
Principles of
Computer Systems

Locality

The “Free computation” fallacy

You buy a 4GHz CPU. What percentage of the time is it actually doing
useful work?

Reality check:
• Theoretical peak: 4 billion operations/second

• Actual useful work: Often < 10%

• Rest: Waiting for data

Obsess over O(n) algorithmic complexity

But in systems, the constants (latency) dominate

2

Efficient data movement is all that matters

• Fundamental cost associated with data movement

• Time/energy ➔ Moving data between compute→storage

• Bandwidth ➔ Communication links have limited capacity

• Queueing ➔ Contention induces delay

• Some reported numbers wrt data movement:

• Google datacenter tax: 50—60% CPU cycles

• Google consumer device workloads: ~62.7% of total system energy

3

Kanev et al., "Profiling a warehouse-scale computer," ISCA 2015

Ghose et al., "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks," ASPLOS 2018

https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html

Why can’t we just make things faster?

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/44271.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/44271.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/44271.pdf
https://dl.acm.org/doi/10.1145/3296957.3173177
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html

The hardware wall

• Fundamental limitations exist:
• Dennard scaling has failed

• Power density limits clock speeds

• Dark silicon exists

• Cooling constraints
• Even 3D chips can’t pack more compute

• Speed of light
• Signals take time to cross a chip

4

The latency hierarchy
Access type Latency Relative to L1

L1 cache ~1 ns 1x

L2 cache ~4 ns 4x

L3 cache (local) ~12-20 ns 12-20x

L3 cache (remote socket) ~30-90 ns 30-90x

Local DRAM ~80 ns 80x

Remote DRAM (NUMA) ~120-200ns 130-200x

CXL memory (new) ~150-300ns 150-300x

NVMe SSD ~2-40 us 2,000-40,000x

Network (remote machine) ~2+ us 2,000+x

HDD ~10ms 10,000,000x

5

These gaps have existed since the beginning of computing!
How did we learn to deal with them?

1 second

1.5 minutes

6—11 hours

4 months

What is locality?

The general principle:

Locality refers to the idea that interactions or effects are limited to
immediate, adjacent areas

In computing:

Locality refers to the efficiency of data access and processing—the
tendency of a process to access a relatively small subset of its total

address space over a short period

6

Why locality matters

Modern computers are designed using the principle of locality:

• Caches (keep recently used data close)

• Predictive loading (prefetch what’s likely needed)

• Faster storage transfer (batch nearby data)

Locality isn’t just an optimization—it’s a design assumption baked
into hardware

Goal: Minimize data movement or have data ready before it’s needed

7

Historical context: The birth of virtual memory

Atlas Computer (University of Manchester, 1962)

• First implementation of virtual memory

• Problem: Main memory was expensive and small

• Insight: Programs don’t need ALL data ALL the time

Main memory
(fast, small)

Main memory
(slow, large)

demand
paging

One-level store: Appeared as a single, contiguous, high-speed memory space

9

Background: “Paging to death” → thrashing

Q. A system is running N jobs. As N
increases, throughput rises … then
suddenly crashes. Why?

At N0, more paging → CPU idle

→ scheduler adds jobs → collapse

10

“thrashing was unexpected, a sudden drop in throughput of a multiprogrammed
system… I explained the phenomenon in 1968 and showed that a working-set
memory controller would stabilize the system.”

- Peter Denning

Working set model

The working set describes the set of information a process needs to
access in a given period to carry out its computation

• Models program behavior over time

• Two perspectives:

Programmer’s view Smallest collection of data needed in memory for
efficient execution

System’s view Set of pages referenced in recent time window

11

Working Set: Visual Example

Time: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pages: A B A C A B D D E F E F E G G

Window τ = 4:

At t=6: W(6,4) = {A, B, C} (pages in t=3..6)

At t=10: W(10,4) = {D, E, F} (pages in t=7..10)

At t=15: W(15,4) = {E, F, G} (pages in t=12..15)

Key property:

• If physical memory ≥ working set → few page faults

• If physical memory < working set → thrashing

12

Question …

Imagine you are playing an open-world game (like GTA or Zelda).
Describe how the working set changes in these three phases:

• The loading screen: You are loading 'Level 1'

• Gameplay: You are walking around a specific town square

• Fast travel: You teleport to a completely different city on the map

• Loading screen: Data being streamed from disk to memory

• Gameplay: Stable working set (textures and geometry for nearby
buildings)

• Fast travel: Phase change → old working set (town A) to new working
set (town B)

13

Relationship: Working set and locality

• The working set is a reflection of the current active locality of
reference for a process

• The working set fluctuates based on locality pattern changes
throughout execution

• Without locality: cannot predict future resource requirements →
inefficient system

