=PFL

Principles of Computer Systems

Prof. George Candea
School of Computer & Communication Sciences

Your POGS Team

AN / ‘ MMM R ' ‘ AL
George Candea Katerina Argyrak
Instructor Co-instructor

Jiacheng Ma
TA TA

Syliahus

Fundamentals Case studies

Modularity & Abstraction Memory Virtualization
Naming & Indirection Machine Virtualization
Layering Distributed Denial of Service
Virtualization Modern DNS

Client/Server Organization Transactions

Laziness & Speculation

Redundancy

Locality & Caching Technical Writing

Hardware/Software Co-Design

Take prerequisites

Pfﬂfﬂ(llllSlteS very seriously

* (Good knowledge of
o Qperating systems (e.qg., via CS-323)
* Networks (e.g., via COM-407)
* Computer architecture (e.q., via CS-470)
o Databases (e.g., via CS-422)

o Read the Exokernel, GNS, and Chord papers
o jfyou don't "get it" then POCS might not be right for you at this time

* You cannot "just wing" POCS

* Quizzes = 50% of course grade

* demonstrate that you can identify system challenges and the techs to solve them
* |earn to express your ideas concisely

* |ndividual work done in class, closed book, pen & paper

* (graded on a curve

* each quiz covers all material discussed in the course up to that point

o Exam =50% of course grade

* n-class during the last week, closed book, pen & paper
* read a system description, short paper, efc.

o ... then answer individual questions similar to the quizzes
* (graded on a curve

Don't fall

Typical week in POGCS pehind

Tuesday élt(tenqdledire ~oad papers
ey laeas <tech detalls>

Digest papers —
- Attend recitation i
Review lectures
e <Quiz & discussion> F”day

* https://pocs.epfl.ch — course README
* Moodle + Ed

o |ectures will not be recorded

o 3 credits = heavyweight course

e > 17 hours/week

* Do not take POCS if you don't have the background

* Really, this is no joke !

e Do not fall behind

* pace Is fast, if you lose one week, it's hard to recover

* Ask classmates/TAs/instructors when you don't fully grasp something

* dontjust “let it be”, because it may come back to bite you later
* Really, do not fall behind !

What does it mean to study
the principles of comp Sys design?

What does it mean to study principles of comp sys design 2

* What do we mean by a system ?
* What are the challenges in building and maintaining systems ?

* How do we address those challenges 7

What is a Computer System 2

Definition : A system is a group of Environment

Interconnected components that
exhibits an expected collective
behavior observed at the interface
with its environment.

Examples of Systems

System Environment Interfaces
OS kernel = code hw + applications + libraries + ... syscall interface
Smartphone = hw + OS + cell towers + GPS satellites + cloud network protocols, touch
libraries + apps SVCS + users + ... screen, ...

Smart home controller = hw + | HVAC devices + access-control devices | KNX protocol, HTTP
OS + libs + meteo station + inhabitants + ...

Amazon WS = hw + code apps + Internet + Web browsers + X80, provisioning API, HTTP,
credit card billing svcs + ... SO 8585, ...

Properties of Good Systems

o Reliability

o Safety

o Security

o Performance

o Manageability

Definition : A system is a group of
Interconnected components that
exhibits an expected collective behavior
observed at the interface with its
environment.

Databases

4 N

Applications
~ Middleware
'Runtime / Libraries
- Operating system
/ Hardware

o J
4)

" Systems Thinking ”

* global all-encompassing vs. narrow focus on individual aspects
* study many prior systems to understand what made them succeed/fall

* using back-of-the-envelope calculations to quickly eliminate designs
that wouldn't work

Today's lecture ...

* Sources of complexity:

* Jots of code, emergent behaviors, many interconnections, evolution, trade-offs

o Use modularity to

* encapsulate elements into components & subsystems => fewer visible elements
* control interactions and propagation of behaviors => fewer interconnections

o Use abstraction to

* make emergent behavior predictable => fewer surprises

o Lateron...

* patterns of using modularity and abstraction (layering, naming, client/server, etc.)

