ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Foundations of Data Science Assignment date: Friday, January 29, 2025, 9:15
Fall 2024 Due date: Friday, January 29, 2025, 12:15

Final Exam — INJ 218

This exam is open book. No electronic devices of any kind are allowed. There are 5 problems.
Choose the ones you find easiest and collect as many points as possible. We do not necessarily
expect you to finish all of them. Good luck!

Name:
Problem 1 / 12
Problem 2 / 10
Problem 3 /9
Problem 4 / 12
Problem 5 /9

Total ‘ /52 ‘




Problem 1 (Donsker-Varadhan to Pinsker inequality — 12 pts). In this problem, we further
explore information measures.

Remark: If you refer to class materials, be precise (Theorem or equation numbers, Homework
problem identifiers and so on.) Your overall argument must be complete.

Let Z be an arbitrary random variable and let f(z) be an arbitrary function satisfying
0 < f(2) <0 for all values z.

(i) [3 pts] Prove that for any distribution @, we have (recall 0 < f(z) < b)

log Eq [/ ] < Eo [f(2)] + ébz, (1)

where as in class, the notation Eg [ef z )} means that the expectation is taken assuming
that Z is distributed according to Q.

HINT: Observe that irrespective of the distribution of Z, we know that the random
variable f(Z) € [0, b]. Like in class, use this information to bound the moment gener-
ating function of the random variable f(Z).

(ii) [3 pts] Prove that for any distributions P and @, we have (recall 0 < f(z) < b)

1
Ep[f(Z)] = Eq [f(2)] < D(P|Q) + b (2)
where the KL divergence is computed with respect to the natural logarithm.

(iii) [3 pts] Prove that for arbitary distributions P and @,

maxEp[/(2)] ~ Eqlf(2)] = 5P ~ @l ®)

where the maximum is over all functions f(z) satisfying 0 < f(z) < b for all values z.

(iv) [3 pts] Using Parts (ii) and (iii), prove the Pinsker inequality (Example 4.1 in the
lecture notes). That is, prove that for arbitary distributions P and @, we have

1P —Ql: < v2D(P|Q), (4)

where the KL divergence is computed with respect to the natural logarithm.

Solution 1. We take up the items in turn:

(i) For the first item, observe that we must have (a.s.)

—E [f(2)] < f(2) —Eo[f(2)] <0 —Eq [f(2)], (5)



(iii)

meaning that the random variable f(Z) — Eqg[f(Z)] is supported on an interval of
length b. But then, we know from Lemma 2.4 that

Eq [ex(ﬂm—%[ﬂzn)] < NP8, (6)
Then, since Eq [f(Z)] is constant, we have:

Eo [MD)] < ALl (1)
Plugging in A = 1 and taking (natural) logarithms on both sides gives the result.

This is directly Donsker-Varadhan, combined with Part (i):
D(P|Q) = Ep[f(Z)] — logEq[e’?] (8)

> Ep[f(2)] — Eql/(2)] - ¥ )

Recall that here, we are assuming that the KL divergence is computed with respect to
the natural logarithm. (Otherwise, there would be a correction factor.)

This is implied by Lemma 11.2 in the lecture notes. Simply re-scale the function.
Namely,

rotex Eplf(2)] —Bolf(2)] =b max  Ep[f(Z)] - Eqlf(Z)] (10)

P—
(I, "
2
where the second step is Lemma 11.2 from the lecture notes.

Since Part (ii) holds for any function f(z), it specifically also holds for the maximizing
function in Part (iii), call this function f*(z). In this sense, combining Parts (ii) and
(iii), we have

SIP = Qll =Ep[f*(2)] ~ Eq [£*(2)] < D(PIQ) + b (12)
Let us read this as
1P~ @l < 2D(PIQ) + 5 (13)

This bounds holds for every choice of b > 0. Selecting b = /8D(P||Q) gives the claimed
bound. ... well, that’s if you happen to guess this choice! Rather than guessing, better
to just optimize the bound: simply take derivatives to obtain:

d 2D(P[Q)

2 b 1
= (ED(PHQ) - Z) =——p 7 (14)

Setting this to zero gives the claimed b = /8D (P||Q).



