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Astrophysics IV Stellar and galactic dynamics

Solutions

Problem 1:

The Jeans equations are obtained from the Boltzmann equations, by computing
moments of various orders.
A- Direct integration on velocities (moment of order 0)
B- Integration on the velocities after multiplying by one component of the velocity
(moment of order 1)
Here are a few properties to keep in mind :
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where we set m = 1.

A - moment 0:

in vectorial notation:
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In spherical coordinates, the divergence of a vector reads :
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The systems with a spherical symmetry have negligible meridional motions, hence
g = 0. Furthermore, a possible rotation of the system is done at an azimuthal symme-
try, i.e. 0v3/0¢ = 0. (In short, there can be no angular dependencies in a spherically
symmetric system, hence 9/00 = 0, 9/0¢ = 0)

Thus, we get for the moment 0
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B - First moment In vectorial notation

ov 1
— + (V- V)v=-V® - -V (po?
@V SV (o)

Transformation to spherical coordinates is risky (because of the divergence of ten-
sor), so it is better to start directly from the collisionless Boltzmann equation expressed
in spherical coordinates.
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We compute the radial Jeans equation by multiplying the collisionless Boltzmann
equation by v, and integrating on velocities
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where the null values in the last two equations comes from the assumption of spher-
ical symmetry,
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where the integral on v, was integrated by parts, and similarly,
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still with the same integration by parts,

t 6 t 6
/Uﬂ); COT gf :CO /vrdw/%d%/a dvg = 0




after integration by parts of the integral on vy,
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and similarly,
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and finally,
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where we have again performed an integration by parts for the integral on v4. Since
we're in a spherically symmetric case, we may choose any fixed #, and we choose 8 such
that cot 6§ = 0.
Putting everything together finally results in the general Jeans equation for spherical
symmetry:
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One can introduce the velocity dispersion : v2 = o2 + 7;2
Isotropic systems: vy = Vg = U,
For a stationary system with isotropic velocities, the Jeans equation reduces to :
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The potential ® in the Jeans equation is always the gravitational potential representing
the total mass of the system. p may be a mass density, a number density or even a
luminosity density.

Problem 2:

Plummer:
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Introducing these expressions into the last equation of Problem 2, we get
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By integration, taking into account that po? must tend to zero when M tends to zero,
one obtains
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Problem 3:

From collisonless Boltzmann equation in cylindrical coordinates in term of velocities
write:
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Assuming a steady state (% = 0) and an azimuthal symmetry (‘g—i =0, ? = 0),
we get:
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The first moment in vy writes:
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Using the rules given in Problem 1, we can write:
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Putting all together, we get:
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The the first two other moment are obtained by successively multiplying by v4 and
v, and integrating over the velocities. Using the same mathematical tricks, we obtain:
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