9 Challenges in Comp Sys Design

#1— Software/firmware
has lots of possihie hehaviors

autoShift (int rpm)
if (rpm > 1000)
gear = gear+l
rom = 0.5*rpm
1if (rpm < 700)
gear=0

return

rpm > 1000

rpm < 700
False True
return gear=0

return

gear = gear+l
rom = 0.5*rpm

rpm < 700
False True
return gear=0
return

;I%pm=1200 :j

autoShift (int rpm)
if (rpm > 1000)

gear = gear+l
rom = 0.5*rpm

1if (rpm < 700)
gear=0

return

rpm > 1000

rpm < 700
False True
return gear=0

return

gear = gear+l
rom = 0.5*rpm

rpm < 700
False True
return gear=0
return

autoShift (int rpm)
if (rpm > 1000)
gear = gear+l
rom = 0.5*rpm
1if (rpm < 700)
gear=0

return

rpm > 1000

rpm < 700
False True
return gear=0

return

gear = gear+l
rom = 0.5*rpm

rpm < 700
False True
return gear=0
return

autoShift (int rpm)
if (rpm > 1000)
gear = gear+l
rom = 0.5*rpm
1if (rpm < 700)
gear=0

return

rpm > 1000

rpm < 700
False True
return gear=0

return

gear = gear+l
rpm = 0.5*rpm

False True
return gear=0
return

autoShift (int rpm)
if (rpm > 1000)

gear = gear+l

rpm > 1000

rpm = 0.5*rpm

if (rpm < 700) gear = gear+l

rpm = 0.5*rpm

gear=0
return rpm < 700 rpm < 700
False True False True
return gear=0 return gear=0
return return

I

9 program size

paths

paths ~ 9 program size

>5,000,000 lines of code! (LOC) = ~2°00.000 paths

Can we test 2°00.000 paths?

1 Black Duck Software, Inc. Mozilla Firefox Code Analysis, http://www.ohloh.net/p/firefox/analyses/latest

some Gode Sizes (in LOC)

* Boeing 787 avionics + online support ~several million LOC
o Chrome browser ~several million LOC

* entry-level electric vehicle (Chevy Volt) ~10 million LOC

* Android operating system ~a few tens of millions LOC

* the Large Hadron Collider ~50 million LOC

o all car software in a high-end car ~100 million LOC

* all Google services combined ~2 billion LOC

#2 — Emergent behaviors

Many Gomponents

Android stack

oMM MmN M EEE SRR R SRR R R R RS R R R Ry

Java APl Framework

Managers
Content Providers

Activity Location Package Notification

View System Resource Telephony

Native C/C++ Libraries

Webkit OpenMAX AL Android Runtime (ART)

Media Framework OpenGL ES Core Libraries

Hardware Abstraction Layer (HAL)

Bluetooth Camera Sensors

Linux Kernel
Drivers
Binder (IPC)

Bluetooth Camera

Shared Memory

Power Management

-
S E m m m m mEEEEEEEEEEEEEEEEEEEEEEEEEEE O E O E o E EE Em E M E M M E M M M E M M M M M M M M M M M M M MmO M M W MW MM EmEmEOEmEEmmoEmeomemeommm ™

P R I R B R R R
-

mangle PREROUTING

nat PREROUTING

QoS ingress

mangle FORWARD

filter FORWARD

mangle PREROUTING

|

nat PREROUTING

local processes

mangle INPUT

QoS ingress

mangle INPUT <

filter INPUT

filter INPUT

o

Y
-~
-~
- -~
?lw." K w

routing

mangle FORWARD

-

-
.~}{"
- -~
- -~
-

mangle OUTPUT mangle OUTPUT
nat OUTPUT nat OUTPUT
filter OUTPUT filter OUTPUT

filter FORWARD

mangle POSTROUTING

mangle POSTROUTING

nat POSTROUTING

nat POSTROUTING

QoS egress

QoS egress

tony(c)dhits.nl

-
N mm mmmEmEE E o E E O M M B M M B B B B M S B B N SN B B B N BN BN B B B SN BN BN B N N BN S B BN N SN R B N N SN M B B B AN BN B N N N AN G B M M M M N M M M M M Emmemommm S

Behaviors that are not evident in the components,
but appear when the components are combined.

