Remediation of soil and groundwater Rizlan Bernier-Latmani Problem set #6 solution: soil treatment and washing

Problem 1:

 $\begin{array}{ll} pyrene \ in \ sludge & 20'000 \ ppm \\ (compost + sludge) \ pile & 2'500 \ kg = M_T \\ sludge \ is \ 25\% \ by \ mass \ of \ pile \\ active = 40 \ d \quad (mass \ reduced \ by \ 30\%) \\ curing = 90 \ d & \end{array}$

$$t_{1/2} = 30 \text{ d}$$
 - active $t_{1/2} = 55 \text{ d}$ - curing

What is the final pyrene concentration?

Initial pyrene concentration in the pile:

$$C_0 = C_{pyrene,sludge} * C_{sludge in pile} = 20'000 ppm * 0.25 = 5'000 ppm$$

1) First stage (active)

First order degradation: $\ln \left(\frac{c_0}{c_t}\right) = -kt_{\frac{1}{2}} \rightarrow k_1 = 0.023 \text{ d}^{-1}$

$$C_{40} = e^{-0.023*40} C_0 \rightarrow C_{40} = 0.4 C_0$$

2) Second stage (curing)

First order degradation: $\ln\left(\frac{c_0}{c_t}\right) = -kt_{\frac{1}{2}} \implies k_2 = 0.013 \text{ d}^{-1}$

$$C_{130} = e^{-0.013*90} C_{40} = 0.31 C_{40} = 0.12 C_0$$

Numerical application: $C_{130} = 0.12 * 5'000 = 600 \text{ ppm}$

If we consider that 30% of the compost mass was lost:

At which this happens is not important because we consider that it does not affect the rate constants previously determined.

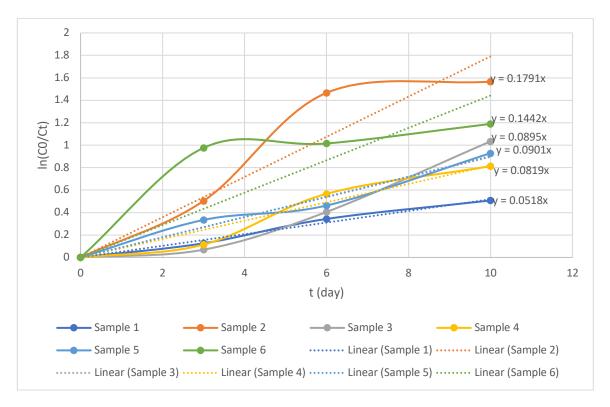
$$C'_{130} = \frac{(M_{compost} + M_{sludge})C_{130}}{0.7*M_{compost} + M_{sludge}} = \frac{C_{130}}{0.7*0.75 + 0.25} = 774 \text{ ppm}$$

$$C_{sludge in pile} = 0.25 \frac{kg_{sludge}}{kg_{pile}}$$

 $V_{\text{soil}} = 40,000 \text{ m}^3$

target time for remediation: <365 days

 $C_{TPH, i, avg}$ = 10,000 mg/kg


kg $C_{TPH, i, max}$ = 98,000 mg/kg $C_{TPH, f, max}$ = 500 mg/kg

 $C_{TPH, f, avg} = 100 \text{ mg/kg}$ $C_{TPH, f, max} = 500 \text{ mg/kg}$

$$k = \frac{\ln(C_0) - \ln(C)}{t}$$

From the different sampling points, calculate the slowest degradation rate, which corresponds to the worst-case scenario. Hence, we can calculate how quickly we can expect the degradation to occur at the slowest rate and whether the one-year target can be met (conservative approach).

Use excel to plot $\ln \left(\frac{c_0}{c_t}\right) = kt$ for each sample. Then plot the linear regression equations. With this method, the slowest rate is: $k = 0.052 \text{ d}^{-1}$.

$$t = \frac{\ln(C_0) - \ln(C)}{k} = \frac{\ln(10,000) - \ln(100)}{0.051} \implies t=90 \text{ days}$$

$$t = \frac{\ln(C_0) - \ln(C)}{k} = \frac{\ln(98,000) - \ln(500)}{0.051} \implies t=103 \text{ days}$$

It should not be a problem to degrade the contaminant within the target time of 1 year.

$$C_{0,=} 900 \text{ ppm}$$

 $C_{46d}=300 \text{ ppm}$

a- Assuming 1st order kinetics, we obtain a k of

$$k = \frac{\ln(C_0) - \ln(C)}{t}$$
 \Longrightarrow k=0.024 d⁻¹

b- The half-life is given by

$$t_{1/2} = \frac{\ln 2}{k}$$
 \Longrightarrow $t_{1/2} = 29 \text{ days}$

c-
$$k_T = k_{22} \Theta^{T-22}$$
 where $\Theta = 1.02$

$$k_T=0.026 d^{-1}$$

d-
$$t_{1/2} = \frac{\ln 2}{k}$$
 \Longrightarrow $t_{1/2} = 26 \text{ days}$

Problem 4:

$$C_6 H_{14} + 9.5 O_2 => 6 CO_2 + 7 H_2O$$

On a mass basis:

$$\frac{1 \ mole \ C_6 H_{14}}{9.5 \ moles \ O_2} \times \frac{1 \ mole \ O_2}{32 \ g \ O_2} \times \frac{86 \ g \ C_6 H_{14}}{1 \ mole \ C_6 H_{14}} = \frac{86 \ g \ C_6 H_{14}}{304 \ g \ O_2} = \frac{1 \ g \ C_6 H_{14}}{3.5 \ g \ O_2}$$

Given that air-saturated water contains 8 to 10 mg/L (depending on the temperature), we will consider a concentration of 9 mg/L.

