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Problem 1 (Donsker-Varadhan to Pinsker inequality – 12 pts). In this problem, we further

explore information measures.

Remark: If you refer to class materials, be precise (Theorem or equation numbers, Homework

problem identifiers and so on.) Your overall argument must be complete.

Let Z be an arbitrary random variable and let f(z) be an arbitrary function satisfying

0 ≤ f(z) ≤ b for all values z.

(i) [3 pts] Prove that for any distribution Q, we have (recall 0 ≤ f(z) ≤ b)

log EQ
[
ef(Z)

]
≤ EQ [f(Z)] +

1

8
b2, (1)

where as in class, the notation EQ
[
ef(Z)

]
means that the expectation is taken assuming

that Z is distributed according to Q.

HINT: Observe that irrespective of the distribution of Z, we know that the random

variable f(Z) ∈ [0, b]. Like in class, use this information to bound the moment gener-

ating function of the random variable f(Z).

(ii) [3 pts] Prove that for any distributions P and Q, we have (recall 0 ≤ f(z) ≤ b)

EP [f(Z)]− EQ [f(Z)] ≤ D(P∥Q) +
1

8
b2. (2)

where the KL divergence is computed with respect to the natural logarithm.

(iii) [3 pts] Prove that for arbitary distributions P and Q,

max
f

EP [f(Z)]− EQ[f(Z)] =
b

2
∥P −Q∥1, (3)

where the maximum is over all functions f(z) satisfying 0 ≤ f(z) ≤ b for all values z.

(iv) [3 pts] Using Parts (ii) and (iii), prove the Pinsker inequality (Example 4.1 in the

lecture notes). That is, prove that for arbitary distributions P and Q, we have

∥P −Q∥1 ≤
√

2D(P∥Q), (4)

where the KL divergence is computed with respect to the natural logarithm.

Solution 1. We take up the items in turn:

(i) For the first item, observe that we must have (a.s.)

−EQ [f(Z)] ≤ f(Z)− EQ [f(Z)] ≤ b− EQ [f(Z)] , (5)
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meaning that the random variable f(Z) − EQ [f(Z)] is supported on an interval of

length b. But then, we know from Lemma 2.4 that

EQ

[
eλ(f(Z)−EQ[f(Z)])

]
≤ eλ

2b2/8. (6)

Then, since EQ [f(Z)] is constant, we have:

EQ
[
eλf(Z)

]
≤ eλEQ[f(Z)]eλ

2b2/8. (7)

Plugging in λ = 1 and taking (natural) logarithms on both sides gives the result.

(ii) This is directly Donsker-Varadhan, combined with Part (i):

D(P∥Q) ≥ EP [f(Z)]− log EQ[e
f(Z)] (8)

≥ EP [f(Z)]− EQ[f(Z)]−
1

8
b2. (9)

Recall that here, we are assuming that the KL divergence is computed with respect to

the natural logarithm. (Otherwise, there would be a correction factor.)

(iii) This is implied by Lemma 11.2 in the lecture notes. Simply re-scale the function.

Namely,

max
f :0≤f(z)≤b

EP [f(Z)]− EQ[f(Z)] = b max
f :0≤f(z)≤1

EP [f(Z)]− EQ[f(Z)] (10)

= b

(
∥P −Q∥1

2

)
, (11)

where the second step is Lemma 11.2 from the lecture notes.

(iv) Since Part (ii) holds for any function f(z), it specifically also holds for the maximizing

function in Part (iii), call this function f ∗(z). In this sense, combining Parts (ii) and

(iii), we have

b

2
∥P −Q∥1 = EP [f

∗(Z)]− EQ [f ∗(Z)] ≤ D(P∥Q) +
1

8
b2. (12)

Let us read this as

∥P −Q∥1 ≤
2

b
D(P∥Q) +

b

4
. (13)

This bounds holds for every choice of b > 0. Selecting b =
√
8D(P∥Q) gives the claimed

bound. ... well, that’s if you happen to guess this choice! Rather than guessing, better

to just optimize the bound: simply take derivatives to obtain:

d

db

(
2

b
D(P∥Q) +

b

4

)
= −2D(P∥Q)

b2
+

1

4
. (14)

Setting this to zero gives the claimed b =
√
8D(P∥Q).
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Problem 2 (χ2 Divergence Distance Measure – 10 pts). In class we defined the ℓ1 distance,

the ℓ2 distance, as well as the KL divergence measure. But there are other distance measures

that are important and used in practice.