* Functional

* ant colonies, blockchain, deadlock, livelock, ...

* Non-functional

* reliability, security,...

* Thrashing

* Unwanted synchronization

* Unwanted oscillation or periodicity
* Livelock/Deadlock

* Phase change

For more examples and insights, see
J. Mogul, Emergent (Mis) behavior vs. Complex Software Systems (EuroSys 2006)

+#3 — Propagation of Effects

Many Interconnections -> Propagation of Effects

The transitivity of component interconnections causes a local
phenomenon to propagate to large parts of the system.

&
i .‘,".--c:-‘ "
-I P
e
,_‘.
- o
- -
il
o. G.
e = ~ .—...-.4
- e g ' . -
- 46....‘:0" ,‘.’.IHIII. . 1 / ! .
3. "‘: oy "4‘{} X g
s S-oRD. p e s s
P “q:” - ‘@ ’“u
s idess ...Q:.Qf“' ’ s - ..".
-~ e "". P ¢
- .“- ’.._.. —
e5*
e aall | S
g Yo
o 2 AN,
“.“Eé::’_@“
e T - -
S 585
> -
s

1

319|dIlod %001

404 HieIsal ||,3M Usy) pue ‘ojul 10149 swios Bu

31,9M "MEISBI 0} SPaau pue wiajqoid e ojul

A

Yot PC ran 000 5 pectiem that it couldnt
haadie, 203 oow it soeds 10 retat

Sectors Affected: 2 Airlines | [2] Healthcare | 8 Banking | ‘0" Medid | fiz Government \

: $5.4 billion

: in costs faced by :

: Fortune 500
companies

: pefore Delta Air Lines’
: operationswere
back to normal

voucher offered to IT

staff by CrowdStrike
as an apology

of impacted

$500 million i i $12.5billion
cost to Delta; wiped off .
airline may pursue : CrowdStrike’'s : NHS patient
: : appointments

legal action stock market value :

Crowdstrike

Outagéin Numbers

Incident Impact
July 19th, 2024

10000 & : 574476

companies i} fii A
P % Tlights canceled i\ entities directly

: were inthe US

globally affected worldwide

canceled

12.75 million

resource-hours 1\
needed for IT teams :

to fix machines 3

10%-20%
financial losses
3 likely covered by :
i cyberinsurance policies :

8.5 million i i ofJapanese
devices : i McDonald’s
affected i i storesclosed

BlackFo®pInc. 2024

#4 — System evolution makes these
challenges even harder

" not always... 6.9, redesign and refactoring

Legacy Systems = Complex Systems

e Evolution

* S aprocess of satisfying new requirements
* successful systems evolve fast

Android codebase size

(in millions of lines, over its first 4 years)

5.0

2.5

2009 2010 2011 2012

Quest for Efficiency = Complexity

Complexity

> Desired efficiency

Quest for Efficiency = Complexity

Complexity

Desired efficiency

Quest for Efficiency = Complexity

Complexity

Desired efficiency

Buffer cache

Quest for Efficiency = Complexity

Complexity

Desired efficiency

Writeback buffer cache

Quest for Efficiency = Complexity

Complexity

Desired efficiency

fsync
h o

Writeback buffer cache

system specifications

o |EEE 802.11 standard for wireless networking

* published in 1997 — 45 pages

o 1999 revision — 90 pages

o 2007 revision — 1,250 pages (incl. amendments)
o 2012 revision — 2,793 pages (incl. amendments)

o HTTP protocol

o RFC 1945 (1996) HTTP/1.0 — 60 pages
o RFC 20686 (1997) HTTP/1.1 — 160 pages
o RFC 2616 (1999) HTTP/1.1 v.2 — 176 pages long

Quantify irregularity

o "Kolmogorov complexity” AAAAAAA ... AAAAB| = 106+1

K(AAAAAAA ... AAAAB) =
“1 million As followed by 1 B

* computation resources needed to specify an object
* minimal length of a description of the object

