Lecture Notes week 9

Slide 24 – Example 1

Toluene: C₆H₅CH₃

Groundwater properties:

 $C_{aq} = 20 \text{ mg/L} = 0.02 \text{ kg/m}^3$

 $f_{oc} = 0.02$

 $\rho_b = 1.6 \text{ g/cm}^3 = 1,600 \text{ kg/m}^3$

 $K_D = 6.76 \times 10^{-6} \text{ m}^3/\text{g} * 1000 \text{g/kg} = 6.76 \times 10^{-3} \text{ m}^3/\text{kg}$

DO = 4 mg/L

 ϵ = 0.35

Total mass of toluene present (we consider $V_T = 1 \text{ m}^3$ of aquifer):

 $m_{toluene} = C_{aq}V_T(\epsilon + \rho_b K_D) = C_{aq}(\epsilon + \rho_b K_D)$

$$= 0.02 \frac{kg}{m^3} \left(0.35 \, m^3 + 1,600 \frac{kg}{m^3} * 6.76 * \frac{10^{-3} m^3}{kg} \right) = 0.2232 \, kg = 223.3 \, g$$

MW_{toluene}=12*7+8= 92 g/mol

$$n_{toluene} = \frac{m_{toluene}}{M_{toluene}} = \frac{223.3}{12*7+8} = 2.43 \; mol$$

Quantity of oxygen needed:

 $C_6H_5CH_3 + 9O_2 \rightarrow 4H_2O + 7CO_2$

$$n_{O_2} = 9 * 2.43 = 21.85 \ mol$$

$$m_{O_2} = 699.1 g$$

Quantity of oxygen available:

$$m'_{O_2} = DO * V_L = 4 \frac{mg}{L} * 350 L * \frac{1g}{1000 mg} = 1.4 g$$

A lot of additional oxygen is needed:

$$\frac{m_{O_2}}{m'_{O_2}} \sim 500$$

Slide 37 - Example 2

Groundwater properties:

Diameter: 25 m

Height: 10 m

 $n_{TCE} = 100 \text{ mol}$

 ϵ = 0.3

 $f_{OC} = 0.2$

 $LogK_{ow} = 2.42$

 $\rho_b = 1.5 \, \text{g/cm}^3$

Halorespiration:

$$b = 0.01 d^{-1}$$

$$K_s = 3 \text{ mg/L}$$

Y = 0.6 mg biomass/mg substrate

k = 0.4 mg substrate/(mg biomass.d)

1) Can we use halorespiration?

TCE concentration in groundwater:

$$\begin{split} m_{TCE} &= n_{TCE} M_{TCE} = 100 * 131.4 = 13.1 \, kg \\ V_T &= \frac{25^2}{4} * \pi * 10 = 4,908 \, m^3 \\ V_L &= 0.3 * 4,908 = 1,472 \, m^3 \\ M_S &= 4,908 * 1,500 = 7,362 \, t = 7.36 * 10^9 \, \mathrm{g} \end{split}$$

For K_D calculation we are using Karickoff relation: $K_D\left[\frac{m^3}{g}\right] = 0.63*10^{-6}*f_{oc}*K_{ow}$

$$K_D = 0.63 * 10^{-6} * 10^{2.42} * 0.2 = 3.3 * 10^{-5} \frac{m^3}{g}$$

$$C_{TCE,aq} = \frac{m_{TCE}}{V_L + K_D M_S} = \frac{13.1 \, kg * 1000 \, g/kg}{1,472 \, m^3 + 7.36 * 10^9 \, g * 3.3 * 10^{-5} \, m^3/g} = 0.05 \, \frac{g}{m^3} = 0.05 \, \frac{mg}{L}$$

Minimum TCE concentration to support growth:

$$C_{min} = \frac{bK_s}{Yk - b} = 0.01 * \frac{3}{0.6 * 0.4 - 0.01} = 0.13 \frac{mg}{L}$$

Halorespiration is not possible because the concentration is below the minimum concentration for growth.

2) If methanotrophic cometabolism, what total amount of dissolved O2 is needed?

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

100 moles of TCE \rightarrow 500 moles of CH₄ \rightarrow 1,000 moles O₂

$$C_{O_2,aq} = \frac{1,000 \ mol * 32 \frac{g}{mol}}{1,472 \ m^3 * 1,000 \frac{L}{m^3}} = 21.7 \ mg/L$$

 $C_{O_2,ag} > C_{O_2,saturation}$ (~9 mg/L) so additional oxygen needs to be provided