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Astrophysics IV Stellar and galactic dynamics
Solutions

Problem 1:

The Jeans equations are obtained from the Boltzmann equations, by computing
moments of various orders.
A- Direct integration on velocities (moment of order 0)
B- Integration on the velocities after multiplying by one component of the velocity
(moment of order 1)
Here are a few properties to keep in mind :

1) f → 0 when |vi| → ∞ 2) m
∫
f d3v = ρ 3) m

∫
vi f d3v = ρvi

4)
∫
vi vjf d3v = ρvivj 5) vi vj + σij

2 = vivj
where we set m = 1.

A - moment 0:

∂ν

∂t
+
∑
i

∂

∂xi

(νvi) = 0

in vectorial notation:
∂ν

∂t
+∇ · (ν v) = 0

In spherical coordinates, the divergence of a vector reads :

∇ · F =
1

r2
∂

∂r
(r2Fr) +

1

r sin θ

∂

∂θ
(sin θ Fθ) +

1

r sin θ

∂Fϕ

∂ϕ

consequently, the equation becomes :

∂ν

∂t
+

∂

∂r
(νvr) +

2

r
νvr +

1

r

∂

∂θ
(νvθ) +

cot θ

r
νvθ +

1

r sin θ

∂

∂ϕ
(νvϕ) = 0

The systems with a spherical symmetry have negligible meridional motions, hence
vθ = 0. Furthermore, a possible rotation of the system is done at an azimuthal symme-
try, i.e. ∂vϕ/∂ϕ = 0. (In short, there can be no angular dependencies in a spherically
symmetric system, hence ∂/∂θ = 0, ∂/∂ϕ = 0)

Thus, we get for the moment 0

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρvr) =

∂ρ

∂t
+

∂

∂r
(ρvr) +

2

r
ρvr = 0
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B - First moment In vectorial notation

∂v

∂t
+ (v · ∇)v = −∇Φ− 1

ρ
∇ · (ρσ2)

Transformation to spherical coordinates is risky (because of the divergence of ten-
sor), so it is better to start directly from the collisionless Boltzmann equation expressed
in spherical coordinates.

∂f

∂t
+ vr

∂f

∂r
+

vθ
r

∂f

∂θ
+

vϕ
r sin θ

∂f

∂ϕ
+

(
v2θ + v2ϕ

r
− ∂Φ

∂r

)
∂f

∂vr

+
1

r

(
v2ϕ cot θ − vrvθ

) ∂f

∂vθ
− 1

r
[vϕ (vr + vθ cot θ)]

∂f

∂vϕ
= 0

We compute the radial Jeans equation by multiplying the collisionless Boltzmann
equation by vr and integrating on velocities∫

v2r
∂f

∂r
d3v =

∂

∂r

∫
f v2r d

3v =
∂

∂r

(
ρ v2r

)
∫

vr vθ
r

∂f

∂θ
d3v =

1

r

∂

∂θ

∫
f vr vθ d

3v =
1

r

∂

∂θ
(ρ vrvθ) = 0∫

vr vϕ
r sin θ

∂f

∂ϕ
d3v =

1

r sin θ

∂

∂ϕ

∫
f vr vϕ d

3v =
1

r sin θ

∂

∂ϕ
(ρ vrvϕ) = 0

where the null values in the last two equations comes from the assumption of spher-
ical symmetry,

∫
vr v

2
θ

r

∂f

∂vr
d3v =

1

r

∫
dvϕ

∫
v2θ dvθ

∫
vr

∂f

∂vr
dvr = −1

r

∫
f v2θ d

3v = −ρ
v2θ
r

where the integral on vr was integrated by parts, and similarly,

∫
vr v

2
ϕ

r

∂f

∂vr
d3v =

1

r

∫
dvθ

∫
v2ϕ dvϕ

∫
vr

∂f

∂vr
dvr = −1

r

∫
f v2ϕ d

3v = −ρ
v2ϕ
r

∫
∂Φ

∂r
vr

∂f

∂vr
d3v =

∂Φ

∂r

∫
dvϕ

∫
dvθ

∫
vr

∂f

∂vr
dvr = −∂Φ

∂r

∫
f d3v = −ρ

∂Φ

∂r

still with the same integration by parts,∫
vrv

2
ϕ

cot θ

r

∂f

∂vθ
d3v =

cot θ

r

∫
vr dvr

∫
v2ϕ dvϕ

∫
∂f

∂vθ
dvθ = 0
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after integration by parts of the integral on vθ,