Hl

o K(object) >= |object| => complex

. . | = simple
K(object) << |object| => simple

ABDAGHDBBCAD...| = 106+1

K(ABDAGHDBBCAD...) = 106+1
= complex

#9 — Incommensurate scaling

As a system increases in size or speed, different parts scale
unequally, causing the system as a whole to stop working.

e Reason:

o Scalability of each component is
described by a function

* The order of these functions is not the
same for each component => as system
grows, components scale
disproportionally
to each other

As a system increases in size or speed, different parts scale
unequally, causing the system as a whole to stop working.

e Reason:

o Scalability of each component is
described by a function

* The order of these functions is not the
same for each component => as system
grows, components scale
disproportionally
to each other

As a system increases in size or speed, different parts scale
unequally, causing the system as a whole to stop working.

e Reason:

o Scalability of each component is
described by a function

* The order of these functions is not the
same for each component => as system
grows, components scale
disproportionally

> to each other

=N

Challenges of going from components to systems

* # of behaviors of software ~ 2code size

* many components => emergent behaviors => unpredictable

* many interconnections => propagation of effects => unpredictable
* gsystem evolution introduces exceptions and irregularity

* Incommensurate scaling forces major re-designs

Use Modularity to Gontrol
interactions and Propagation

* We have limited capacity to remember and disentangle details

* cannot reason about many things at a time => need to compartmentalize
o Modularity = put things in "boxes" (components or subsystems) and treat as a unit

e Module

* distinct, self-contained unit that provides a specific service or function
* can be easily plugged / unplugged into different systems
* often encapsulates its own state

* Examples

o classes in OOP, folders in file systems, separation of src code into multiple src files, ...

srea—.. |
. e

: 'z,
(e 4 2 1
!

:
"y

TR R R RS

LA I

-
»

-ad

kR
M e A e oan

™
3
-

IO

MAINOOO1+*

MATINO00O2
MATINOOO3
MATINOOO4
MATINOOOS
MATINOOO®G6
MATINOOO7
MATINOOOS
MATINOOO9
MATINOO10
MATINOO11
MATINO0O12
MATINOO13
MATINOO14
MATINOO15
MATINOO16
MATINOO17
MATINOO18
MATINOO19
MATINO0O020
MATINO0O21
MATINO0022

PROGRAM TO SOLVE THE QUADRATIC EQUATION
READ 10,A,B,C S
DISC = B*B-4*A*C $
IF (DISC) NEGA,ZERO,POSI $
NEGA R = 0.0 - 0.5 * B/A $
AI = 0.5 * SQRTF(0.0-DISC)/A S
PRINT 11,R,AI $
GO TO FINISH $
ZERO R = 0.0 - 0.5 * B/A $
PRINT 21,R $
GO TO FINISH $
POSI SD = SQRTF(DISC) $
Rl = 0.5*(SD-B)/A $
R2 = 0.5*%(0.0-(B+SD))/A $
PRINT 31,R2,R1 $
FINISH STOP $
10 FORMAT(3F12.5) $
11 FORMAT(19H TWO COMPLEX ROOTS:, F12.5,14H PLUS OR MINUS,
F12.5, 2H I) $
21 FORMAT(15H ONE REAL ROOT:, F12.5) $
31 FORMAT(16H TWO REAL ROOTS:, F12.5, 5H AND , F12.5) $
END $

MAINOOO1+*

MATINO00O2
MATINOOO3
MATINOOO4
MATINOOOS
MATINOOO®G6
MATINOOO7
MATINOOOS
MATINOOO9
MATINOO10
MATINOO11
MATINO0O12
MATINOO13
MATINOO14
MATINOO15
MATINOO16
MATINOO17
MATINOO18
MATINOO19
MATINO0O020
MATINO0O21
MATINO0022