One of those is the χ2 divergence distance measure. It is defined as

χ2(p, q) =
k∑

i=1

(pi − qi)
2

qi
.

Recall the definition of the min-max loss for a given distance measure L, an alphabet size of

k and assuming we have n iid samples:

rLk,n = min
q

max
p∈∆k

EXn∼p[L(p, q(X
n))].

(i) [2 pt] Show that, alternatively, χ2(p, q) =
∑k

i=1
p2i
qi
− 1.

(ii) [8 pts] Show that for k ≥ 2 and n ≥ 1, rχ
2

k,n ≤ k−1
n+1

. [Note: There is also a corresponding

lower bound that is fairly close to this upper bound showing that this upper bound is

relatively tight, but we will only be concerned with the upper bound.]

HINT: We are looking for an upper bound on the min-max loss. Hence, we are free to

consider any particular estimator. The add+1 estimator is your friend. Also, remember

that
(nt)
t+1

=
(n+1
t+1)
n+1

.

Solution 2.

(i) Since
∑k

i=1 pi =
∑k

i=1 qi = 1, we have:

χ2(p, q) =
k∑

i=1

(pi − qi)
2

qi
= −1 +

k∑
i=1

p2i
qi
.

(ii) As suggested by the hint, we will use the add+1 estimator. Hence we have:

rLk,n = min
q

max
p∈∆k

EXn∼p[L(p, q(X
n))]

≤ max
p∈∆k

EXn∼p

[
χ2(p, q+1(Xn))

]
= max

p∈∆k

EXn∼p

[
−1 +

k∑
i=1

p2i
Ti(Xn)+1

n+k

]

= max
p∈∆k

−1 + (n+ k)
k∑

i=1

p2i EXn∼p

[
1

Ti(Xn) + 1

]
.
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Now note that

p2i EXn∼p

[
1

Ti(Xn) + 1

]
= p2i

n∑
t=0

1

t+ 1

(
n

t

)
pti(1− pi)

n−t

=
pi

n+ 1

n∑
t=0

(
n+ 1

t+ 1

)
pt+1
i (1− pi)

n−t

=
pi

n+ 1

n+1∑
t=1

(
n+ 1

t

)
pti(1− pi)

n+1−t

=
pi(1− (1− pi)

n+1)

n+ 1
≤ pi

n+ 1
,

where the first equality is true since Ti(X
n) is distributed according to a binomial

random variable with parameter pi and hence the probability of Ti(X
n) being t is

equal to
(
n
t

)
pti(1− pi)

n−t.

Therefore,

rLk,n ≤ max
p∈∆k

EXn∼p[χ
2(p, q+1(Xn))] ≤ −1 + (n+ k)

k∑
i=1

pi
n+ 1

=
k − 1

n+ 1
.

The right-hand side is independent of p and hence this expression is also the desired

upper bound.
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Problem 3 (Exponential Families and Conjugate Priors – 9 pts). Let pθ(x) = h(x)e⟨ϕ(x),θ⟩−A(θ)

denote a generic exponential family with sufficient statistics ϕ(x) and parameter θ.

Assume that we receive iid samples from this family, call them {xi}ni=1. From these samples,

we want to infer the unknown parameter θ via a maximum a-posteriori (MAP) procedure.

In order to apply a MAP procedure we need to define a prior distribution on the parameter

θ. Consider the family of prior distributions qµ,λ(θ) = K(µ, λ)e⟨θ,µ⟩−λA(θ), parametrized by

(µ, λ). Note that this is also an exponential family. However, we have written it in a slightly

non-standard form, where K(µ, λ) denotes the normalization constant which is a function of

the parameters (µ, λ).

(i) [3 pts] Write down the posterior distribution pµ,λ(θ | x1, · · · , xn) for a fixed set of

parameters (µ, λ).

