
Spring 2024: Final Project
COM-308: Quantum Computing

Notations
We denote |i⟩ the state in the computational basis corresponding to the binary decomposition of i. For
example, with 4 qubits, |5⟩ = |0101⟩.

The HHL Algorithm
The HHL (Harrow-Hassidim-Lloyd) algorithm is a quantum algorithm designed to solve systems of linear
equations. Given a matrix A ∈ C2n×2n and a vector b ∈ C2n , we want to find a vector x ∈ C2n that verifies

Ax = b. (1)

The HHL algorithm is exponentially faster than classical methods when the matrix A is sparse. If s is the
number of non-zero elements per row in A, then the quantum circuit can be constructed with O(ns2) gates
whereas the best classical algorithm runs in O(2ns).

To solve the linear system Ax = b with a quantum circuit, we need to represent b and x by quantum states;
thus, we need to scale them to unit length ∥b∥ = ∥x∥ = 1. Then b can be represented by a state |b⟩ using n
qubit such that |b⟩ =

∑2n−1
i=0 bi |i⟩. Here, the bi are the components of b. The vector solution x can be then

represented by the state |x⟩ that verifies

|x⟩ = cA−1 |b⟩ , c−1 = ∥A−1 |b⟩ ∥ (2)

where c ensures that the state is normalized.

The HHL algorithm uses quantum phase estimation to encode the solution x into a quantum state. To do
so, the algorithm requires that the matrix A be Hermitian.

Question Theory 1: Show that if A is not Hermitian, we can still find a solution to the system by running
the HHL algorithm on the larger system:

Ã =

(
0 A
A† 0

)
, b̃ =

(
b
0

)
. (3)

Solution. First, note that Ã is Hermitian. Also, observe that Ã−1 =

(
0 (A†)−1

A−1 0

)
. Then, the solution

of the larger system is given by

x̃ =

[
0 A
A† 0

]−1 [
b
0

]
=

[
0 (A†)−1

A−1 0

] [
b
0

]
=

[
0

A−1b

]
=

[
0
x

]
.

Hence, entries from 2n + 1 to 2n+1 in x̃ gives x.

So, from now on, we will assume that A is a Hermitian matrix, i.e. A = A†. Thus, by the spectral theorem
(see Homework 1 Ex 3), there exists a set of orthogonal states (|ui⟩)i=0,...,2n−1 such that A can be written
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A =

2n−1∑
i=0

λi |ui⟩⟨ui| (4)

where the λi ∈ R are the eigenvalues of A. The (|ui⟩)i=0,...,2n−1 form an eigenbasis of A. The state |b⟩ can
also be written in the (|ui⟩)i=0,...,2n−1 basis and we denote

|b⟩ =
2n−1∑
i=0

βi |ui⟩ . (5)

Question Theory 2: Check that |x⟩ = c
∑2n−1

i=0
βi

λi
|ui⟩ is solution to the system.

Solution. Note that we have A−1 =
∑2n−1

i=0
1
λi

|ui⟩⟨ui| (this can be verified using AA−1 = I). Hence,

|x⟩ = cA−1 |b⟩ = c

2n−1∑
i=0

1

λi
|ui⟩⟨ui|

2n−1∑
j=0

βj |uj⟩ ,

= c

2n−1∑
i,j=0

1

λi
βj ⟨ui|uj⟩ |ui⟩ ,

= c

2n−1∑
i,j=0

1

λi
βjδij |ui⟩ ,

= c

2n−1∑
i=0

βj
λi

|ui⟩ .
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The circuit
The HHL circuit is represented in Figure 1. The circuit uses three registers:

• The top register is 1 ancilla qubit initialized to |0⟩.

• The middle register is a memory register that stores the eigenvalues λi of A. More precisely, we will
store the binary representation of λi. The number of qubits m needed for this register will therefore
depend on λi. This register is initialized to |0⟩⊗m.

• The bottom register uses n qubits and is initialized with the state |b⟩.

QPE inverse QPE

m

n

|0⟩ R

|0⟩⊗m H⊗m QFT † QFT H⊗m |0⟩m

|b⟩ U U† |x⟩n

|ϕ1⟩ |ϕ2⟩ |ϕ3⟩

Figure 1: Quantum Circuit for HHL Algorithm

The circuit is composed of 4 steps, a quantum phase estimation (QPE), a controlled rotation, an inverse
quantum phase estimation and a measurement. Let us detail the gates appearing in each part:

Quantum phase estimation: This part of the circuit is detailed in Figure 2. The circuit starts with a
Hadamard gate on each qubit of the memory register. The unitary U is

U = ei2π
A
2m . (6)

Then we apply an inverse quantum Fourier transform on the memory register.