PROGRAM TO SOLVE THE QUADRATIC EQUATION
READ 10,A,B,C S
DISC = B*B-4*A*C $
IF (DISC) NEGA,ZERO,POSI $
NEGA R = 0.0 - 0.5 * B/A $
AI = 0.5 * SQRTF(0.0-DISC)/A S
PRINT 11,R,AI $
GO TO FINISH $
ZERO R = 0.0 - 0.5 * B/A $
PRINT 21,R $
GO TO FINISH $
POSI SD = SQRTF(DISC) $
Rl = 0.5*(SD-B)/A $
R2 = 0.5*%(0.0-(B+SD))/A $
PRINT 31,R2,R1 $
FINISH STOP $
10 FORMAT(3F12.5) $
11 FORMAT(19H TWO COMPLEX ROOTS:, F12.5,14H PLUS OR MINUS,
F12.5, 2H I) $
21 FORMAT(15H ONE REAL ROOT:, F12.5) $
31 FORMAT(16H TWO REAL ROOTS:, F12.5, 5H AND , F12.5) $
END $

MAINOOO1+*

MATINO00O2
MATINOOO3
MATINOOO4
MATINOOOS
MATINOOO®G6
MATINOOO7
MATINOOOS
MATINOOO9
MATINOO10
MATINOO11
MATINO0O12
MATINOO13
MATINOO14
MATINOO15
MATINOO16
MATINOO17
MATINOO18
MATINOO19
MATINO0O020
MATINO0O21
MATINO0022

PROGRAM TO SOLVE THE QUADRATIC EQUATION
READ 10,A,B,C S
DISC = B*B-4*A*C $
IF (DISC) NEGA,ZERO,POSI $
NEGA R = 0.0 - 0.5 * B/A $
AI = 0.5 * SQRTF(0.0-DISC)/A S
PRINT 11,R,AI S
GO TO FINISH $
ZERO R = 0.0 - 0.5 * B/A $
PRINT 21,R $
GO TO FINISH $
POSI SD = SQRTF(DISC) $
Rl = 0.5*(SD-B)/A $
R2 = 0.5*%(0.0-(B+SD))/A $
PRINT 31,R2,R1 $
FINISH STOP $
10 FORMAT(3F12.5) $
11 FORMAT(19H TWO COMPLEX ROOTS:, F12.5,14H PLUS OR MINUS,
F12.5, 2H I) $
21 FORMAT(15H ONE REAL ROOT:, F12.5) $
31 FORMAT(16H TWO REAL ROOTS:, F12.5, 5H AND , F12.5) $
END $

MAINOOO1=*

MATINO00O2
MATINOOO3
MAINOOO4
MATINOOOS
MATINOQOOO®G6
MATINOOO7
MATINOOOS
MATINOOO9
MAINOO10
MATNOO11
MATINO0O12
MATINOO13
MATINOO14
MATINOO15
MATINOO16
MATINOO17
MAINOO18
MAINOO19
MATINO0O020
MATINOO21
MATINO0022

PROGRAM TO SOLVE THE QUADRATIC EQUATION
READ 10,A,B,C- S
DISC = B*B-4*A*C $
IF (DISC) NEGA,ZERO,POSI $
NEGA R = 0.0 - 0.5 * B/A $
ATl = 0.5 * SQRTF(0.0-DISC)/A S
PRINT 11,R,AI S
GO TO FINISH $
ZERO R = 0.0 - 0.5 * B/A S
PRINT 21,R S
GO TO FINISH S
POSI SD = SQRTF(DISC) $
Rl = 0.5*%(SD-B)/A S
R2 = 0.5*(0.0-(B+SD))/A S
PRINT 3%,R2,R1 $
FINISH STOP $
10 FORMAT(3F12.5) S
11 FORMAT(19H TWO COMPLEX ROOTS:, F12.5,14H PLUS OR MINUS,
FORPWS A2 1.)4 S
2 1@FORMATH ™ 15H ONE "REAL“ROOTsy F12N) S
31"FORMAT(16H TWO REAIL ROOFS:, F12.5, BH AND , Fl12.5) $
END $

The competent programmer is fully aware of

oy the strictly limited size of his own skull and
N therefore approaches the programming task
U \ in full humility.

) \3‘_ 48 \\\

JEREAE, e N

Edsger Dijkstra

T — ...