(ii) [3 pts] If you have not already done so in part (i), write the posterior as explicitly and

compactly as you can. Justify why we called qµ,λ(θ) a conjugate prior.

(iii) [3 pts] Derive the MAP estimator of the parameter θ given the samples {xi}ni=1 starting

with the posterior derived in (ii). When will the estimate be unique?

Solution 3.

(i)/(ii) We have (where in the following Z denotes a normalization constant, not necessarily

always the same):

pµ,λ(θ | x1, · · · , xn) =
pµ,λ(θ)p(x1, · · · , xn | θ)

p(x1, · · · , xn)

=
1

Z
K(µ, λ)e⟨θ,µ⟩−λA(θ)

n∏
i=1

h(xi)e
⟨ϕ(xi),θ⟩−A(θ)

=
1

Z
e⟨θ,µ+

∑n
i=1 ϕ(xn)⟩−(λ+n)A(θ)

= K(µ+
n∑

i=1

ϕ(xn), λ+ n)e⟨θ,µ+
∑n

i=1 ϕ(xn)⟩−(λ+n)A(θ)

= qµ+∑n
i=1 ϕ(xn),λ+n(θ)

In the first step we used Bayes rule. In the second step we plugged in the various

expressions, keeping in mind that p(x1, · · · , xn) only influences the normalization and

can therefore be omitted. In the third step we consolidated the expression. In the

fourth and firths step we take into account the resulting expression has the same form

as the prior but just with different parameters.

The chosen prior is a conjugate prior since the posterior is again a member of the

exponential family.
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(iii) In order to find the MAP estimate we have to find the θ that maximes pµ,λ(θ |
x1, · · · , xn). Let µ̃ = µ +

∑n
i=1 ϕ(xn) and λ̃ = λ + n. Taking the gradient wrt to

the parameter θ and setting the result to 0 we arrive at

∇θe
⟨θ,µ̃⟩−λ̃A(θ) = e⟨θ,µ̃⟩−λ̃A(θ)(µ̃− λ̃∇θA(θ)) = 0.

The solution is therefore a θ∗ so that ∇θA(θ
∗) = EX∼pθ∗ (x)[ϕ(X)] = µ̃

λ̃
=

µ+
∑n

i=1 ϕ(xn)

λ+n
.

If the family pθ(x) is minimal, there will be a unique such value θ∗.
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Problem 4 (Fano method – 12 pts). In this problem, we will develop a framework to find

lower bounds on the estimation error of the minimax distribution estimator. We will use

Fano’s inequality, which we saw in class. First, recall the minimax distribution estimation

problem:

rLk,n = min
q

sup
p∈∆k

EXn∼pn [L(p, q(X
n))].

Assume that the loss L is symmetric in its arguments, satisfies the triangle inequality, and

that L(x, x) = 0 ∀x.

(i) [3 pts] Let P := {P1, . . . , Pm} be a collection of distributions such that L(Pi, Pj) ≥ δ >

0 for i ̸= j.

Show that

sup
p∈∆k

EXn∼p[L(p, q(X
n))] ≥ δ

2
max

j
PXn∼Pn

j

[
L(Pj, q(X

n)) ≥ δ

2

]
.

HINT: For a non-negative random variable X we have E[X] ≥ ϵ P [X ≥ ϵ].

(ii) [3 pts] Now let V,Xn ∼ PV,Xn be jointly distributed such that V is uniformly distributed

over [1 : m] and P [Xn = xn|V = j] = P n
j (x

n). Define Z := argminj L(q(X
n), Pj).

Show that

P[Z ̸= V ] ≤ max
j
PXn∼Pn

j

[
L(q(Xn), Pj) ≥

δ

2

]
.

(iii) [3 pts] Use Fano’s inequality to show that

max
j
PXn∼Pn

j

[
L(p, q(Xn)) ≥ δ

2

]
≥ 1− I(Xn;V ) + log 2

logm
.

HINT: Recall I(Y ;W ) = H(Y )−H(Y |W ).

