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Astrophysics IV Stellar and galactic dynamics

Exercises

Problem 1: Derive the linearised collisionless Boltzmann equation (5.11 in Binney & Tremaine
1987) from the course:
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Definitions and hints: The Poisson bracket is defined as
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where A and B are any scalar functions of the phase-space coordinates.
We start from the collisionless Boltzmann equation and from Poisson’s equation
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where ®(x,) is the total potential, H = 10 + ®(x, t) is the Hamiltonian, and ®4(x, t) is the
gravitational potential of the stellar system, which may differ from the total potential ®(x,t)
if there is an external perturbing potential ®.(x,¢). An isolated stellar system, as far as it
is in equilibrium, is described by time-independent DF fy(x,v) and potential ®¢(x) that are
solutions of 3 and 4
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Now we assume that the equilibrium system is subjected to a weak external potential e®.(x,t),
where |V®,| is of order [V®g| and € < 1. In response to this disturbance, the DF of the stellar
system and the potential arising from its stars become

f(x,v,t) = fo(x,v) +efi(x,v,t) ; Ds(x,t) = Po(x) + €Ps1(x,1) (6)
and the total potential becomes
D(x,t) = Po(x,t) + €Dy (x,t) with Py(x,t) = Ps1(x,t) + Pe(x,1) (7)

Problem 2: Derive equations (5.23) to (5.26) in Binney & Tremaine 1987 for linearized fluid
systems in the course:
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knowing that the system is characterized by a density ps(x,t), a pressure p(x,t), a veloc-
ity v(x,t) and a potential ®(x,t), quantities that are linked by the continuity, Euler’s and
Poisson’s equations:
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One has ® = &, + P, and the equation of state is assumed barotropic: p(x,t) = p[ps(x,1)].
Thus, introducing the specific enthalpy h, Euler’s equation becomes

% + (v -V)v=-V(h+®) with h(ps)= /Ops dpp(ﬁ) (13)

We further introduce the sound velocity v2(x) = [Tp . The response of the fluid to a

weak external potential e®.(x,t) is

ps(3,1) = polx) + epst(x,1)  h(x,1) = ho(x) + b (x, )
v(x,t) = vo(x) +evi(x,t) ; D(x,t) = Po(x) + eP1(x,1) (14)

where ®; = &, + &, is the total perturbation in the potential, the sum of the external po-
tential @, and of the &4 potential arising from the density perturbation pg.

Problem 3:

Show that the density of a gaseous sphere, which had initial density pg, when compressed
by a factor € (i.e., 11 = (1 — €)r) increases in proportion to epg. Similarly, show that its
pressure increases proportionally to v2epg, where v; is the speed of sound.

Then, using order-of-magnitude estimates, find expressions for the force changes of the
pressure and gravity introduced by the contraction, and find the instability criterion expressed
by r.