EWD249

NOTES ON STRUCTURED PROGRAMMING

by

prof.dr.Edsger W.Dijkstra

August 1969

* Three basic constructs < [smtement | =
- - - 3 | ST F
* single-entry / single-exit control @ = 5
constructs % State‘ment %é[block} [blockﬁ
* sequence, selection, iteration B |statement| | A %
* Stuctured progar [S T
* ordered, disciplined, doesn't jump <
around unpredictably s F @
* can read easily and reason about = < -
higher quality g [b| Ock}

Moduiarity Through Virtualization

e \irtual machines

Many Physical Servers

Ry =¥
H;mﬁ [;31] T » W
sl i
Ay gy gl-}fﬂ
Bt by
i vy Ty
e Us e T
il (g e g
Ry vty By
[

V=,

Few Physical Servers with
Many Virtual Machines

Virtual Machines

oooUooUD

VM VM VM VM VM VM VM VM
M VM VM VM M VM VM VM

ooUouooo

VM VM VM VM VM VM VM M
VM M VM VM M VM VM VM

Virtualization Hypervisor

Containers

Docker, LXC, Podman, ...
Zones (Solaris)

Virtual private servers (OpenVZ)
Partitions, virtual environments
Virtual kernels (DragonFly BSD)
Jails (FreeBSD jall, chroot)

Whatis Modularity ?

e |solate behavior into “boxes”

* Controlled entry/exit points

* replace components without affecting rest of system

* Criterion for defining module boundaries

* Interdependence within modules + independence across modules

For more insights, see
C. Y. Baldwin and K. B. Clark, Design Rules: The power of modularity,
The MIT Press, 2000

Animal cell

lysosome innssomes

cilium

~ 3 = e kT e d AN VRCied - S R centriole
- Uy 2 O S 5y # " & e - W 8 . / cell membrane
axX e Nl Fm)| g s e, > e = WG ; centrosome ‘
=) e L e ol o S e S = o
=} ' . _ WA) oo == NC N peroxisome TS smooth
= 28 & * 2t W SIS G R X Sy A—g endoplasmic

reticulum

nucleolus

nuclear pore)
vl
@ | |

nucleoplasm

nucleus

nuclear
envelope

rough
endoplasmic
reticulum

4 ~

Golgi '/' 2
apparatus -

secretory vesicles cytoplasm

mitochondrion

© 2010 Encyclopeedia Britannica, Inc.

Use Abstraction to Simplify and
Regularize Behavior

Modularity

Examples of Abstractions in Operating Systems

Virtual address space Physical address space
. 0x00000000
* Virtual aadress space e
""" text 0x00000000
o Process
. P Thread 1 File Handles
ro Ce S S 0x10000000
. Process Pipes
data virtual Thread 2
L address - Semaphores
" space
‘ P I e i Signal Handlers
————— - Thread N
Filesyst |

.............. OXOOW
L stack
.............. D page belonging to process
OXTHFFFFF L D page not belonging to process
. | B I |
—
return code command line return code - shell process
fa.* . txt’ — 1>
~| grep process| standard
standard standard output/error
Is process output input
standard error — .
terminal
(= process

filesystem

display device

Ahstraction = Interface + Modularity

o Specifies “what” a component/subsystem does

* Together with modularity,

)

it separates “what” from “how’

4““““““““““‘
R RIIONEE
o.ﬂooooooooooooooooooooo
;.'ooooooooooooooooooooo:
00000 00000000000000000000%
;oo.ooooooooooooooooooooo
0.000.0.50:0.0.0.000.0000°00°000 0%
;.o.ovoooooooooooooooooo
f0t0t0tototets Lede ety tettebterit o nnsnoly
0000000000000 00, 0.0.00°0.0°070°0°0 0 %0 o s AN
0000000000000 00 0000,0,9,0,0,0,0,0007000%0 0 Y04 a e ot
.ooo..oo..o‘<<<<<<<<.-¢-...........