(iv) [3 pts] Show that

I(Xn;V ) ≤ 1

m2

∑
i,j∈[1:m]

D(P n
i ∥P n

j ) ≤ nmax
i,j

D(Pi∥Pj),

and thus

rLk,n ≥ δ

2

(
1− nmaxi,j D(Pi∥Pj)− log 2

logm

)
.

HINT: I(W ;Y ) = D(PW |Y ∥PW |PY ), and the KL divergence is a convex function.
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Solution 4. (i) The triangle inequality along with symmetry and L(x, x) = 0 implies the

nonnegativity of the loss function. Using the hint,

E[L(p, q(Xn))] ≥δ

2
P

[
L(p, q(Xn)) ≥ δ

2

]
.

Taking the supremum on both sides of the inequality,

sup
p∈∆k

E[L(p, q(Xn))] ≥ sup
p∈∆k

δ

2
P

[
L(p, q(Xn)) ≥ δ

2

]
≥δ

2
sup
p∈P

P

[
L(p, q(Xn)) ≥ δ

2

]
=

δ

2
max

j
PXn∼Pn

j

[
L(Pj, q(X

n)) ≥ δ

2

]
.

where the second inequality is due to the expression being maximized over a smaller

set.

(ii)

P[Z ̸= V ] =
1

m

∑
j

P[Z ̸= V |V = j]

=
1

m

∑
j

PXn∼Pn
j

[
min

i
L(q(Xn), Pi) ̸= j

]
Now, since mini ̸=j L(Pi, Pj) ≥ δ, the triangle inequality requires minj L(q(X

n), Pj) ̸=
i =⇒ L(q(Xn), Pi) ≥ δ

2
. Consequently,

P[Z ̸= V ] ≤ 1

m

∑
j

PXn∼Pn
j

[
L(q(Xn), Pj) ≥

δ

2

]
≤max

j
PXn∼Pn

j

[
L(q(Xn), Pj) ≥

δ

2

]
.

(iii) Notice that Z is a prediction about V , based onXn. Directly applying Fano’s inequality

from the lecture notes,

logm · P[Z ̸= V ] ≥H(V |Xn)− h2(P[Z ̸= V ])

= logm− I(V ;Xn)− h2(P[Z ̸= V ])

≥ logm− I(V ;Xn)− log 2.

(iv) Using the hint,

I(Xn;V ) = D(PXn|V ∥PXn|PV ).
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The marginal distribution P̄ [xn] := PXn [xn] = 1
m

∑
j P

n
j [x

n], and thus

I(Xn;V ) =EV [D(PV ∥P̄ )] =
1

m

∑
j

D

(
P n
j

∣∣∣∣∣
∣∣∣∣∣ 1m∑

i

P n
i

)

≤ 1

m2

∑
i,j

D(P n
j ∥P n

i ) ≤ nmax
i,j

D(Pj∥Pi)

where the first inequality follows from the convexity of the KL divergence.
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Problem 5 (Dual Basis – 9 pts). Consider a Hilbert space H. Let G ⊆ H be a (Hilbert)

subspace of H, exactly like in class. We are given a basis {gn}Nn=1 that spans G but is not

orthonormal.

(i) [3 pts] Show that there exists a so-called dual basis {g̃n}Nn=1 that also spans G and has

the property that

⟨gn, g̃m⟩ =
{

1, for m = n,

0, for m ̸= n.
(15)

HINT: Start by considering g̃1 = α(g1 −
∑N

n=2 βngn). Argue that we can select α and

βn appropriately. No need to give explicit formulas for these coefficients. The more

”rigorous” your argument, the more points you will get.

(ii) [3 pts] Show that for any x ∈ H, the minimum of ∥y − x∥ over all y ∈ G is attained

by the selection

y∗ =
N∑

n=1

⟨x, g̃n⟩gn. (16)

HINT: As in class, here ∥ · ∥ denotes the Hilbert space norm induced by the inner

product.

(iii) [3 pts] Show that for any x ∈ H, we have

N∑
n=1

⟨x, g̃n⟩gn =
N∑

m=1

⟨x,gm⟩g̃m. (17)

Solution 5. We take up the items in turn:

(i) Show that there exists a so-called dual basis {g̃n}Nn=1 that also spans G and has the

property that

⟨gn, g̃m⟩ =
{

1, for m = n,

0, for m ̸= n.
(18)

This can be proved in a number of ways. Following the hint, we may think about

constructions. What comes to mind here is, of course, the Gram-Schmidt procedure.