Problem 2 (x? Divergence Distance Measure — 10 pts). In class we defined the ¢; distance,
the /5 distance, as well as the KLi divergence measure. But there are other distance measures
that are important and used in practice.

One of those is the x? divergence distance measure. It is defined as

: i = i)
Z 7

=1

Recall the definition of the min-max loss for a given distance measure L, an alphabet size of
k and assuming we have n iid samples:

ry, = minmax Exn,[L(p, ¢(X™))].
’ q peEAL

(i) [2 pt] Show that, alternatively, x2(p, q) = SF P,

=1 ¢;

(ii) [8 pts| Show that for £ > 2 and n > 1, Tan < k 1. [Note: There is also a corresponding
lower bound that is fairly close to this upper bound showing that this upper bound is
relatively tight, but we will only be concerned with the upper bound.]

HINT: We are looking for an upper bound on the min-max loss. Hence, we are free to
consider any particular estimator. The add+1 estimator is your friend. Also, remember

[
that ;4 = 55

Solution 2.

(i) Since Zle pi = Zf:l q; = 1, we have:

ﬁé =—1+§:E.

i=1 qi zlqZ

(ii) As suggested by the hint, we will use the add+1 estimator. Hence we have:

= min max Exn,[L(p, ¢(X"))]

q pEAL

< ) 2/ 4l/yn
Ir)ré%X[EX ~p [X (g (X ))}

L
Tlc,n

=maxExn., |1+ E T Xn X1
=1

PELK n+k |
b I 1
= ma 1+ n—i—k Exno, | ————
pelds )2 PiExney | Ti(X") +1

=1



Now note that

1 "1 (n
Exny | ————— | =p* Y —— L1 —p)t

Pi Z n+1\ ;4 n—t
7’L+1t0(t+1)pZ ( pi)

D n+1 n+1
N o L1 — ;)i
(M

_p(l=(=p)"") _ pi
n+1 “n+1

where the first equality is true since T;(X™) is distributed according to a binomial
random variable with parameter p; and hence the probability of T;(X™) being t is

equal to (7)pi(1 — p;)" .

Therefore,

k

; k—1
L < maxExno, 2 (p, g™ (X™)] < —1 k Pi_ _ .
rf < maxExn (0,7 (X)) < 1+ (n + gnﬂ )

The right-hand side is independent of p and hence this expression is also the desired
upper bound.



Problem 3 (Exponential Families and Conjugate Priors — 9 pts). Let py(x) = h(x)el¢@):0)-A(0)
denote a generic exponential family with sufficient statistics ¢(x) and parameter 6.

Assume that we receive iid samples from this family, call them {z;}? ;. From these samples,
we want to infer the unknown parameter 6 via a maximum a-posteriori (MAP) procedure.

In order to apply a MAP procedure we need to define a prior distribution on the parameter
0. Consider the family of prior distributions g, x(0) = K (u, \)e'®* =4O parametrized by
(1, ). Note that this is also an exponential family. However, we have written it in a slightly
non-standard form, where K (i, A) denotes the normalization constant which is a function of
the parameters (u, \).

(i) [3 pts] Write down the posterior distribution p, (6 | 1, - ,x,) for a fixed set of
parameters (f, A).

(ii) [3 pts| If you have not already done so in part (i), write the posterior as explicitly and
compactly as you can. Justify why we called g, A(#) a conjugate prior.

(iii) [3 pts] Derive the MAP estimator of the parameter 6 given the samples {z;}" | starting
with the posterior derived in (ii). When will the estimate be unique?

Solution 3.
(i)/(ii) We have (where in the following Z denotes a normalization constant, not necessarily
always the same):

_ pu,)\(e)p(xla Ty | 0)
p(xlv"' 71771)

pﬂ)\(e | Ly, 73:”)
1 n
_ 1 (0.1)-2A(0) | (0(@:).0)—A(B)
= ZK(,u, e zI:II h(x;)e
_ L s, o)) -(rm)a0)

= K(u+ Z B(20), A+ n)ellrtEing ¢len)=(Atn)A@)
=1

= Qu+s, d(en) 20 (0)

In the first step we used Bayes rule. In the second step we plugged in the various
expressions, keeping in mind that p(xy,--- ,x,) only influences the normalization and
can therefore be omitted. In the third step we consolidated the expression. In the
fourth and firths step we take into account the resulting expression has the same form
as the prior but just with different parameters.

