Spring 2024: Final Project
COM-308: Quantum Computing

Notations

We denote |i) the state in the computational basis corresponding to the binary decomposition of i. For
example, with 4 qubits, |5) = [0101).

The HHL Algorithm

The HHL (Harrow—Hassidim—Lloyd) algorithm is a quantum algorithm designed to solve systems of linear
equations. Given a matrix A € C2"*2" and a vector b € C?", we want to find a vector x € C2" that verifies

Ax =b. (1)

The HHL algorithm is exponentially faster than classical methods when the matrix A is sparse. If s is the
number of non-zero elements per row in A, then the quantum circuit can be constructed with O(ns?) gates
whereas the best classical algorithm runs in O(2"s).

To solve the linear system Ax = b with a quantum circuit, we need to represent b and x by quantum states;
thus, we need to scale them to unit length ||b|| = ||x|| = 1. Then b can be represented by a state |b) using n

qubit such that |b) = 212:(; "b; |i). Here, the b; are the components of b. The vector solution x can be then

represented by the state |z) that verifies
) = cAT D), Tt =[ATHY) | (2)

where ¢ ensures that the state is normalized.
The HHL algorithm uses quantum phase estimation to encode the solution x into a quantum state. To do

s0, the algorithm requires that the matrix A be Hermitian.

Question Theory 1: Show that if A is not Hermitian, we can still find a solution to the system by running
the HHL algorithm on the larger system:
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Solution. First, note that A is Hermitian. Also, observe that A~ = (A‘l 0

). Then, the solution

of the larger system is given by
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So, from now on, we will assume that A is a Hermitian matrix, i.e. A = A!. Thus, by the spectral theorem
(see Homework 1 Ex 3), there exists a set of orthogonal states (|u;))i=o,... 2n—1 such that A can be written
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where the \; € R are the eigenvalues of A. The (Ju;))i=o,... 2n—1 form an eigenbasis of A. The state |b) can
also be written in the (|u;))i=o,... 2n—1 basis and we denote
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Question Theory 2: Check that |z) = CZ?:al f—

i

u;) is solution to the system.

Solution. Note that we have A= = 212:(;1 )\% |ui){u;| (this can be verified using AA~! = I). Hence,
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The circuit

The HHL circuit is represented in The circuit uses three registers:
e The top register is 1 ancilla qubit initialized to |0).

e The middle register is a memory register that stores the eigenvalues A\; of A. More precisely, we will
store the binary representation of A;. The number of qubits m needed for this register will therefore
depend on A;. This register is initialized to |0>®m.

e The bottom register uses n qubits and is initialized with the state |b).
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Figure 1: Quantum Circuit for HHL Algorithm

The circuit is composed of 4 steps, a quantum phase estimation (QPE), a controlled rotation, an inverse
quantum phase estimation and a measurement. Let us detail the gates appearing in each part:

Quantum phase estimation: This part of the circuit is detailed in The circuit starts with a
Hadamard gate on each qubit of the memory register. The unitary U is

U = ei?mdm, (6)

Then we apply an inverse quantum Fourier transform on the memory register.

2M—1

1 o ki
FT'|k) = — e T |5) . 7
QFTI = 7= 3 0 (7
Controlled rotation: The gate R realizes the transformation
1 1
R0 @ X)) = {1 =33 10)+ 1) | @3- (8)

Inverse QPE: We apply the inverse gates of the QPE in reverse order to set back the memory register
to \O>®m. The memory register is no longer entangled with the output register.

Measurement: The algorithm outputs |z) if the ancilla qubit is measured in state |1).
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Figure 2: Detailed QPE

Analysis

We assume that the eigenvalues of A are positive integers, i.e. \; € N* and max;(\;) < 2™. The circuit
starts with a quantum phase estimation that stores the eigenvalues in the memory register.

Question Theory 3: Show that the state |¢;) defined in is
[¢1) = |0) ® (Z Bi|\i) @ Ui)) . 9)
i

Hint: Use the lecture notes on QPE. You can start by answering these questions:
- What are the eigenvalues and eigenvectors of U ?
- What happens if |b) = |u;) ?
Solution. Since the ancilla qubit is not involved in the Quantum Phase Estimation, we consider only the

m + n bit that are inputs the QPE circuit. Let CU denote the controlled U gate. Then, QPE = (QFT' ®
I)CU(H®™ @ I). We have

61) = I ® QPE 0) ® (|0)*™ @ |b)),
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For an integer 0 < x < 2™, let (%y—1,%Tm—2, - ,2p) be its binary expansion. Then, we can compute



QPE |0)®™ @ |u;) as follows:

QPE 0)°" ® |u;) = (QFT' @ )CU(H®™ ® 1)[0)*™ @ |u;) ,
= (QFT' @ I)CU(H [0))*™ @ |u;) ,
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Hence, substituting in , we get

1) = (Zﬂz IAi) @ us) ) :

Then we apply a controlled rotation R to create the % factor.

Question Theory 4: Compute |p2).