{
S OSBAEANS 0 000 X000 XXXXX XXX KOO XX
...................................
D0 ¥0%0 %000 %00 0.0-0.070.0707070°0° 0707070700000 0000 0%
000000 0 0 0 0 0% €000 07070 0707070 0 0 000000 0 000 s
...a?eéa..z........................
..................................
.&e:......z........................
..................................
2D OO OOOONOONCIOBSNBEIAA R
.oooooooooooooo.o.o.oooooooo.oo....
0,0.0:0.0.00.0.0.0()00000000000000000000000%
0000000000 0000000000000000000000%0%
0,0.00.0.0.0.0.0.01)0.0000000000000000000000000
eeee:::r::x333&%%%%%%%%%%%%%%%%%%%%.
6000000000000 % 000 0.0.0.0.0.0.0.0.00.0.00°0.00°0°0°0°0 "0 "0

.."".,
"o eeled

\}

ocg

XXX X A RN NN XX
00000000007 0.0007020.00°000°0°0 0 0%
100.0.0.0°00°0°0%0 o 00590707000 000 o
00.0.00.010020°0°) 040070 ¢ 0°0°0% %0 %0 0%
10 00.0:00°0°0°0°0 190.6,6000%0°0 0000
NSSEEEANET 04940°2°27070:0.0°0%00 0
MOOOC X OO00OANNAN
¥e¥0%0%0 %000 000 000)
00000 0 0 00 000’ o
0000000000700)
KBS
10000070.0.0.0.0°0%0)
Sodedetelo e ele%e ¢ XX
So¥e%e%0%0%% % %%) OCXXOOBBNNNN)
XAESEBOOOOOOAN : 0.9.00°0° %
MO XXX BNN)
V000000000 0000000000000000
) 0000000000000 10%0%0 0 0 0 00 0 0 0 0 000 gt g0 0 0 0 0 000 e},
0,000,000 400 t0t0l0tel0tet0tet0tetetete byt st retetyty
OC ..x:................%%%%%_
\ N KX NRINIEANAN
Aooooooooooooooooooooooog
0 1100000004949,0.909 0,000 0 0t0dodd oty 0n
00 00ttt totetoty tet tenrornietetetetytetyeeote!
000 ofelnnnnn e e e e eleleletetetercototetet
.aceée:r???:::?:?:rr?:}r.%%
NEEASEBOSOSOSISIEAXRLOOOOSEN

Tola

> abstract

Ahstraction = Module + Interiace

connect

Interface = contract between tic 1o comecsctetiress i
a mOdU|e and the reSt Connects this socket to the server.

Parameters:

endpoint - the SocketAddress

Throws:

bind TI0Exception - if an error occurs during the connection

IllegalBlockingModeException - if this socket has an associated channel, and the channel is in non-
public void bind(SocketAddress bindpoint) blocking mode

throws IOException . _
IllegalArgumentException - if endpointis null or is a SocketAddress subclass not supported by this

Binds the socket to a local address. socket
If the address is null, then the system will pick up an ephemeral port and a valid local address to bind the socket. Since:
Parameters: 1.4

bindpoint - the SocketAddress to bind to
Throws:
I0Exception - if the bind operation fails, or if the socket is already bound.
IllegalArgumentException - if bindpoint is a SocketAddress subclass not supported by this socket
Since:
1.4
See Also:

isBound ()

Interface

Module

H Abstract state machine

H Implementation state machine

S .
g H Abstract state machine
<
Abstraction
® function
=
S . .
= H Implementation state machine

How To Modularize & Abstract?

* Abstraction vs. modularity

* these two are often considered the same, but they are not

* Modularize along natural (effective) boundaries

* Few Interactions between modules
* Few propagations of effects

* Must be able to interact with module without knowing internal detalls

o Beware of ability to truly encapsulate

* E.g., use of hw protection for address spaces vs. objects in C++

* |nformation hiding

o Completeness

o (Consistency

o Separation of concerns

o (Generality & Reusability

o Extensibility

* 3Single responsibility & Orthogonality
o Composability

o Efficiency

Leaky Ahstractions

All non-trivial abstractions,
to some degree, are leaky:.