Concept Role

Locality Dictates which resources are critical

Working set Leverages locality to maintain useful resources

14

Working set in modern systems

System Working set “Paging” equivalent

Virtual memory Recently-used pages Page faults

CPU cache Hot cache lines Cache misses

TLB Active translations TLB misses

Database buffer Hot pages Storage I/O

Web cache Popular objects Origin fetch

CDN Regional content Cross-region fetch

15

Three types of locality

1. Temporal

• Recently accessed → likely accessed again

2. Spatial

• Nearby addresses → likely accessed together

3. Network

• Physically close → faster access

16

Temporal locality: Repeated access over time

• Repeatedly accessing the same location over a short time

Question: Which variable exhibits temporal locality?

sum: accessed every iteration → keep it in a register

• Other examples:
• Loop counters

• Function return addresses on the stack

• Hot objects in web caches (popular videos)

17

int sum = 0;
int array[10000];
for (int i = 0; i < 10000; i++) {
 sum += array[i]; // 'sum' accessed 10,000 times!
}

Spatial locality: Nearby access in space

• Access nearby memory locations within a small time frame

Q. Why is this efficient even though one variable is being accessed?

• Access array[0] once, rest are already cached

• Other examples:
• Sequential access
• Instruction fetching (code is sequential)
• Database table scans

18

int array[1000];
int sum = 0;
for (int i = 0; i < 1000; i++) {
 sum += array[i]; // Consecutive memory locations
}

Memory: [array[0]][array[1]][array[2]]...[array[15]]
└────────────── one cache line ──────────────┘

Network locality: Distance matters

• Accessing data that is physically "near" in the system topology is
faster

Multi-socket machine

• Local access: ~80 ns

• Remote access: ~130—200 ns

• CPU from node 0 accesses memory on the remote socket

19

Numa node 0
CPU → DRAM

~80ns ~50 ns

Numa node 1
CPU → DRAM

~80ns

Network locality examples

• CPU cache hierarchy (L1 → L2 → L3)

• NUMA memory placement

• CDN edge servers

• Database read replicas

• Distributed cache sharding

Engineering goal: Shorten the wire!

20

Exercise: Identify the locality type

Scenario Temporal? Spatial? Network?

1 LRU keeping hot pages in RAM

2 Matrix multiply with loop tiling

3 CDN caching popular videos at
edge

4 jemalloc per-thread memory
caches

5 RSS steering packets to CPU cores

21

Exercise: Identify the locality type

Scenario Temporal? Spatial? Network?

1 LRU keeping hot pages in RAM Recency predicts
future access

2 Matrix multiply with loop tiling Reuse blocks Access contiguous
submatrices

3 CDN caching popular videos at
edge

Cache popular
content

Prefetch video
segments

Nearby users

4 jemalloc per-thread memory
caches

Thread reuses its
cache

Cache is core-local

5 RSS steering packets to CPU cores Connection state
reused

Pinned to core

22

Approaches using locality principle

• Caching

• Prefer sequential access

• Partitioning

• Batching

23

Caching: The most basic optimization

• Keep a working set of data close to the CPU that is used frequently

• Ubiquitous in systems

• CPU caches: L1, L2, L3

• MMUs: TLB (translation lookaside buffer)

• Networks: edge caches, CDNs

• OS/DB: page cache, buffer pool

• Storage device: DRAM in SSDs

24

Sequential acecss: Physical properties

• Sequential access is faster than random access

• Comes from the physical properties of devices

• Hard drives
• Mechanically moving parts: seek time >> transfer time

• Reading a byte is not cheaper than reading a page

• Flash/solid state devices
• Write unit is pages/blocks, not bytes

• DRAM

• Row buffer hits are fast; activations are slow

• Example: write-ahead log converts random writes to sequential

25

Partitioning: Divide and conquer

• Split resources and process independently

• Embarrassingly parallel jobs

• No synchronization required

• Can work independently

• Decompose large jobs, process in parallel

• Example: MapReduce

• Limitations

• Non-uniform distribution (hot keys in KV store)

• Tasks requiring synchronization

• Not always applicable

26

Batching: Amortize data movement

• Collect multiple operations and process them together

• Pay the movement cost once, use the data for many operations

• Data/code stays hot in cache during batch processing

• Examples:

• Storage IO: io_uring batches syscalls

• Databases: group commits, batched writes

• Locks: Cohort locks batch by NUMA node

27

Examples in detail

1. Data layout

2. Locality in locking protocols

3. False sharing

4. Evolving memory hierarchy

28

The matrix access problem

Scenario: MxN matrix stored in row-major order

Two traversal patterns

Setup: 4-byte integers, 64-byte cache lines, 1000×1000 matrix

1. Which loop is faster?

2. Predict the cache miss rate for each

3. Estimate the performance difference

29

Memory: A₁₁ A₁₂ A₁₃ ... A₁ₙ A₂₁ A₂₂ ... Aₘₙ
 └────── row 1 ───────┘└── row 2 ──...