In this spirit, we first construct g̃1. It needs to be orthogonal to g2,g3, . . . ,gN . The

Gram-Schmidt idea is to take g1 and subtract a linear combination of the vectors

{gn}Nn=2. This can be written as

g̃′
1 = g1 −

N∑
n=2

βngn. (19)
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First, let us observe that g̃′
1 cannot be the all-zero vector. This follows by contradic-

tion: If it were, it would imply that g1 lies in the span of g2,g3, . . . ,gN contradicting

the assumption that {gn}Nn=2. is a basis. We will now argue that we can choose the

coefficients βn to satisfy the required orthogonality condition. To see that this is indeed

possible, write out, for m = 2, 3, . . . , N,

⟨g̃′
1,gm⟩ =

〈
g1 −

N∑
n=2

βngn,gm

〉
(20)

= ⟨g1,gm⟩ −

〈
N∑

n=2

βngn,gm

〉
(21)

= ⟨g1,gm⟩ −
N∑

n=2

βn ⟨gn,gm⟩ , (22)

which is thus a system of N − 1 linear equations in the N − 1 variables β2, β3, . . . , βN .

The coefficient matrix of this system of linear equations is precisely the Gram matrix of

the vectors g2,g3, . . . ,gN . Since these vectors are a basis, we know that they are linearly

independent. This directly implies that the Gram matrix is positive definite,1 meaning

that there is indeed a unique solution for the variables β2, β3, . . . , βN . This completes

the proof. Finally, just like in the Gram-Schmidt procedure, we normalize accordingly.

That is, we set g̃1 = αg̃′
1, where we select the scalar α such that ⟨g̃1,g1⟩ = 1. It is clear

that this is possible.

We can construct the remaining g̃m in exactly the same fashion.

(ii) In class, we have seen that in complete generality, in a Hilbert space, y minimizes

∥y−x∥ if and only if the error is orthogonal to every element in the subspace G. Since

{g̃n}n∈Z is a basis for G, this is the same as requiring that

⟨y − x, g̃m⟩ = 0 (23)

1Just for completeness: Call the Gram matrix G, with entries Gnm = ⟨gn,gm⟩ . Now consider xHGx for

any x ∈ CN−1, except x = 0. If we can show that xHGx > 0, then this proves that G is positive definite.

To see that this is indeed true, write xHGx =
∑N−1

n=1

∑N−1
m=1 xnx

∗
mGnm =

∑N−1
n=1

∑N−1
m=1 xnx

∗
m ⟨gn,gm⟩ =∑N−1

n=1

∑N−1
m=1 ⟨xngn, xmgm⟩ , by the bi-linearity of the inner product. Using the bi-linearity again, we can

write this as xHGx =
〈∑N−1

n=1 xngn,
∑N−1

m=1 xmgm

〉
= ∥

∑N−1
n=1 xngn∥2. But since g2,g3, . . . ,gN are a basis,

this is zero if and only if all of the xn are zero, which thus completes the proof.
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for all m. Let us check if this indeed holds for the claimed formula. Namely,〈∑
n

⟨x, g̃n⟩gn − x, g̃m

〉
=

〈∑
n

⟨x, g̃n⟩gn, g̃m

〉
− ⟨x, g̃m⟩ (24)

=
∑
n

⟨x, g̃n⟩⟨gn, g̃m⟩ − ⟨x, g̃m⟩ (25)

=
∑
n

⟨x, g̃n⟩δ(n−m)︸ ︷︷ ︸
=⟨x,g̃m⟩

−⟨x, g̃m⟩ (26)

where we use the Kronecker delta function δ(n). This completes the proof.

(iii) This can be proved in a number of ways. For example, by the answer to Part (ii), it

should be clear that both expressions are minimizers of ∥y − x∥. But we have seen in

class that in a Hilbert space, the minimizer is unique. Hence, the two expressions must

be equal.
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