(Joel Spolsky)

The Scalahle Commutativity Rule

T. Clements et al, The Scalable Commutativity Rule: Designing
Scalable Software for Multicore Processors, SOSP 2013

What is scalability 2

Ability to perform E=rr—r
additional work given N
greater hardware 128
reSources —_ .

o 32t :

N
Good scalability => J .)
ability grows linearly d 502 DIy,
with hw resources | “

1 2 4 8 16 32 64 128 256 512 1024
No of Processors

@ creat(” @ creat('y @ creat('z")

» l l
;, H
. ,
Y Y Y
stdin stdout stderr

@ creat(" @ creat('y") @ Creat

_

LT L]
Voo
stdin stdout stderr

SC Rule: Whenever interface operations commute,
they can be implemented in a way that scales.

CoreY

Core X

R

W
X
X

X

Cost of a contended cache line

Two or more operations
are scalable if they are
conflict-free.

Operations commute
= results independent of order

= communication Is unnecessary

= without communication, no conflicts

Scalable
implementation
Commutes exists
>1: creat X Commutativity Rule
P creat 1
D1: creat("/tmp/x") (Linu) v
D . 1] n HgN
2: Creat(/etcly’) improve POSIX scalability
P creat("/x"
D). creatg”/y"i + Lowest FD versus any FD
_ + stat versus xstat

P11 creat("x”, O_EXCL) - Unordered sockets
P2 creat("x", O_EXCL) » Delayed munmap

Same CWD X » fork+exec versus posix_spawn

Different CWD

Scalable Commutativity Rule

Whenever interface operations commute,
they can be implemented in a way that scales.

* Fundamental sources-of complexity:

* many components + many interconnections + irreqularity & exceptions

o Use modularity to

* encapsulate elements into components & subsystems =x fewer visible elements
* control interactions and propagation of behaviors => fewer inteyconnections

o Use abstraction to

* make emergent behavior predictable => less irreqularity & fewer exceptions

o Lateron...

* patterns of using modularity and abstraction (layering, naming, client/server, ...)

Exokernel: An Operating System Architecture for
Application-Level Resource Management

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr.
M.I.T. Laboratory for Computer Science
Cambridge, MA 02139, US.A

{engler, kaashoek, james}@lcs.mit.edu

Abstract

Traditional operating systems limit the performance, flexibility, and
functionality of applications by fixing the interface and implemen-
tation of operating system abstractions such as interprocess com-
munication and virtual memory. The exokernel operating system
architecture addresses this problem by providing application-level
management of physical resources. In the exokernel architecture, a
small kernel securely exports all hardware resources through a low-
level interface to untrusted library operating systems. Library op-
erating systems use this interface to implement system objects and
policies. This separation of resource protection from management
allows application-specific customization of traditional operating
system abstractions by extending, specializing, or even replacing
libraries.

We have implemented a prototype exokernel operating system.
Measurements show that most primitive kernel operations (such
as exception handling and protected control transfer) are ten to 100
times faster than in Ultrix, a mature monolithic UNIX operating sys-
tem. In addition, we demonstrate that an exokernel allows applica-

4L 4 AA_-L-A1 P T T 1A1A‘_- 4 .- J°.° A_-,—\1

inappropriate for three main reasons: it denies applications the ad-
vantages of domain-specific optimizations, it discourages changes
to the implementations of existing abstractions, and it restricts the
flexibility of application builders, since new abstractions can only
be added by awkward emulation on top of existing ones (if they can

be added at all).

We believe these problems can be solved through application-
level (i.e., untrusted) resource management. To this end, we have
designed a new operating system architecture, exokernel,in which
traditional operating system abstractions, such as virtual memory
(VM) and interprocess communication (IPC), are implemented en-
tirely at application level by untrusted software. In this architecture,
a minimal kernel—which we call an exokernel—securely multi-
plexes available hardware resources. Library operating systems,
working above the exokernel interface, implement higher-level ab-
stractions. Application writers select libraries or implement their
own. New implementations of library operating systems are incor-
porated by simply relinking application executables.

Substantial evidence exists that applications can benefit greatly
from havmg more control over how machine resources are used

1 1 °*° 1 1 414 1 4 A b | 1 ¥ °* ©~7 V. |

