Computer Workshop using Processing MODFLOW

Consider the following confined two-dimensional aquifer situation:

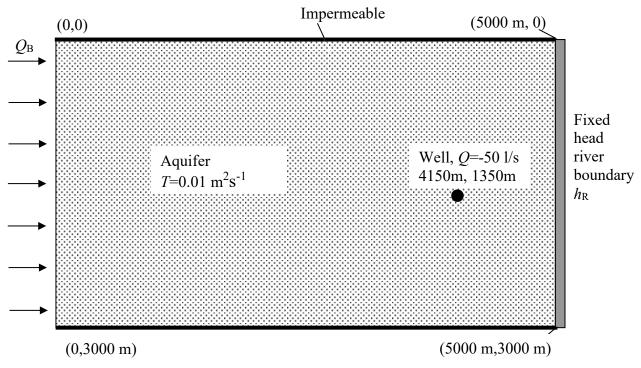


Figure 1: Aquifer situation (plan view)

Data: Aquifer top: 102 m Aquifer bottom: 78 m

Fixed head boundary (river) h_R =100 m

Boundary inflow $O_B=12 \text{ L s}^{-1}$

Effective porosity ϕ_e =0.2 (Not needed for flow, but for transport, incl. particle

tracking)

- a) Calculate the steady state flow field.
- b) Plot the head contours.

Detailed guide using Processing MODFLOW (PMWIN):

Create a temporary directory on **C**, **e.g. C:\temp**. Do **not** create it on the desktop or in your documents folder. This program has troubles with long folder paths. At the end, copy the folder to your private one, otherwise you lose your data.

Run Processing MODFLOW (PMWIN) (c:\Program Files (x86)\PMWIN 5.3\pm5.exe, running the application as an administrator using the credentials provided in the classroom)

 \rightarrow File \rightarrow New Model

 \rightarrow File Name (*Project name, without extension, e.g., C:temp\GW1-EX*)

```
\rightarrow Grid
        \rightarrow Mesh size
                Model Dimension
                         \rightarrow Layers: 1
                         → Columns: Number: 51
                                         Size: 100
                                         Number: 30
                         \rightarrow Rows:
                                         Size: 100
                         \rightarrow OK
                         \rightarrow Leave Editor \rightarrow Save changes
\rightarrow Grid
        \rightarrow Layer type
                → Type: (Click on Type Window for change)
                                                                                   \rightarrow Confined
                → Transmissivity: (Click on Type Window for change) → User specified
                \rightarrow OK (Confirm default values)
\rightarrow Grid
        → Boundary conditions
                → IBOUND (Grid appears; Default: Active cell with IBOUND=1)
                         → Select one cell with prescribed head BC
                         → Press right mouse button
                                 \rightarrow Set IBOUND=-1, OK
                         → Switch duplication (upper menu bar): On (cell gets coloured)
                         → Use keyboard arrow to set all neighbouring prescribed head cells
                         → Switch duplication: Off
                         \rightarrow Leave Editor
                                                 \rightarrow Save Changes
(Note: only the prescribed head boundaries are set here (and their explicit value has to be
specified elsewhere). No-flow boundaries do not need to be specified, they are assumed by
default. General inflow boundaries are set as a series of wells)
\rightarrow Grid
        → Top of Layers (Grid appears)
                \rightarrow Value
                                                 \rightarrow 102:
                         \rightarrow Reset Matrix
                                                                  \rightarrow OK
                         \rightarrow Leave Editor
                                                 \rightarrow Save changes
\rightarrow Grid
        → Bottom of Layers (Grid appears)
                \rightarrow Value
                                                 \rightarrow 78;
                         \rightarrow Reset Matrix
                                                                  \rightarrow OK
                         \rightarrow Leave Editor \rightarrow Save changes
→ Parameters
        \rightarrow Time
                → OK (Confirm default values)
```

\rightarrow	Pai	ran	nei	eı	rs

→ Initial Hydraulic Heads (Grid appears; Also used as starting values in steady state calculation and also for the prescribed head cells)

 \rightarrow Reset Matrix \rightarrow 100: \rightarrow OK

 \rightarrow Leave Editor \rightarrow Save changes

Note: We have a steady state problem and theoretically do not need initial heads. However, as we use iterative solvers we need starting values, which are taken form here. In addition, the missing information for the prescribed head boundary is taken from here.

\rightarrow Parameters

→ Transmissivity (Grid appears)

 \rightarrow Reset Matrix \rightarrow 0.01: \rightarrow OK

 \rightarrow Leave Editor \rightarrow Save changes

→ Parameters

→ Effective Porosity (Grid appears; Not used for flow)

 \rightarrow Reset Matrix \rightarrow 0.2: \rightarrow OK

 \rightarrow \rightarrow Leave Editor \rightarrow Save changes

\rightarrow Models

\rightarrow MODFLOW

→ Well (Grid appears)

→ Click on cell with coordinates (4150; 1350)

 \rightarrow Press right mouse button: Recharge Rate: -0.050; \rightarrow OK

→ Click on one cell with prescribed boundary inflow

→ Press right mouse button: Recharge Rate: 0.0004

 \rightarrow Use Duplication Button and Arrow for all inflow boundary

cells

 \rightarrow Leave Editor; \rightarrow Save changes

Note: the series of wells at the boundary mimic the second type boundary of a prescribed inflow.

\rightarrow Models

 \rightarrow MODFLOW

 \rightarrow Solvers

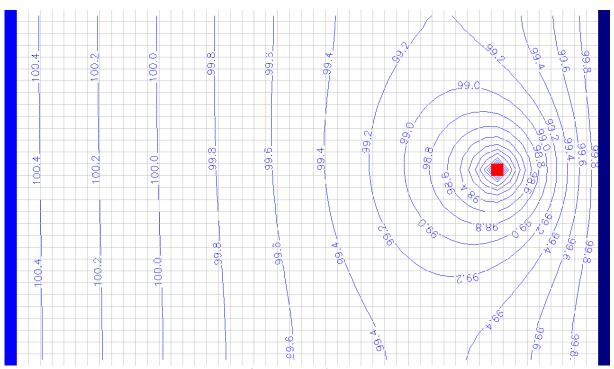
 \rightarrow PCG2

→ Convergence Criteria, Head Change: Set 0.000001

 \rightarrow OK

\rightarrow Models

 \rightarrow MODFLOW


 \rightarrow Run; .../modflow2v.exe (sometimes v is missing!) \rightarrow OK

→ Check messages at the end of the calculations

→ Press any key to continue

Groundwater

```
→ Presentation
        → Value
                 → Results Extractor
                          → Hydraulic Head;
                                   \rightarrow Read;
                                   \rightarrow Apply;
        \rightarrow Options
                 → Environment
                          \rightarrow Contours
                                   \rightarrow Visible;
                                                    \rightarrow OK
                                                             \rightarrow fixed (1 decimal digit)
                                   → Label format
                                   → Click Level (Click on title of the table, difficult to see!)
                                            → Contour Levels:
                                                     → Minimum: 96
                                                     \rightarrow Interval: 0.2
                                                                               \rightarrow OK
```


Picture: Head contours

→ File
 → Save plot: as a .bmp file, use the default file name
 → OK
 → Leave Editor; Save changes

File \rightarrow Exit

Copy the entire folder to your private documents.