The chosen prior is a conjugate prior since the posterior is again a member of the
exponential family.



(iii) In order to find the MAP estimate we have to find the # that maximes p, (0 |
Ty, ,T,). Let i = p+ > ¢(x,) and A = A + n. Taking the gradient wrt to
the parameter ¢ and setting the result to 0 we arrive at

Ve Gi—2A®) e(g,mfo(e)(ﬁ — AVoA()) = 0.

_ Y Glen)

The solution is therefore a 0* so that VyA(6*) = Ex.p,. (@) [¢(X)] = & = =

If the family pg(x) is minimal, there will be a unique such value 6*.

>



Problem 4 (Fano method — 12 pts). In this problem, we will develop a framework to find
lower bounds on the estimation error of the minimax distribution estimator. We will use
Fano’s inequality, which we saw in class. First, recall the minimax distribution estimation
problem:

r,ﬁn = min sup Exnpn[L(p, ¢(X™))].
9 pelAy

Assume that the loss L is symmetric in its arguments, satisfies the triangle inequality, and
that L(z,z) =0 V.

(i) [3 pts|] Let P :={Pi,..., P} be a collection of distributions such that L(P;, P;) > § >
0 for i # j.
Show that

)

sup Exnp[L(p,q(X™))] > §maXI]J’Xanjn L(P;,q(X™)) >
pEAL J

| S

HINT: For a non-negative random variable X we have E[X] > e P [X > ¢].

(i) [3 pts] Now let V, X™ ~ Py xn» be jointly distributed such that V' is uniformly distributed
over [1 : m] and P[X" =2"|V =j| = PJ(a"). Define Z := argmin; L(q(X"), P;).
Show that

N S

PLZ £ V] < maxPenry | L(X"). P) 2

(iii) [3 pts] Use Fano’s inequality to show that

I(X™ V) +log2
logm '

)
max Pyn. pr [L(p,Q(Xn)) > 5} > 1-
J

HINT: Recall I(Y; W) = H(Y) — H(Y[W).
(iv) [3 pts] Show that

1
m2

IXMV) < —5 ) DIPIP) < nmax DB ),

3,j€[1:m]

m

and thus

J (1 _ nmax;; D(B||F;) — log2) .

L
Tom = =
kn =9 logm

HINT: I(W;Y) = D(Pwy||/Pw|Py), and the KL divergence is a convex function.



Solution 4. (i) The triangle inequality along with symmetry and L(x,z) = 0 implies the
nonnegativity of the loss function. Using the hint,

E[L(p, q(X™))] ng [L(PJ](X”)) >

|
1

Taking the supremum on both sides of the inequality,

sup E[L(p,q(X™))] > sup glp [L(p,q(X")) = g}

PEAL PEAL

ngupﬂ]> [L(p,q(X")) > g} = gmaXIPXann [L(P q(X™) >
j J

peEP

where the second inequality is due to the expression being maximized over a smaller
set.

P[Z £ V] = ZIF’Z#VW—J]
:E Zﬂj’xnijn [miin L(g(X"), P) # ]}

Now, since min;; L(F;, P;) > 6, the triangle inequality requires min; L(¢(X™), P;) #
i = L(q(X"),P,) > 2. Consequently,

P[Z #V] < prnwpn{ g(X™), P;) > g}

S max H:DXHNP;L |:L< :|
j :

(iii) Notice that Z is a prediction about V', based on X™. Directly applying Fano’s inequality
from the lecture notes,

logm -P[Z # V] >H(V|X") — ho(P[Z # V])
=logm — I(V; X") = ha(P[Z # V])
>logm — I(V; X") — log 2.
(iv) Using the hint,

I(X™; V) = D(Pxnv|| Pxn|Py).



The marginal distribution P[z"] := Pxn[z"] = = >_; PPx"], and thus

1 Zpin)

<— 5> D(PP|P) < nmaxD(P |P)

i,

I(X™ V) =Ey[D(Py||P)] ZD (P"

where the first inequality follows from the convexity of the KL divergence.

10



Problem 5 (Dual Basis — 9 pts). Consider a Hilbert space H. Let G C H be a (Hilbert)
subspace of H, exactly like in class. We are given a basis {g,}_, that spans G but is not
orthonormal.