QFT † |k⟩ = 1√
2m

2m−1∑
j=0

e−i2π kj
2m |j⟩ . (7)

Controlled rotation: The gate R realizes the transformation

R(|0⟩ ⊗ |λ⟩) =

(√
1− 1

λ2
|0⟩+ 1

λ
|1⟩

)
⊗ |λ⟩ . (8)

Inverse QPE: We apply the inverse gates of the QPE in reverse order to set back the memory register
to |0⟩⊗m. The memory register is no longer entangled with the output register.

Measurement: The algorithm outputs |x⟩ if the ancilla qubit is measured in state |1⟩.
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n

. . .

. . .

. . .

. . .

|0⟩1 H

QFT †|0⟩2 H

...

|0⟩m H

|b⟩ U U2 U2m−1

Figure 2: Detailed QPE

Analysis
We assume that the eigenvalues of A are positive integers, i.e. λi ∈ N∗ and maxi(λi) < 2m. The circuit
starts with a quantum phase estimation that stores the eigenvalues in the memory register.

Question Theory 3: Show that the state |ϕ1⟩ defined in Figure 1 is

|ϕ1⟩ = |0⟩ ⊗

(∑
i

βi |λi⟩ ⊗ |ui⟩

)
. (9)

Hint: Use the lecture notes on QPE. You can start by answering these questions:

- What are the eigenvalues and eigenvectors of U ?

- What happens if |b⟩ = |ui⟩ ?

Solution. Since the ancilla qubit is not involved in the Quantum Phase Estimation, we consider only the
m+ n bit that are inputs the QPE circuit. Let CU denote the controlled U gate. Then, QPE = (QFT † ⊗
I)CU(H⊗m ⊗ I). We have

|ϕ1⟩ = I ⊗QPE |0⟩ ⊗ (|0⟩⊗m ⊗ |b⟩),

= |0⟩ ⊗QPE |0⟩⊗m ⊗
2n−1∑
j=0

βj |uj⟩ ,

= |0⟩ ⊗
2n−1∑
j=0

βjQPE |0⟩⊗m ⊗ |uj⟩ . (10)

For an integer 0 ≤ x < 2m, let (xm−1, xm−2, · · · , x0) be its binary expansion. Then, we can compute
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QPE |0⟩⊗m ⊗ |uj⟩ as follows:

QPE |0⟩⊗m ⊗ |uj⟩ = (QFT † ⊗ I)CU(H⊗m ⊗ I) |0⟩⊗m ⊗ |uj⟩ ,
= (QFT † ⊗ I)CU(H |0⟩)⊗m ⊗ |uj⟩ ,

= (QFT † ⊗ I)
1

2m/2

2m−1∑
x=0

CU |x⟩ ⊗ |uj⟩ ,

= (QFT † ⊗ I)
1

2m/2

2m−1∑
x=0

|x⟩ ⊗ U
∑m−1

i=0 xi2
i

|uj⟩ ,

= (QFT † ⊗ I)
1

2m/2

2m−1∑
x=0

|x⟩ ⊗ Ux |uj⟩ ,

= (QFT † ⊗ I)
1

2m/2

2m−1∑
x=0

|x⟩ ⊗ ei2π
λj
2m x |uj⟩ ,

= (QFT † ⊗ I)

(
1

2m/2

2m−1∑
x=0

ei2π
λj
2m x |x⟩

)
⊗ |uj⟩ ,

= (QFT † ⊗ I)(QFT |λj⟩)⊗ |uj⟩ ,
= |λj⟩ ⊗ |uj⟩ .

Hence, substituting in (10), we get

|ϕ1⟩ = |0⟩ ⊗

(∑
i

βi |λi⟩ ⊗ |ui⟩

)
.

Then we apply a controlled rotation R to create the 1
λ factor.

Question Theory 4: Compute |ϕ2⟩.

Solution. The state |ϕ2⟩ is given by (R⊗ I) |ϕ1⟩, where R is the controlled rotation acting on the first m+1
qubit. Thus,

|ϕ2⟩ = (R⊗ I) |ϕ1⟩ ,

=

2n−1∑
j=0

βj(R⊗ I) |0⟩ ⊗ |λj⟩ ⊗ |uj⟩ ,

=

2n−1∑
j=0

βj{R(|0⟩ ⊗ |λj⟩)} ⊗ |uj⟩ ,

=

2n−1∑
j=0

βj

(√
1− 1

λ2j
|0⟩+ 1

λj
|1⟩

)
⊗ |λj⟩ ⊗ |uj⟩ .