// Loop A: Row-major traversal
for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
 process(A[i][j]);

// Loop B: Column-major traversal
for (int j = 0; j < N; j++)
 for (int i = 0; i < M; i++)
 process(A[i][j]);

Solution: Loop A (row-major)

Matches storage layout:

Access: A[0][0], A[0][1], A[0][2], ... (sequential)

Cache line for A[0][0] contains A[0][0..15]

→ Miss on A[0][0]

→ Hit on A[0][1] through A[0][15]

Miss rate: 1 miss per 16 accesses = 6.25%

30

Solution: Loop B (column-major)

Mismatches storage layout:

Access: A[0][0], A[1][0], A[2][0], ... (stride = 4000 bytes)

Each cache access is on a different cache line

 → Miss on A[0][0]

 → Miss on A[1][0]

 → Miss on A[2][0]

Miss rate: 100%

Performance difference: Typically 10-20× on modern CPUs!

Q. What if two matrices (10Kx10K) are multiplied? Does row-major approach work?
31

Beyond matrices: Row vs. column stores

• Row store (traditional OLTP)

• Query: SELECT AVG(Age) FROM Users

• Issue: must read Name and City → leads to cache pollution

• Column store (analytics/OLAP)

• Query: SELECT AVG(Age) FROM Users

• Benefit: Only Age column is loaded → spatial locality

32

Storage: [ID:1, Name:Alice, Age:30, City:LA]
 [ID:2, Name:Bob, Age:40, City:NY]

Storage: ID: [1, 2, 3, ...]
 Name: [Alice, Bob, ...]
 Age: [30, 40, 50, ...] ← contiguous!

Takeaway: Row vs. column stores

• Optimal layout depends on access pattern

• Analytics → columns

• Transactions → rows

Q. What if you need BOTH? How do systems like SAP HANA handle
this?

Hybrid layouts, materialized views, or maintaining both formats

33

• Locks serialize access – that’s the obvious cost
• Provide mutually exclusive access to shared data

• Orders waiters accessing the critical section

• Hidden cost: Locks induce massive data movement

• Example: Threads accessing a file protected by a lock

• Every lock handoff = cache line transfer

Lock algorithms try to minimize the movement of shared data!

Why do locks care about locality?

34

File

Threads

Test-and-set: Locality disaster

Q. What happens with 4 threads on 2 NUMA nodes?

Cache-line bouncing: ~200 ns per transfer x many transfers per acquire

• This saturates the memory interconnect

35

void lock(atomic_t *L) {
 while (test_and_set(L) != 0) ; // spin
}
void unlock(atomic_t *L) { *L = 0; }

T₀ (Node 0) acquires lock → cache line moves to Node 0
T₁ (Node 1) spins, writes → cache line moves to Node 1
T₂ (Node 2) spins, writes → cache line moves to Node 0
T₃ (Node 3) spins, writes → cache line moves to Node 1
T₀ unlocks → cache line moves to Node 0

Queue locks: Reduce contention

• MCS lock idea: Each thread spins on its own cache line

• Improvement: No cache line bouncing during spinning

• Issue: Lock handoff crosses NUMA boundaries in arrival order

36

Global: tail ───────────────────────► [Node D]
 ↑
Queue: [Node A] → [Node B] → [Node C] → [Node D]
 (done) (done) (spinning) (new)
 └─ spins on own 'locked' field, not global

NUMA-oblivious vs. NUMA-aware ordering

• FIFO order (NUMA-oblivious)

• Batched by NUMA node (NUMA-aware)

37

W1 → W2 → W3 → W4 → W5 → W6
N0 N1 N0 N1 N0 N1
W1 → W2 → W3 → W4 → W5 → W6
N0 N1 N0 N1 N0 N1
 ↑ ↑ ↑ ↑ ↑
 5 cross-node transfers!

W1 → W3 → W5 → W2 → W4 → W6
N0 N0 N0 N1 N1 N1
 ↑
 1 cross-node transfer!

Design exercise

• We need to design a lock that batches waiters by NUMA node

• Constraints:

• Must eventually serve all waiters (no starvation)

• Should minimize cross-node transfers

• Can use multiple lock objects

• Hint: Think hierarchically – what if each node has its own lock?