For 1 g of hydrocarbon:

$$\frac{3.5 \; g \; O_2 \; required}{\frac{9 \; mg \; O_2}{1 \; L \; H_2 O}} = 390 \; L \; H_2 O$$

To determine how much water is needed to treat 90% of the TPH here, let us first calculate the total mass of TPH to degrade.

$$3,300~m^3~soil~\times~1,440~\frac{kg~soil}{m^3soil} \times 30,000~\frac{mg~TPH}{kg~soil} \times \frac{1~metric~ton}{10^9mg} = 142~.5~metric~tons~of~TPH$$

$$\frac{390 \text{ L water}}{1 \text{ g TPH}} \times 142.5 \text{ tons TPH} \times 0.9 \times \frac{10^6 \text{ g}}{1 \text{ ton}} \times \frac{1 \text{ m}^3}{1,000 L} = 50,038,560 \text{ m}^3 \text{ air saturated water}$$

This is not really feasible in a flow-through slurry system. Hence, the plan to use biopiles with which air is delivered.

		total TPH (metric	phase	removal (% of			
(mg/kg)	(mg)	tons)		initial)	duration (days)	removal rate (day-1)	
30,000	1.43E+11	142.6					
22,100	1.05E+11	105.0	OC1	26.3	60	0.0051	
15,300	7.27E+10	72.7	OC2	22.7	75	0.0049	
15,000	7.13E+10	71.3	OC3	1.0	60	0.0003	
13,500	6.42E+10	64.2	OC4	5.0	90	0.0012	
5,200	2.47E+10	24.7	OC5	27.7	90	0.0106	
							average
							removal
				82.7		0.0044	rate (day-1)
				total removed (% of			
				initial)			

Because the rate of removal is in day-1, we assume a first order process.

K = ln(C/Co)/t

The total removal is 82.7%.

There is removal in the initial phases (OC1 and OC2) likely due to the degradation of the readily bioavailable compound and the mobilization of volatile compounds.

There is also good removal with the surfactant. Very little removal is achieved during OC3 and OC4, presumably due to the fact that the contaminants were not bioavailable. Treatment with a surfactant helped solubilize the contaminants, allowing degradation.

Problem5:

$$\begin{split} 800 & mg/kg_{dry\;soil} = C_{s,0} \\ 40 & mg/kg_{dry\;soil} = C_{s,f} \\ K_D = 0.2 & m^3/kg \\ k = 0.05 & d^{-1} \\ Css = 10 & kg_{dry\;soil}/m^3_{slurry} \\ \rho_S = 2'600 & kg/m^3 \end{split}$$

How long should the soil stay in the reactor to be remediated?

Batch reactor first order kinetics (aqueous concentrations!):

$$t = -\frac{\ln\left(\frac{C_t}{C_0}\right)}{k}$$

 C_0 is the aqueous concentration in the water in equilibrium $C_{aq,eq,0}$ with the solid phase:

$$m_{tot} = m_s + m_{aq} = C_{s,eq,0} M_S + C_{aq,eq,0} V_L$$

$$m_{tot} = m_S + m_{aq} = C_{s,eq,0} M_S + C_{aq,eq,0} V_L$$
This results in: $C_0 = C_{aq,eq,0} = \frac{m_{tot}}{K_D M_S + V_L} = \frac{C_{s,0} M_S}{K_D M_S + V_L} = \frac{C_{s,0}}{K_D + \frac{V_L}{M_S}}$

We need to determine $\frac{V_L}{M_S}$ (no gas phase in a reactor):

$$\frac{V_L}{M_S} = \frac{1}{C_{SS}} - \frac{V_S}{M_S} = \frac{1}{C_{SS}} - \frac{1}{\rho_S} = \frac{1}{10} - \frac{1}{2600} = 0.1 \frac{m^3}{kg}$$

$$C_0 = \frac{800 \frac{mg}{kg}}{0.2 \frac{m^3}{kg} + 0.1 \frac{m^3}{kg}} = 2,665 \frac{mg}{m^3}$$

The final aqueous concentration is calculated in equilibrium with the soil concentration.

$$C_t = C_{aq,eq,f} = \frac{C_{s,eq,f}}{K_D} = 200 \frac{mg}{m^3}$$

We have all the elements to calculate the residence time needed to reach the target concentration:

First order degradation rate

$$t = -\frac{\ln\left(\frac{C_t}{C_0}\right)}{k} = -\frac{\ln\left(\frac{200}{2665}\right)}{0.05} = 52 \ days$$