We want to disentangle the memory register from the output state. Thus, we apply the inverse QPE.
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Question Theory 5: Show that the state |ϕ3⟩ defined in Figure 1 is

|ϕ3⟩ =
∑
i

βi

(√
1− 1

λ2i
|0⟩+ 1

λi
|1⟩

)
⊗ |0⟩⊗m ⊗ |ui⟩ . (11)

Hint: Start with |b⟩ = |ui⟩ and use the fact that gates are unitary.

Solution. In the solution to Question 3, we showed that QPE |0⟩⊗m ⊗ |uj⟩ = |λj⟩ ⊗ |uj⟩. Inverting, this
gives QPE† |λj⟩ ⊗ |uj⟩ = |0⟩⊗m ⊗ |uj⟩. We can use this to simplify the computation of |ϕ3⟩. We have

|ϕ3⟩ = (I ⊗QPE†) |ϕ2⟩ ,

=

2n−1∑
j=0

βj

(√
1− 1

λ2j
|0⟩+ 1

λj
|1⟩

)
⊗ (QPE† |λj⟩ ⊗ |uj⟩),

=

2n−1∑
j=0

βj

(√
1− 1

λ2j
|0⟩+ 1

λj
|1⟩

)
⊗ |0⟩⊗m ⊗ |uj⟩ ,

= |0⟩ ⊗ |0⟩⊗m ⊗
2n−1∑
j=0

βj

√
1− 1

λ2j
|uj⟩+ |1⟩ ⊗ |0⟩⊗m ⊗

2n−1∑
j=0

βj
λj

|uj⟩ .

Question Theory 6: Show that the output of the circuit is a solution of the linear system if the result
of the measurement is "1". What is the probability of obtaining this result? Use maxi(λi) < 2m to lower
bound this result.

Solution. When we measure 1, the output state is proportional to

(|1⟩ ⟨1| ⊗ I) |ϕ3⟩ = |1⟩ ⊗ |0⟩⊗m ⊗
2n−1∑
j=0

βj
λj

|uj⟩

Normalizing the state yields question 2 result. Hence, |x⟩n is the solution to the linear system. The
probability of measuring 1 is

|(|1⟩ ⟨1| ⊗ I) |ϕ3⟩ |2 =

2n−1∑
j=0

∣∣∣∣βjλj
∣∣∣∣2 ,

≥ 1

22m

2n−1∑
j=0

|βj |2,

=
1

22m
.

Question Implementation 1: Implement the HHL circuit on a simulator. Consider only the case where
the eigenvalues of A are powers of 2. More detailed instructions are given in the notebook.

Measuring the solution
We want to measure |x⟩ to learn its value. We are used to measuring states with projectors. The probability
of a state |ϕ⟩ to be in state |ψ⟩ is

P (|ψ⟩) = ⟨ϕ| (|ψ⟩⟨ψ|) |ϕ⟩ = |⟨ϕ |ψ⟩ |2. (12)
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Question Implementation 2: On a simulator and a real device, run the HHL circuit to measure |x⟩, the
solution of the system

A =
1

2

(
3 1
1 3

)
and |b⟩ = 1√

5
(2 |0⟩ − |1⟩). (13)

Compare it to the expected solution A−1b
∥A−1b∥ . What is missing to fully reconstruct the solution?

Limitations
Although the HHL algorithm offers exponential speedup over classical methods, it has several limitations:

• It requires that the matrix A be sparse to reach the announced complexity. In our implementation, we
do not pay attention to this requirement.

• We need to have some a priori knowledge of the eigenvalues λi to have an exact and efficient algorithm.

• The algorithm only gives a solution with some probability of error.

• The preparation of the quantum state for |b⟩ is often difficult and requires additional resources.

• We do not have direct access to the result. We still need to measure |x⟩ to learn the solution.

• On a real quantum noisy device, we will only have access to an approximate solution.
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Bonus - Another measurement
If we measure our state |x⟩ only in the computational basis, which means that we choose the set of projectors
|i⟩⟨i|, we will only obtain the norm of each amplitude in the computational basis. If the amplitude is complex,
we will not be able to reconstruct the full state |x⟩. Thus, we need another kind of measurement.

An observable O is a Hermitian matrix that represents a physical property we want to measure in our system.
It can be the position, momentum, spin ... We are interested to know the average value of that property. As
a Hermitian matrix, O can be decomposed into its eigenbasis, O =

∑
k µk |vk⟩⟨vk|. The expected value of O

observed in the state |ϕ⟩ is then ⟨O⟩ = ⟨ϕ|O |ϕ⟩ =
∑

k µk ⟨ϕ|
(
|vk⟩⟨vk|

)
|ϕ⟩ =

∑
k µkP (|vk⟩).

