Towards self-reproducing robots

What you will learn in this class

- Types of self-reproduction
- Self-assembly by mobile robots
- Programmable self-assembly
- 2D multi-cellular robots: *in silico* evolution and hardware assembly
- 3D multi-cellular robots: hardware design and assembly
- Artificial ontogenesis in silico
- In silico evolution, in vivo self-assembly of multicellular organisms
- *In vivo* kinematic self-replication

Self-reproduction by growth

Organisms self-reproduce by a mechanism of cell division, specialization, and migration

Early development of *Drosophila* [Slack 2006]

Self-reproduction by self-assembly

At sub-cellular level, self-replication happens by self-assembly of existing materials (see first lecture on "From DNA to Proteins")

Von Neumann (1966), *Theory of self-reproducing automata*, A.E. Burks (Editor), University of Illinois Press

"Self-reproducing robots by self-assembly are possible if a reservoir of specialized cells is available in the environment"

He considered a floating environment with millions of elementary "cells" of approximately 20 types:

- sensor cell
- muscle cell
- cutting cell
- fusing cell
- neuron-like cell

- . .

2 requirements for self-assembly

A population of diverse cells

Intrinsic and/or extrinsic energy potential

Penrose, L. S. & Penrose, R. Nature 179, 1183 (1957).

Self-assembling Kilobots

Rubenstein et al. (2014) Science

Self-assembly Algorithm

Self-Organizing Systems Research Group

Harvard University School of Engineering and Applied Sciences Wyss Institute for Biologically Inspired Engineering

Cells in Multicellular Organisms stiffness, specialization, connectivity

Cyanobacteria

Myxobacteria

Cell diversity

Softness affects folding angle

Germann et al (2014) Soft Robotics

Soft cells

Soft cells

Programmable Self-Assembly

Programmable self-assembly in hardware

Germann et al (2014) *Soft Robotics*

Adding muscle cells

Soft Modular Worm

From 2D to 3D: Tensegrity robotic cells

3D multicellular worm

A contracting module

-20

-40

3D printed hole-pin latching

Time [s]

D. Zappetti, S. Mintchev, J. Shintake, e D. Floreano (2017) «Bio-inspired Tensegrity Soft Modular Robots», in *Biomimetic and Biohybrid Systems*, 497–508

Different types of tensegrity cells

Multicellular tensegrity robots

Artificial Ontogeny (Bongard and Pfeifer, 2001)

Evolutionary developmental process to synthesize artificial multicellular "creatures"

Xenobots: Evolved in silico, self-assembled in vivo

Kriegman, Sam, Douglas Blackiston, Michael Levin, and Josh Bongard (2020) A Scalable Pipeline for Designing Reconfigurable Organisms." *Proceedings of the National Academy of Sciences* 117(4): 1853–59. <u>https://doi.org/10.1073/pnas.1910837117</u>.

A scalable pipeline for designing reconfigurable organisms. Sam Kriegman, Douglas Blackiston, Michael Levin, Josh Bongard University of Vermont, Tufts University.

Manufacturing of self-assembling organism

Caution: insertion of cardiac cells within Xenobot is not shown in the video

time lapse

t = 0

Assembly of Xenobots by frog cells

Spontaneous motion of frog cells assemble clusters of ectodermal stem cells that become Xenobots

...but Xenobots assembled by frog cells do not self-replicate

Kinematic self-replication of Xenobots

In silico evolution designs frog cell shapes that assemble self-replicating Xenobots

Kriegman, Sam, Douglas Blackiston, Michael Levin, and Josh Bongard (2021) Kinematic Self-Replication in Reconfigurable Organisms. *Proceedings of the National Academy of Sciences* 118(49) <u>https://doi.org/10.1073/pnas.2112672118</u>.

Kinematic self replication in reconfigurable organisms.

Sam Kriegman^{1,2} Douglas Blackiston^{1,2} Michael Levin^{1,2} & Josh Bongard^{3,*}

¹ Allen Discovery Center, Tufts University
² Wyss Institute for Biologically Inspired Engineering, Harvard University
³ Department of Computer Science, University of Vermont
* jbongard@uvm.edu