Solutions to Homework 10 CS-526 Learning Theory

Problem 1: Multilinear Rank, Tensor Rank

Recall the formulas for the matricizations:

 $T_{(1)} = A(C \otimes_{KhR} B)^T$, where A and $C \otimes_{KhR} B$ are of dimensions $I_1 \times R$ and $I_2I_3 \times R$ respectively. Moreover for any matrices X, Y we have that:

$$rank(XY) \le min\{rank(X), rank(Y)\}$$

Thus:

$$R_1 = \operatorname{rank}(T_{(1)}) \le \operatorname{rank}(A) \le \min\{I_1, R\} \le R$$

By repeating the same argument for matrizications $T_{(2)}$, $T_{(3)}$ we conclude the proof.

Problem 2: Non-unicity of Tucker decomposition

Let $X = [\vec{x_1}, \dots, \vec{x_{R_1}}], Y = [\vec{y_1}, \dots, \vec{y_{R_2}}],$ and $Z = [\vec{z_1}, \dots, \vec{z_{R_3}}].$ Then, from the definitions of vectors $\vec{x_{p'}}, \vec{y_{q'}}, \vec{z_{r'}},$ and from the orthogonality of the matrices $M^{(u)}, M^{(v)}, M^{(w)}$ it is easy to see that:

1.
$$U \cdot (M^{(u)})^T = X \Rightarrow U = X \cdot M^{(u)} \Rightarrow \vec{u}_p = X \cdot M^{(u)}_{:p} = \sum_{p'} M^{(u)}_{p'p} \vec{x}_{p'}$$

2.
$$V \cdot (M^{(v)})^T = Y \Rightarrow V = Y \cdot M^{(v)} \Rightarrow \vec{v}_q = Y \cdot M^{(v)}_{:q} = \sum_{q'} M^{(v)}_{q'q} \vec{y}_{q'}$$

3.
$$W \cdot (M^{(w)})^T = Z \Rightarrow W = Z \cdot M^{(w)} \Rightarrow \vec{w}_r = Z \cdot M^{(w)}_{rr} = \sum_{r'} M^{(w)}_{r'r} \vec{z}_{r'}$$

Substituting \vec{u}_p, \vec{v}_q and \vec{w}_r in the Tucker decomposition expression we get:

$$T = \sum_{p,q,r=1}^{R_1,R_2,R_3} G^{pqr} \, \vec{u}_p \otimes \vec{v}_q \otimes \vec{w}_r = \sum_{p,q,r=1}^{R_1,R_2,R_3} G^{pqr} \, (\sum_{p'} M_{p'p}^{(u)} \vec{x}_{p'}) \otimes (\sum_{q'} M_{q'q}^{(v)} \vec{y}_{q'}) \otimes (\sum_{r'} M_{r'r}^{(w)} \vec{z}_{r'}) = \sum_{p',q',r'=1}^{R_1,R_2,R_3} \sum_{p,q,r=1}^{R_1,R_2,R_3} G^{pqr} M_{p'p}^{(u)} M_{q'q}^{(v)} M_{r'r}^{(w)} \, \vec{x}_{p'} \otimes \vec{y}_{q'} \otimes \vec{z}_{r'} = \sum_{p',q',r'=1}^{R_1,R_2,R_3} H^{p'q'r'} \, \vec{x}_{p'} \otimes \vec{y}_{q'} \otimes \vec{z}_{r'}$$

where $H^{p'q'r'} = \sum_{p,q,r=1}^{R_1,R_2,R_3} G^{pqr} M^{(u)}_{p'p} M^{(v)}_{q'q} M^{(w)}_{r'r}$, which concludes the proof.

Problem 3: Whitening of a tensor

1. We have $M = U \text{Diag}(d_1, \dots, d_K) U^T$ and, by definition, $W := U \text{Diag}(d_1^{-1/2}, \dots, d_K^{-1/2})$. A direct computation gives:

$$W^{T}MW = \text{Diag}(d_{1}^{-1/2}, \dots, d_{K}^{-1/2})(U^{T}U)\text{Diag}(d_{1}, \dots, d_{K})(U^{T}U)\text{Diag}(d_{1}^{-1/2}, \dots, d_{K}^{-1/2})$$

