
III. Probabilités conditionnelles

Le concept de probabilité conditionnelle est l’un des plus importants de cette théorie puisque
l’on cherche souvent à savoir quelle est la probabilité d’un événement alors qu’on dispose d’une
information partielle. La probabilité qu’il neige un matin n’est pas la même si l’on sait qu’il a fait
30 degrés la veille ou →5 degrés.

1 Rappels sur les probabilités

L’ensemble fondamental d’une expérience est l’ensemble de toutes les issues possibles d’une
expérience.

Définition 1.1. Soit S l’ensemble fondamental d’une expérience.
Une probabilité est une application P : P(S) ↑ [0, 1] telle que :

(1) P (S) = 1 ;

(2) Si les événements E1, E2, E3, . . . sont disjoints, alors P

( →∐

i=1

Ei

)
=

→∑

i=1

P (Ei).

Le nombre réel P (E) est appelé probabilité de l’événement E.

Nous avons vu la semaine passée que

a) P (↓) = 0, c’est-à-dire que la probabilité que rien ne se passe est nulle, notre expérience a
toujours une issue ;

b) P (
∐n

i=1 Ei) =
∑n

i=1 P (Ei), donc l’axiome (2) est vrai aussi si on traite le cas d’une union
disjointe finie d’événements ;

c) P (Ec) = 1→ P (E) ;

d) si F ↔ E des événement, alors P (F ) ↗ P (E).
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Exemple 1.2. On lance plusieurs fois de suite une paire de dés équilibrés et on s’intéresse à la
somme des chi!res obtenus.
Quelle est la probabilité d’obtenir une somme égale à 5 avant une somme égale à 7 ?

Soit En l’événement "Pendant les n→ 1 premières épreuves ni 5 ni 7 ne sont obtenus, puis à la
n-ème on obtient 5". La probabilité cherchée est la probabilité de la réunion disjointe

∐
En.

La probabilité d’obtenir un total de 5 vaut .
En e!et,

De même, celle d’obtenir un total de 7 vaut .
Ainsi, la probabilité d’obtenir un total de 5 ou de 7 est .

Ainsi, puisque les lancers sont indépendants,

P (En) =

Par conséquent, on a

Nous avons terminé le cours de la semaine passée sur le résultat suivant :

Théorème 1.3. Soient E et F deux événements. Alors

P (E ↘ F ) = P (E) + P (F )→ P (E ≃ F ).
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2 Probabilité conditionnelle

Commençons par un exemple élémentaire, que nous reprendrons par la suite pour expliquer le
"paradoxe" du problème de Monty Hall.

Exemple 2.1. Supposez que vous êtes sur le plateau d’un jeu télévisé face à trois portes et que
vous devez choisir d’en ouvrir une seule, en sachant que derrière l’une d’elles se trouve une voiture
et derrière les deux autres des chèvres.

La probabilité de choisir la bonne porte vaut donc

Supposons maintenant que l’on sache, avant de choisir, qu’une chèvre se cache derrière la troisième
porte. Dans ce cas, la probabilité que la voiture soit derrière la première porte vaut

On peut aussi raisonner comme suit : la probabilité que la voiture soit derrière la première porte et
que simultanément une chèvre se trouve derrière la troisième porte vaut car si la voiture
est derrière la première porte alors forcément, il y a une chèvre derrière la troisième porte.
Par ailleurs, la probabilité qu’une chèvre se trouve derrière la troisième porte vaut si bien
que si l’on sait qu’une chèvre se trouve derrière la troisième porte, l’ensemble fondamental est
réduit au de son état initial.
Ainsi, la probabilité que la voiture soit derrière la première porte sachant qu’une chèvre est derrière
la troisième porte vaut

Définition 2.2. Soient E et F deux événements. On suppose que P (F ) > 0. Alors,
la probabilité conditionnelle P (E|F ) de E sachant que F est réalisé est

P (E|F ) =
P (E ≃ F )

P (F )
.
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Voici un exemple simple où l’on pourrait aussi raisonner directement.

Exemple 2.3. Une urne se trouve dans une pièce obscure et contient 10 billes rouges, 5 billes
jaunes et 10 billes blanches lumineuses. On tire une boule et constate qu’elle n’est pas lumineuse.
Quelle est la probabilité qu’elle soit jaune ?
Intuitivement :

Mathématiquement, avec la définition 2.2 :
Soit J l’événement produit par le tirage d’une bille jaune et B celui produit par le tirage d’une
bille blanche.

Enfin, revenons au problème de Monty Hall.
Le candidat est placé devant trois portes fermées. Derrière l’une d’elles se trouve une voiture et
derrière chacune des deux autres se trouve une chèvre. Il doit tout d’abord désigner une porte.
Puis le présentateur, qui sait quelle est la bonne porte dès le début, doit ouvrir une porte qui n’est
ni celle choisie par le candidat, ni celle cachant la voiture. Le candidat a alors le droit soit d’ouvrir
la porte qu’il a choisie initialement, soit d’ouvrir la troisième porte.
Quelle stratégie doit-il adopter pour maximiser la probabilité de gagner la voiture ?

