Remediation of soil and groundwater Rizlan Bernier-Latmani Problem set # 4: vapor phase processes

Problem 1:

A biofilter is used to remove toluene from the gas phase. The gas flow rate is Q= 0.3 m³/h, the influent concentration C_i = 560 μ g/L. Monod kinetics: k=120.3 mg toluene/g cell/min and K_S =17.4 mg/L air. The operational biomass concentration is X= 1g cells/L air flow.

What is the effluent concentration of toluene assuming a height of 1m?

Problem 2:

Please calculate the height of an air-stripping tower to remove ethylbenzene from groundwater given the following information.

Influent concentration of ethylbenzene: 1 mg/L Target effluent concentration: 35 μ g/L Liquid flow rate Q_W = 643.45 L/min Column diameter= 0.915m Packing= 2.5 cm polyethylene Raschig rings D_L =6*10⁻⁶ cm²/s D_G =0.09404 cm²/s Air to water ratio: 100:1 K_H '= 0.27 T= 20 °C.

Problem 3:

A leaking underground storage tank has discharged 10 m³ of 1,1,1-TCA to a sandy clay soil. The contaminated soil is found to extend over a diameter of approximately 30m and a depth of 10m, beginning 2m below the surface. A short SVE program at 3 m³/min or 4.5 m³/min was run to select the design extraction rate and the data are shown below. The extraction rate selected was Q=3 m³/min.

Estimate the time necessary to remove 95% of TCA.

Characteristics of 1,1,1-TCA: vapor pressure P_v = 0.13 atm at 20°C MW= 133.4 g/mol ρ_{TCA} =1,325 kg/m³ K_H '=0.56 at 20°C K_{OW} =10^{-2.5}

Soil characteristics:

Wet bulk density: $\rho_{wb} = 2{,}090~kg/m^3$ $K_D \! = 10^{\text{-}5}~m^3/g$ (for 1,1,1-TCA)

 θ = 0.10 m³/m³ ϵ =0.25 T_{soil} =20°C ρ_{air} =1.28 kg/m³

Problem 4:

A soil is contaminated with petroleum hydrocarbons and injection bioventing (with no gas phase treatment) or soil vapor extraction are being considered as treatment approaches. Due to the cost, only a single well at the center of the contamination area is planned and the injection and the extraction flow rates are set:

For injection: 60 m³/day For extraction: 120 m³/day

The question for the environmental engineer in charge of the site to solve is which treatment would be most rapid in this situation?

The contamination area is cylindrical and 6 meters deep and covers a surface area of 20 m^2 .

The concentration of total petroleum hydrocarbon (TPH) is 500 mg TPH/kg soil and assumed to be homogeneously distributed. The target concentration is 50 mg TPH/kg soil. The dry bulk density of the sediment is 1,400 kg/m³. K_D =0.03 m³/kg and K_H =2.08[-], soil porosity ϵ =0.3, soil moisture content θ = 0.05; 1 g O_2 is required to degrade 0.3 g of TPH carbon. As a reminder, the molar volume of gas is 22.4 L per mole under these conditions. The well is screened along the entire 6m of the contaminated soil depth.

The percent volume of O_2 in air is C_{02} =21% m^3 O_2/m^3 air

Part 1: Bioventing

- 1- What is the oxygen utilization rate (in % m³ O₂/(m³ air.day)) that is reached with this air flow rate?
- 2- What is the corresponding biodegradation rate of TPH (in mg TPH/(kg soil.day))?
- 3- Assuming the biodegradation rate follows first order kinetics, how long will the remediation take to reach the target with this method?

Part 2: SVE

- 4- What is the concentration of TPH in the gas phase initially $(C_{TPH,g})$?
- 5- How long will it take to reach the regulatory goal? (hint: consider that the total mass of TPH changes as it is removed by SVE)

Finally, please indicate what you think is the best approach here and why.