38

Solution: Cohort locks

• Structure: One global lock + one local lock per NUMA node

• Protocol:
1. Acquire: Get local lock first, then (if first in node) get global lock

2. Execute: Run critical section

3. Release: Pass to the next waiter on same node if any exist

4. Handoff: Only release global lock when local queue is empty

39

Numa node 0
 Local lock
W1, W3, W5

(waiting)

Numa node 1
 Local lock
W2, W4, W6

(waiting)

Global lock

A step further with lock design

Even with NUMA-aware locks, critical section data still moves

• Traditional: move data to computation

• Idea: Delegation (server-client model) → move computation to data

• Shared data stays in server’s (node 0) L1/L2 cache

40

Thread A → Lock → Data (data bounces!)
Thread B → Lock → Data

Thread A ──request──►┐
Thread B ──request──►├──► Server ──► Data
Thread C ──request──►┘ (Node 0) (never moves!)

False sharing: The anti-pattern

• Two threads, two different variables, no locks, performance crashes

• Each write invalidates the other thread’s cache → ping-pong effect

42

// The bug (looks innocent!)
struct counters {
 long thread_a_count; // 8 bytes
 long thread_b_count; // 8 bytes — SAME cache line!
};

Cache Line (64 bytes):
┌──┐
│ thread_a_count │ thread_b_count │ ... unused ... │
└──┘
 ↑ ↑
 Thread A writes Thread B writes

False sharing fix: Padding

• Spatial locality is a double-edged sword
• Optimizes single-threaded access, but can kill multi-threaded performance

43

// Bad
struct counters {
 long thread_a_count; // 8 bytes
 long thread_b_count; // 8 bytes — SAME cache line!
};

// Good: padding
struct counters_fixed {
 alignas(64) long thread_a_count; // Own cache line
 alignas(64) long thread_b_count; // Own cache line
};

The evolving memory hierarchy

• CXL-memory adds a new tier

Q. How do we manage a memory space
that has non-uniform access time?

Software defined-memory tiering

• OS does page promotion/demotion

• Scanning: Figures out hot pages using
accessed bits in the page table

• Migration: CXL page is hot → promote to
DRAM and demote a cold DRAM page to
CXL

44

Realizing locality at various levels

• From caches to CPU
• Data structure layout

• From one CPU to another
• HPC algorithms, synchronization primitives

• From memory to LLC (L3)
• Graph algorithms, packet processing

• From one NUMA node to another NUMA node
• Data structures, synchronization primitives (locks)

• From SSD to memory
• Paging, out-of-core graph processing

• From NIC to memory
• Far memory, prefetching

45

Design exercise

• Locality is everywhere

• Three types:

• Temporal

• Spatial

• Network

• Locality is applicable across the stack

• Design for locality: Before optimizing algorithms, ask: Where is the
data? How often does it move?

46

	Slide 1: Principles of Computer Systems
	Slide 2: The “Free computation” fallacy
	Slide 3: Efficient data movement is all that matters
	Slide 4: The hardware wall
	Slide 5: The latency hierarchy
	Slide 6: What is locality?
	Slide 7: Why locality matters
	Slide 9: Historical context: The birth of virtual memory
	Slide 10: Background: “Paging to death”  thrashing
	Slide 11: Working set model
	Slide 12: Working Set: Visual Example
	Slide 13: Question …
	Slide 14: Relationship: Working set and locality
	Slide 15: Working set in modern systems
	Slide 16: Three types of locality
	Slide 17: Temporal locality: Repeated access over time
	Slide 18: Spatial locality: Nearby access in space
	Slide 19: Network locality: Distance matters
	Slide 20: Network locality examples
	Slide 21: Exercise: Identify the locality type
	Slide 22: Exercise: Identify the locality type
	Slide 23: Approaches using locality principle
	Slide 24: Caching: The most basic optimization
	Slide 25: Sequential acecss: Physical properties
	Slide 26: Partitioning: Divide and conquer
	Slide 27: Batching: Amortize data movement
	Slide 28: Examples in detail
	Slide 29: The matrix access problem
	Slide 30: Solution: Loop A (row-major)
	Slide 31: Solution: Loop B (column-major)
	Slide 32: Beyond matrices: Row vs. column stores
	Slide 33: Takeaway: Row vs. column stores
	Slide 34: Why do locks care about locality?
	Slide 35: Test-and-set: Locality disaster
	Slide 36: Queue locks: Reduce contention
	Slide 37: NUMA-oblivious vs. NUMA-aware ordering
	Slide 38: Design exercise
	Slide 39: Solution: Cohort locks
	Slide 40: A step further with lock design
	Slide 42: False sharing: The anti-pattern
	Slide 43: False sharing fix: Padding
	Slide 44: The evolving memory hierarchy
	Slide 45: Realizing locality at various levels
	Slide 46: Design exercise