(i) [3 pts] Show that there exists a so-called dual basis {g,}?_, that also spans G and has
the property that

1, form=mn,

0, form #n. (15)

(0o = |

HINT: Start by considering g; = a(g; — 2522 Bngn). Argue that we can select v and
B, appropriately. No need to give explicit formulas for these coefficients. The more
"rigorous” your argument, the more points you will get.

(ii) [3 pts] Show that for any x € H, the minimum of ||y — x|| over all y € G is attained
by the selection

y = Z<Xa En)En- (16)

HINT: As in class, here || - || denotes the Hilbert space norm induced by the inner
product.

(iii) [3 pts] Show that for any x € H, we have

Z<X7 8n)8n = Z<X7 gm)Em- (17)

Solution 5. We take up the items in turn:

(i) Show that there exists a so-called dual basis {g,})_, that also spans G and has the
property that

1, for m =n,

(& 8m) = { 0, for m # n. (18)

This can be proved in a number of ways. Following the hint, we may think about
constructions. What comes to mind here is, of course, the Gram-Schmidt procedure.
In this spirit, we first construct g;. It needs to be orthogonal to gs,g3,...,gn. The
Gram-Schmidt idea is to take g; and subtract a linear combination of the vectors
{g,}_,. This can be written as

N
gl =81—Y B8 (19)

n=2

11



First, let us observe that g] cannot be the all-zero vector. This follows by contradic-
tion: If it were, it would imply that g; lies in the span of g, g3, ..., gy contradicting
the assumption that {g,}Y_,. is a basis. We will now argue that we can choose the
coefficients 3, to satisfy the required orthogonality condition. To see that this is indeed

possible, write out, for m =2,3,..., N,
N
<g117 gm> = <g1 - Z ﬂngnv gm> (20)
n=2
(g1, 8m) <Z Bn&n, gm> (21)
gla gm Z Bn gm gm 5 (22)
which is thus a system of N — 1 linear equations in the N — 1 variables (5, 33, ..., On.

The coefficient matrix of this system of linear equations is precisely the Gram matrix of
the vectors go, g3, . . ., gn. Since these vectors are a basis, we know that they are linearly
independent. This directly implies that the Gram matrix is positive definite,! meaning
that there is indeed a unique solution for the variables (35, 55, ..., Sy. This completes
the proof. Finally, just like in the Gram-Schmidt procedure, we normalize accordingly.
That is, we set g1 = ag], where we select the scalar o such that (g;,g1) = 1. It is clear
that this is possible.

We can construct the remaining g, in exactly the same fashion.

(ii) In class, we have seen that in complete generality, in a Hilbert space, y minimizes
lly — x|| if and only if the error is orthogonal to every element in the subspace G. Since
{8n}nez is a basis for G, this is the same as requiring that

(y =x,8m) =0 (23)

1 Just for completeness: Call the Gram matrix G, with entries G, = (g, &m) . Now consider x” Gx for
any x € CV~1 except x = 0. If we can show that xHGx > 0 then this proves that G i 1s positive definite.
To see that this is indeed true, write x7Gx = S0 SN0 o G = S0 SN T a2, (80, 8m) =

27121:—11 Zg;} (X1n8ns Tm&m) , by the bi-linearity of the inner product. Using the b1 hnearlty again, we can

. . N-1 N-1 N-1 . .
write this as x7Gx = <Zn:1 Tn8ns Y 1 xmgm> =322, zngnl|/?. But since g2, g3,...,gn are a basis,

this is zero if and only if all of the x,, are zero, which thus completes the proof.

12



for all m. Let us check if this indeed holds for the claimed formula. Namely,

<Z<X7gn>gn — X, gm> = Z<X, gn>gmgm> — <X7gm>
= Z<Xa gn><gm gm) - <Xa gm>

n

S, §)3(n — m) —(x, &)

J/

-~

:<X7gm>

where we use the Kronecker delta function §(n). This completes the proof.

(iii) This can be proved in a number of ways. For example, by the answer to Part (ii), it
should be clear that both expressions are minimizers of ||y — x||. But we have seen in

class that in a Hilbert space, the minimizer is unique. Hence, the two expressions must

be equal.
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