$$= \text{Diag}(d_{1}^{-1/2}, \dots, d_{K}^{-1/2})\text{Diag}(d_{1}, \dots, d_{K})\text{Diag}(d_{1}^{-1/2}, \dots, d_{K}^{-1/2})$$

$$= I.$$

We used that the columns of U are orthogonal unit vectors: $U^TU = I$. By definition of \vec{v}_i , we have $V := \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_K \end{bmatrix} = W^T \mu \operatorname{Diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_K})$ where $\mu := \begin{bmatrix} \vec{\mu}_1 & \cdots & \vec{\mu}_K \end{bmatrix}$. It also follows from the definition of M that $M = \mu \operatorname{Diag}(\lambda_1, \dots, \lambda_K) \mu^T$. Hence:

$$VV^T = W^T \mu \operatorname{Diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_K}) \operatorname{Diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_K}) \mu^T W$$
$$= W^T M W$$
$$= I .$$

The matrix V is square and satisfies $VV^T = I$, thefore $V^TV = I$ meaning that the vector \vec{v}_i are orthonormal.

2. Because M is known we can compute the matrix W and use it to obtained the whitened tensor $T(W, W, W) = \sum_{i=1}^{K} \nu_i \vec{v}_i \otimes \vec{v}_i \otimes \vec{v}_i$ where $\nu_i = \lambda_i^{-1/2}$ and $\vec{v}_i = \sqrt{\lambda_i} W^T \vec{\mu}_i$. We have shown in the previous question that $\vec{v}_1, \ldots, \vec{v}_K$ are orthogonal unit vectors. Thus, we can use the tensor power method to recover each of the pair $\pm(\nu_i, \vec{v}_i)$ for $i \in [K]$. Because $\nu_i > 0$ we can disambiguate the sign and determine (ν_i, \vec{v}_i) from $\pm(\nu_i, \vec{v}_i)$.

Now that all the $(\nu_i, \vec{v_i})$ are known, we need to show that the whitening transformation can be inverted to give back $(\lambda_i, \vec{\mu}_i)$. The relation between λ_i and ν_i is easy to invert: $\lambda_i = 1/\nu_i^2$. To recover $\mu = [\vec{\mu}_1 \quad \cdots \quad \vec{\mu}_K]$, we need to invert the system of equations

$$V = W^{T} \mu \operatorname{Diag}(\sqrt{\lambda_{1}}, \dots, \sqrt{\lambda_{K}}) \Leftrightarrow V \operatorname{Diag}(\nu_{1}, \dots, \nu_{K}) = W^{T} \mu.$$
 (1)

The matrix $W^T = \text{Diag}(d_1^{-1/2}, \dots, d_K^{-1/2})U^T$ has full row rank and its Moore-Penrose pseudo-inverse reads $(W^T)^{\dagger} = U \text{Diag}(\sqrt{d_1}, \dots, \sqrt{d_K})$. Multiplying both sides of (1) by $(W^T)^{\dagger}$ yields:

$$(W^T)^{\dagger} V \operatorname{Diag}(\nu_1, \dots, \nu_K) = U U^T \mu . \tag{2}$$

At this point we might be tempted to say that $UU^T = I$, yielding $\mu = (W^T)^{\dagger}V \operatorname{Diag}(\nu_1, \dots, \nu_K)$. However, U is in general not a square matrix and we cannot conclude $UU^T = I$ from $U^TU = I$. This is only a minor setback. Note that (the left-hand side is the definition of M, the right-hand side is its diagonalization):

$$\mu \operatorname{Diag}(\lambda_1, \dots, \lambda_K) \mu^T = U \operatorname{Diag}(d_1, \dots, d_K) U^T$$
,

where μ, U are $D \times K$ full column rank matrices. It follows that $\operatorname{span}(\mu) = \operatorname{span}(U)$ and there exists a $K \times K$ matrix P such that $\mu = UP$. Hence, $UU^T \mu = U(U^T U)P = UP = \mu$ and (2) reads:

$$\mu = (W^T)^{\dagger} V \operatorname{Diag}(\nu_1, \dots, \nu_K) = U \operatorname{Diag}(\sqrt{d_1}, \dots, \sqrt{d_K}) V \operatorname{Diag}(\nu_1, \dots, \nu_K)$$
.

We are thus able to recover μ from the knowledge of W, V and $\text{Diag}(\nu_1, \ldots, \nu_K)$.