Remark that if we choose O to be a projector |ψ⟩⟨ψ|, then O has only one non-zero eigenvalue which is 1
associated with the eigenvector |ψ⟩. Therefore, the expected value of O is P (|ψ⟩).

We focus on the case where A is a 2 × 2 matrix and b is a vector of size 2. We denote by ρ the matrix
ρ = |x⟩⟨x|. The set of operators P = 1√

2
{I,X, Y, Z} is a basis of the space of the 2× 2 matrices. Thus, we

can decompose ρ in this basis:

ρ =
cII + cXX + cY Y + cZZ√

2
(14)

Question Theory 7: Show that cσ = Tr(ρσ) for all σ ∈ P .

Hint: Show that for all σiσj ∈ P , Tr(σiσj) = 0 if j ̸= i and 1 if i = j.

Solution. Pauli matrices are given by X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. It is direct to verify

that, for any σi, σj ∈ P , Tr(σiσj) = 1 if i = j and 0 otherwise since their eigenvalues are ±1. Then,

Tr(ρσ̃) = Tr

(∑
σ∈P

cσσσ̃

)
=
∑
σ∈P

cσTr(σσ̃) =
∑
σ∈P

cσTr(σσ̃) = cσ̃.

Pauli matrices are Hermitian and can be interpreted as observables. Therefore, by measuring each operator
σ ∈ P , we can have access to their expected value ⟨σ⟩ = ⟨x|σ |x⟩ = Tr(⟨x|σ |x⟩) = Tr(ρσ), and we can
reconstruct the density matrix ρ

ρ =
⟨I⟩I + ⟨X⟩X + ⟨Y ⟩Y + ⟨Z⟩Z

2
. (15)

Question Implementation 3: Run your HHL circuit on a simulator and a real quantum device and
reconstruct completely the solution state for the system defined as

A =
1

9

(
13 2 + i4

2− i4 14

)
and |b⟩ = 1√

2
(|0⟩+ i |1⟩) (16)

Observable measurements will be detailed in the notebook.
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Solution. How to relate ⟨P1 ⊗ I⊗m ⊗ σ⟩ to ⟨σ⟩ (here we take σ ∈ {I,X, Y, Z}):

⟨ P1 ⊗I⊗m ⊗ σ⟩ = Tr(|ϕ3⟩⟨ϕ3|P1 ⊗ I⊗m ⊗ σ)

=
∑
i,j

βiβjTr

((√
1− 1

λ2i
|0⟩+ 1

λi
|1⟩

)(√
1− 1

λ2j
⟨0|+ 1

λj
⟨1|

)
⊗ |0⟩⊗m ⟨0|⊗m ⊗ |ui⟩ ⟨uj |

(
P1 ⊗ I⊗m ⊗ σ

))

=
∑
i,j

βiβjTr

((√
1− 1

λ2i
|0⟩+ 1

λi
|1⟩

)(√
1− 1

λ2j
⟨0|+ 1

λj
⟨1|

)
P1 ⊗ |0⟩⊗m ⟨0|⊗m ⊗ |ui⟩ ⟨uj |σ

)

=
∑
i,j

βiβjTr

((√
1− 1

λ2i
|0⟩+ 1

λi
|1⟩

)(√
1− 1

λ2j
⟨0|+ 1

λj
⟨1|

)
P1

)
Tr
(
|0⟩⊗m ⟨0|⊗m

)
Tr (|ui⟩ ⟨uj |σ)

=
∑
i,j

βiβj
λj

Tr

((√
1− 1

λ2i
|0⟩+ 1

λi
|1⟩

)
⟨1|

)
Tr (|ui⟩ ⟨uj |σ)

=
∑
i,j

βiβj
λiλj

Tr (|ui⟩ ⟨uj |σ)

=
1

c2
Tr (|x⟩ ⟨x|σ) = ⟨σ⟩

c2

One could also use directly

Tr(|ϕ3⟩⟨ϕ3|P1 ⊗ I⊗m ⊗ σ) = Tr((⟨1| ⊗ I⊗m ⊗ I)|ϕ3⟩⟨ϕ3|(|1⟩ ⊗ I⊗m ⊗ σ))

=
1

c2
Tr((|0⟩⊗m ⟨0|⊗m ⊗ |x⟩ ⟨x| (I⊗m ⊗ σ))) =

⟨σ⟩
c2
.
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