Exemple 2.4. Supposons que l’on choisisse la première porte.
Appelons Ai l’événement "la voiture se trouve derrière la i-ème porte", pour 1 ↗ i ↗ 3.
Appelons Xj l’événement "le présentateur ouvre la j-ème porte" pour 2 ↗ j ↗ 3.
Calculons toutes les probabilités P (Ai ≃Xj).

D’abord, remarquons que pour tout i, P (Ai) =

• P (A1 ≃X2) = P (A1 ≃X3) =

• P (A2 ≃X2) = P (A3 ≃X3) =
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• P (A2 ≃X3) = P (A3 ≃X2) =

Ceci nous permet aussi de calculer la probabilité que le présentateur ouvre la troisième porte.

Il faut changer de porte pour avoir le plus de chance de gagner la voiture !

3 La formule des probabilités totales

Dans la section précédente, nous avons vu comment calculer une probabilité conditionnelle.
Parfois il peut être utile de retourner cette formule et de l’appliquer pour calculer la probabilité
d’un événement. Nous commençons par la formule de multiplication.

Proposition 3.1. Formule de multiplication
Soient A et B deux événements. Alors P (A ≃B) = P (A) · P (B|A).

Exemple 3.2. Un sac contient quatre billes rouges, deux billes bleues et trois billes vertes.
On cherche la probabilité des événements suivants : A : "les deux billes tirées sont rouges",
B : "la première est bleue et la seconde est verte" et C : "l’une des billes est rouge et l’autre bleue".

On désigne par R1 l’événement "la première bille tirée est rouge", par R2 "la seconde est rouge",
par B1 "la première est bleue", etc.
On dessine un diagramme en arbre où la racine indique le début de l’expérience, le premier niveau
de branches indique le premier tirage, le second niveau le deuxième tirage.
On écrit la probabilité de chaque tirage sur la branche et la couleur tirée aux noeuds.
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Le théorème suivant est une simple adaptation de cette formule.

Théorème 3.3. des probabilités totales
Soit E1, . . . , En des événements tels que S = E1

∐
E2

∐
· · ·

∐
En. Alors pour tout événement A,

P (A) =
n∑

i=1

P (A|Ei)P (Ei).

Démonstration. Montrons simplement le cas de deux événements : S = E
∐

F .
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Exemple 3.4. Un inspecteur de police est convaincu à 60% que le suspect principal de son enquête
sur le vol d’un tableau de Picasso est coupable. A ce stade de l’enquête on trouve un cheveu blond
et court sur la scène du crime. Il se trouve que le suspect est blond ! Quelle est la probabilité qu’il
ait volé le tableau sachant que 20% de la population a des cheveux blonds ?

Soit C l’événement "le suspect est coupable" et B "le coupable est blond".
Alors, avant d’avoir trouvé le cheveu blond, par le théorème des probabilités totales, on a

P (B) = P (B|C)P (C) + P (B|Cc)P (Cc) =

D’autre part, la probabilité conditionnelle que le suspect est coupable sachant que le coupable
est blond se calcule directement avec la définition :

Dans cet exemple, nous avons utilisé le Théorème de Bayes, du nom de son auteur Thomas
Bayes (1702–1761), mathématicien et pasteur britannique.

Théorème 3.5. Théorème de Bayes
Soit E1, . . . , En des événements tels que S = E1

∐
E2

∐
· · ·

∐
En.

Alors pour tout événement A de probabilité non nulle et tout k, on a

P (Ek|A) =
P (A|Ek)P (Ek)∑n
i=1 P (A|Ei)P (Ei)

.
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Pour terminer ce cours, étudions un exemple de nature théorique.

Exemple 3.6. Problème de rencontre de Mont-mort (1708)
Lors d’une réunion de n hommes, chacun enlève son chapeau et le lance dans le vestibule. À la
fin de la réunion, chacun prend un chapeau au hasard dans le tas. On dit qu’il y a rencontre si
quelqu’un tire son propre chapeau. Quelle est la probabilité qu’il n’y ait aucune rencontre ?

Soit En l’événement "il n’y a aucune rencontre". L’idée est de conditionner P (En) selon l’événement
R : "le premier homme tire son propre chapeau".
Par la formule des probabilités totales, on a

Analysons maintenant P (En|Rc). C’est la probabilité qu’il n’y ait pas de rencontre lorsque n → 1

hommes tirent un chapeau dans un tas de n→1 chapeaux, tas dans lequel un chapeau n’appartient
à personne, celui du premier homme, et l’un manque, celui que le premier homme a tiré.

Il y a deux cas de figure sans rencontre. Soit l’homme en trop ne tire pas le chapeau en trop,
soit il le tire. S’il ne le tire pas, faisons comme si ce chapeau lui appartenait, si bien que cette
situation est équivalente à En↑1. Mais s’il le tire, et il y a une chance sur n → 1 qu’il le fasse, il
reste n→ 2 hommes qui doivent tirer un chapeau dans un tas constitué de leurs chapeaux :

Nous avons obtenu une formule de récurrence !
On peut commencer à calculer puisque P (E1) = 0 et P (E2) =

1

2
.

Il se trouve que la formule donne

une série qui tend vers e↑1 ⇐= 0, 368.
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