Solution. The state |¢2) is given by (R®I) |¢1), where R is the controlled rotation acting on the first m + 1
qubit. Thus,

|p2) = (R® 1) |¢1),
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We want to disentangle the memory register from the output state. Thus, we apply the inverse QPE.



Question Theory 5: Show that the state |¢3) defined in is

03) :Zﬁi< 1—;|o>+§i|1>> @ 10" @ [us). (1)

Hint: Start with |b) = |u;) and use the fact that gates are unitary.

Solution. In the solution to Question 3, we showed that QPE [0)*™ @ |u;) = |\;) ® |u;). Inverting, this
gives QPE" |\;) ® |u;) = [0)®™ @ |u;). We can use this to simplify the computation of |¢3). We have
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Question Theory 6: Show that the output of the circuit is a solution of the linear system if the result
of the measurement is "1". What is the probability of obtaining this result? Use max;();) < 2™ to lower
bound this result.

Solution. When we measure 1, the output state is proportional to
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Normalizing the state yields question 2 result. Hence, |z), is the solution to the linear system. The
probability of measuring 1 is
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Question Implementation 1: Implement the HHL circuit on a simulator. Consider only the case where
the eigenvalues of A are powers of 2. More detailed instructions are given in the notebook.

Measuring the solution

We want to measure |z) to learn its value. We are used to measuring states with projectors. The probability
of a state |¢) to be in state |¢)) is

P(ly)) = (&l (1u)v]) [6) = (&) |*. (12)



Question Implementation 2: On a simulator and a real device, run the HHL circuit to measure |z), the
solution of the system

N R A R N
A=3 (7 5) md b= 0~ (13)

Compare it to the expected solution HAA%EH' What is missing to fully reconstruct the solution?

Limitations

Although the HHL algorithm offers exponential speedup over classical methods, it has several limitations:

e It requires that the matrix A be sparse to reach the announced complexity. In our implementation, we
do not pay attention to this requirement.

e We need to have some a priori knowledge of the eigenvalues \; to have an exact and efficient algorithm.
e The algorithm only gives a solution with some probability of error.

e The preparation of the quantum state for |b) is often difficult and requires additional resources.

e We do not have direct access to the result. We still need to measure |z) to learn the solution.

e On a real quantum noisy device, we will only have access to an approximate solution.



Bonus - Another measurement

If we measure our state |z) only in the computational basis, which means that we choose the set of projectors
|i){(i|, we will only obtain the norm of each amplitude in the computational basis. If the amplitude is complex,
we will not be able to reconstruct the full state |z). Thus, we need another kind of measurement.

An observable O is a Hermitian matrix that represents a physical property we want to measure in our system.
It can be the position, momentum, spin ... We are interested to know the average value of that property. As
a Hermitian matrix, O can be decomposed into its eigenbasis, O =}, u [vi)(vi|. The expected value of O

observed in the state |¢) is then (O) = (¢| O |¢) = 3", pu (0] (v )(vi| ) [¢) = >k e P (o).

Remark that if we choose O to be a projector |[)1], then O has only one non-zero eigenvalue which is 1
associated with the eigenvector |1). Therefore, the expected value of O is P(|¢)).

We focus on the case where A is a 2 x 2 matrix and b is a vector of size 2. We denote by p the matrix
p = |z)(x|. The set of operators P = %{I, X,Y,Z} is a basis of the space of the 2 x 2 matrices. Thus, we
can decompose p in this basis:

cil +ex X +ceyY +cezZ
p= (14)
V2
Question Theory 7: Show that ¢, = Tr(po) for all o € P.

Hint: Show that for all 0,05 € P, Tr(o,0;) =04fj# i and 1 if i = j.

Solution. Pauli matrices are given by X = (? é) , Y = ((Z] _OZ> , 4= <(1) _01> It is direct to verify

that, for any o;,0; € P, Tr(o,0;) =1 if i = j and 0 otherwise since their eigenvalues are £1. Then,

Tr(ps) = Tr (Z cgo5> = Z ¢ Tr(od) = Z coTr(od) = c5.

oeP oeP ceP

O

Pauli matrices are Hermitian and can be interpreted as observables. Therefore, by measuring each operator
o € P, we can have access to their expected value (o) = (z|o|z) = Tr({(z|o |z)) = Tr(po), and we can
reconstruct the density matrix p

DI+ X)X+ MY +(2)Z
5 .

p= (15)

Question Implementation 3: Run your HHL circuit on a simulator and a real quantum device and
reconstruct completely the solution state for the system defined as

1 ,
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2-id 14 ) and |b>:%(\0>+i|1>) (16)

Observable measurements will be detailed in the notebook.



Solution. How to relate (P; ® I®™ ® o) to (o) (here we take o € {I, XY, Z}):
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One could also use directly
Tr(|s)(¢s|Pr @ I®" @ o) = Tr(((1] @ 1" @ I)|és)(gs|(|11) @ I © )

= STr0F™ 0" [a) (o] 17 0 0)) = .



