line
thread_b_count: // Own cache line

 Spatial locality is a double-edged sword
e Optimizes single-threaded access, but can kill multi-threaded performance

43

The evolving memory hierarchy

e CXL-memory adds a new tier

Q. How do we manage a memory space
that has non-uniform access time?

Software defined-memory tiering

* OS does page promotion/demotion

* Scanning: Figures out hot pages using
accessed bits in the page table
* Migration: CXL page is hot 2 promote to

DRAM and demote a cold DRAM page to
CXL

Register 0.2ns

Cache 1-40ns

Main Memory

CXL-Memory
(DDR, LPDDR, NVM, ...)

Network-Attached Memory

SSD

HDD

80-140ns

170-400ns

2-4ps

10-40ps

44

3-10ms

Realizing locality at various levels

* From caches to CPU
e Data structure layout

* From one CPU to another
* HPC algorithms, synchronization primitives

* From memory to LLC (L3)
e Graph algorithms, packet processing

* From one NUMA node to another NUMA node
e Data structures, synchronization primitives (locks)

* From SSD to memory
e Paging, out-of-core graph processing

* From NIC to memory
* Far memory, prefetching

45

Design exercise

* Locality is everywhere

* Three types:
 Temporal
e Spatial
* Network

* Locality is applicable across the stack

* Design for locality: Before optimizing algorithms, ask: Where is the
data? How often does it move?

46

	Slide 1: Principles of Computer Systems
	Slide 2: The “Free computation” fallacy
	Slide 3: Efficient data movement is all that matters
	Slide 4: The hardware wall
	Slide 5: The latency hierarchy
	Slide 6: What is locality?
	Slide 7: Why locality matters
	Slide 9: Historical context: The birth of virtual memory
	Slide 10: Background: “Paging to death”  thrashing
	Slide 11: Working set model
	Slide 12: Working Set: Visual Example
	Slide 13: Question …
	Slide 14: Relationship: Working set and locality
	Slide 15: Working set in modern systems
	Slide 16: Three types of locality
	Slide 17: Temporal locality: Repeated access over time
	Slide 18: Spatial locality: Nearby access in space
	Slide 19: Network locality: Distance matters
	Slide 20: Network locality examples
	Slide 21: Exercise: Identify the locality type
	Slide 22: Exercise: Identify the locality type
	Slide 23: Approaches using locality principle
	Slide 24: Caching: The most basic optimization
	Slide 25: Sequential acecss: Physical properties
	Slide 26: Partitioning: Divide and conquer
	Slide 27: Batching: Amortize data movement
	Slide 28: Examples in detail
	Slide 29: The matrix access problem
	Slide 30: Solution: Loop A (row-major)
	Slide 31: Solution: Loop B (column-major)
	Slide 32: Beyond matrices: Row vs. column stores
	Slide 33: Takeaway: Row vs. column stores
	Slide 34: Why do locks care about locality?
	Slide 35: Test-and-set: Locality disaster
	Slide 36: Queue locks: Reduce contention
	Slide 37: NUMA-oblivious vs. NUMA-aware ordering
	Slide 38: Design exercise
	Slide 39: Solution: Cohort locks
	Slide 40: A step further with lock design
	Slide 42: False sharing: The anti-pattern
	Slide 43: False sharing fix: Padding
	Slide 44: The evolving memory hierarchy
	Slide 45: Realizing locality at various levels
	Slide 46: Design exercise