∫
v2rvθ
r

∂f

∂vθ
d3v =

1

r

∫
v2r dvr

∫
dvϕ

∫
vθ

∂f

∂vθ
dvθ = −1

r

∫
f v2r d

3v = −ρv2r
r

and similarly,

∫
v2rvϕ
r

∂f

∂vϕ
d3v =

1

r

∫
v2r dvr

∫
dvθ

∫
vϕ

∂f

∂vϕ
dvϕ = −1

r

∫
f v2r d

3v = −ρv2r
r

and finally,

∫
vrvθvϕ cot θ

r

∂f

∂vϕ
d3v =

cot θ

r

∫
vrdvr

∫
vθ dvθ

∫
vϕ

∂f

∂vϕ
dvϕ

= −cot θ

r

∫
vrvθfd

3v = −ρvrvθ cot θ

r

where we have again performed an integration by parts for the integral on vϕ. Since
we’re in a spherically symmetric case, we may choose any fixed θ, and we choose θ such
that cot θ = 0.
Putting everything together finally results in the general Jeans equation for spherical
symmetry:

∂ (ρvr)

∂t
+

∂
(
ρv2r

)
∂r

+
ρ

r

[
2 v2r −

(
v2θ + v2ϕ

)]
= −ρ

∂Φ

∂r

One can introduce the velocity dispersion : v2i = σ2
i + vi

2

Isotropic systems: vϕ = vθ = vr
For a stationary system with isotropic velocities, the Jeans equation reduces to :

d (ρσ2
r)

dr
= −ρ

dΦ

dr

The potential Φ in the Jeans equation is always the gravitational potential representing
the total mass of the system. ρ may be a mass density, a number density or even a
luminosity density.

Problem 2:

Plummer:

ρ =
3M

4π a3

[
1 +

(r
a

)2]−5/2

Φ = − GM√
r2 + a2

dΦ

dr
= GMr(r2 + a2)−3/2
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Introducing these expressions into the last equation of Problem 2, we get

d (ρσ2
r)

dr
= − 3M

4π a3

[
1 +

(r
a

)2]−5/2

·GMr
(
r2 + a2

)−3/2

= −3GM2a2

4π

r

(a2 + r2)5/2 (a2 + r2)3/2
= −3GM2a2

4π

r

(a2 + r2)4

By integration, taking into account that ρσ2
r must tend to zero when M tends to zero,

one obtains

ρσ2
r =

GM2a2

8π (r2 + a2)3

Finally,

σ2
r =

GM

6
√
r2 + a2

Problem 3:

From collisonless Boltzmann equation in cylindrical coordinates in term of velocities
write:

∂f

∂t
+ vR

∂f

∂R
+

vϕ
R

∂f

∂ϕ
+ vz

∂f

∂z
+

[
v2ϕ
R

− ∂Φ

∂R

]
∂f

∂vR
− vRvϕ

R

∂f

∂vϕ
− ∂Φ

∂z

∂f

∂vz
= 0 (1)

Assuming a steady state (∂f
∂t

= 0) and an azimuthal symmetry (∂Φ
∂ϕ

= 0, ∂f
∂ϕ

= 0),
we get:

vR
∂f

∂R
+ vz

∂f

∂z
+

[
v2ϕ
R

− ∂Φ

∂R

]
∂f

∂vR
− vRvϕ

R

∂f

∂vϕ
− ∂Φ

∂z

∂f

∂vz
= 0 (2)

The first moment in vR writes:∫
dvRdvϕdvzvR

[
vR

∂f

∂R
+ vz

∂f

∂z
+

[
v2ϕ
R

− ∂Φ

∂R

]
∂f

∂vR
− vRvϕ

R

∂f

∂vϕ
− ∂Φ

∂z

∂f

∂vz

]
= 0 (3)

Using the rules given in Problem 1, we can write:∫
dvRdvϕdvzvRvR

∂f

∂R
=

∂

∂R

(
νv2R

)
(4)∫

dvRdvϕdvzvRvz
∂f

∂z
=

∂

∂z
(νvRvz) (5)

∫
dvRdvϕdvzvR

v2ϕ
R

∂f

∂vR
= − ν

R
v2ϕ (6)

−
∫

dvRdvϕdvzvR
∂Φ

∂R

∂f

∂vR
= ν

∂Φ

∂R
(7)

−
∫

dvRdvϕdvzvR
vRvϕ
R

∂f

∂vϕ
=

ν

R
v2R (8)
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−
∫

dvRdvϕdvzvR
∂Φ

∂z

∂f

∂vz
= 0 (9)

Putting all together, we get:

∂

∂R

(
νv2R

)
+

∂

∂z
(νvRvz) + ν

(
v2R − v2ϕ

R
+

∂Φ

∂R

)
= 0 (10)

The the first two other moment are obtained by successively multiplying by vϕ and
vz and integrating over the velocities. Using the same mathematical tricks, we obtain:

1

R

∂

∂R
(RνvRvz) +

∂

∂z

(
νv2z

)
+ ν

∂Φ

∂z
= 0, (11)

and:
1

R2

∂

∂R

(
R2νvRvϕ

)
+

∂

∂z
(νvzvϕ) = 0. (12)
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