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Exercise 3.1: Models for the permittivity of metals (5-7 min) 
For metals, the permittivity is generally a complex quantity (𝜖𝑀 = 𝜖′ + 𝑖𝜖′′). A very simple model can 

be obtained from the fourth Maxwell-equation, the modified Ampere-law and assuming that the 

relation between 𝐷⃗⃗  and 𝐸⃗  is described by the permittivity 𝜖: 

∇ × 𝐻⃗⃗ = 𝑗 + 𝜖𝜖0 ⋅ 𝜕𝐸⃗ /𝜕𝑡 

a) Get rid of the time-derivative by assuming a harmonic time dependence of the form 

exp(−𝑖𝜔𝑡) and express current density with the conductivity by 𝑗 = 𝜎𝐸⃗ . Identify the 

following relations: 

𝜖′ = 𝜖 

𝜖′′ =
𝜎

𝜔𝜖0
 

Drude described the conductivity in metals by free electrons that can follow variations of the electric 

field only up to a certain limiting frequency. Thus, the permittivity is determined by a relaxation time 

𝜏 and the plasma frequency 𝜔𝑝. 

𝜖𝑀 = 1 −
𝜔𝑝

2

𝜔(𝜔 + 𝑖/𝜏)   
 

The plasma frequency depends on the density of conduction-electrons  𝑁, their effective mass is 𝑚∗ 

and their charge 𝑒 by means of 𝜔𝑝 = √𝑒2𝑁/𝑚∗𝜖0. 

b) Separate 𝜖𝑀 into real and imaginary parts and compare the high- and low-frequency limits of 

your result for the imaginary part with the result of the quasi-static case.  

c) Find a data for a typical metal such as silver or aluminium, plot on a convenient scale and 

identify the transition between the models.  

Task: Show only the key points of the derivation, minimise the use of formulae. Focus on the 

discussion of the data.  
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Exercise 3.2: Selective emitter (5-7 min) 
In the development of c-Si solar cells, much of effort was devoted to the front contact. Highly 

diffused emitters like the phosphorous diffusion profiles shown in the course were already very early 

replaced by passivated emitters, and eventually further improved on by introducing selective 

emitters.  

a) Design a sketch of the front region of a c-Si solar cell, showing the pn-junction between 

wafer and the diffused region, the local contacts to the silver finger metallisation, and the 

passivated region between the fingers.  

b) Using the diagram below,1 explain the working principle of a passivated emitter. Discuss 

what motivated the development of passivated emitters.  

 
c) Assume a passivated emitter with reduced surface concentration of 𝑁𝐷 = 1019 cm−3. 

Project the 𝑗0 by using an area weighted sum of 𝑗0,𝑚𝑒𝑡 and 𝑗0,𝑝𝑎𝑠𝑠, assuming that the silver 

fingers cover an area of 10%.  

d) Explain the working principle of a selective emitter that combines highly doped regions 

below the fingers and lowly doped regions with passivation. Point out the additional 

improvement that is possible.  

  

 
1 The symbols refer to experimental data digitized from King, TED (1980) and from Kerr, JAP (2001). The lines 
refer to a simple model with the geometry factor 𝐺𝐹, assuming constant donor density 𝑁𝐷 equal to the surface 
concentration. 
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Exercise 3.3: Schottky barrier (5-7 min) 
The front contact in hetero-junction solar-cells is established between a highly n-doped ITO layer 

and a p-doped layer. In the depletion approximation, we assume that mobile charges recombine 

across the interface, leaving behind ionized cores. The depletion-regions are thus charged positively 

in the n-type ITO and negatively in the p-doped layer.  

 

In the p-doped layer, we assume that the depletion zone extends over a width 𝑑 that is less than the 

film thickness. Throughout this depleted region, we may assume a negative charge density equal to 

the acceptor concentration 𝑁𝐴. Since the ITO is highly doped, its depletion zone is very narrow and 

can be treated like a surface charge. The result is a one-sided p-n junction, similar to a Schottky-

junction. 

a) Applying the 1D Poission-equation 𝑑2𝜙/ 𝑑𝑥2 = 𝑞𝑁𝐴/𝜖𝜖0, you can find a relation for the 

electric field 𝐸 by recognizing that 𝑑Φ/𝑑𝑥 = −𝐸. Integrate once and evaluate the boundary 

condition that the field vanishes at the edge of the depletion zone (𝐸(𝑑) = 0).  

b) Find the electrostatic potential by carrying out a second integration. Determine the width of 

the depletion layer for a known height of the potential barrier 𝑉𝑏.  

c) Find experimental data for barrier heights between metals and silicon, e.g. Schroder, TED 

(1984). Compare with theoretical values based on the work function.  

Task: Show only the key results of the derivation with a minimum of formulae 
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