Towards self-reproducing robots




What you will learn in this class

Types of self-reproduction

Self-assembly by mobile robots

Programmable self-assembly

2D multi-cellular robots: in silico evolution and hardware assembly
3D multi-cellular robots: hardware design and assembly

Artificial ontogenesis in silico

In silico evolution, in vivo self-assembly of multicellular organisms

In vivo kinematic self-replication



Self-reproduction by growth

Organisms self-reproduce by a mechanism of cell division, specialization, and migration
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Self-reproduction by self-assembly

At sub-cellular level, self-replication happens by self-assembly of existing materials (see first
lecture on “From DNA to Proteins”)

Von Neumann (1966), Theory of self-reproducing automata,
A.E. Burks (Editor), University of lllinois Press

“Self-reproducing robots by self-assembly are possible if a
reservoir of specialized cells is available in the environment”

He considered a floating environment with millions of
elementary “cells” of approximately 20 types:

- sensor cell

- muscle cell

- cutting cell

- fusing cell

- neuron-like cell




2 requirements for self-assembly

A population Intrinsic and/or extrinsic
of diverse cells energy potential
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Self-assembling Kilobots
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Self-assembly Algorithm

User-specified shape Edge-following Gradient formation Localization
3 N 7 N N\ N

The desired shape is given to all robots in the A robot (red) moves Each robot sets its A robot (blue) determines its position in
form of a binary bitmap. Four pre-localized by maintaining a gradient value to 1 + the the coordinate system by communicating
seed robots (green) define the origin and fixed distance 'd' to minimum value of all with already localized robots (green).
orientation of the coordinate system. the center of the neighbors closer than

closest stationary distance 'g'. The source

robot (green). robot (green) maintains

a gradient value of 0.
The desired shape

is aligned with the
coordinate system
and scaled by the
input parameter 's'.

3
(za,ya) = glsiﬁ (; di,a) — ail)

| where o = /(zi — ®4)? + (yi — y4)? |

Self-assembly algorithm

i SRS : First edge-following robot SO : :

enters desired shape, as

Second robot stops and joins

Starting position of J— detarmined by its . the assembly when next to a
the initial group (blue : location in the coordinate ; § stationary robot with the
robots), and seed 4 system. ' same gradient value.
robots (green). 01 B e
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Completed shape

after all robots have

joined the assembly,
with numbers

/ A robot (purple)
stops and joins the

assembly as it is
about to exit shape.

Robots start edge-
following (red).
Internal representation ; .
of desired shape is showing the order in
shown as dotted line. which robots joined.
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Cells in Multicellular Organisms
stiffness, specialization, connectivity

Cyanobacteria | Myxobacteria
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Softness affects folding angle
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Programmable Self-Assembly

Target
shape

Sequence
generator
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S. Griffith (2004), Growing Machines,
MIT PhD thesis
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Programmable self-assembly in hardware

a Soft Ecoflexring b

Germann et al

IR\ cocym magnet S tisanet e 2014) Soft Robotics
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Adding muscle cells

SMA spring network

Soft membrane



Soft Modular Worm




From 2D to 3D: Tensegrity robotic cells

Actin filaments -——--—-—.; Pre-stretched cables

Microtubules I Struts




3D multicellular worm

A contracting module 3D printed hole-pin latching
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D. Zappetti, S. Mintchev, J. Shintake, e D. Floreano (2017) «Bio-inspired
Time [s] Tensegrity Soft Modular Robots», in Biomimetic and Biohybrid Systems, 497-508



Different types of tenseqgrity cells

a
/ /Passive Icosahedron .\

ks

b /
Brain module a

@

\ Qﬁicrocontrollér and battey

C

.

anction connector O\

o

_

d

=

(Passive three-box-prism module \ \
]

4

= tendon

/

o




Multicellular tensegrity robots

/ i Crawler
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Artificial Ontogeny (Bongard and Pfeifer, 2001)

Evolutionary developmental process to synthesize artificial multicellular “creatures”




Xenobots: Evolved in silico, self-assembled in vivo

A Evolved designs in SI/ICO Realization in vivo
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Kriegman, Sam, Douglas Blackiston, Michael Levin, and Josh Bongard (2020) A Scalable Pipeline for Designing Reconfigurable
Organisms.” Proceedings of the National Academy of Sciences 117(4) : 1853-59. hitps://doi.org/10.1073/pnas.1910837117.



https://doi.org/10.1073/pnas.1910837117

A scalable pipeline for
designing reconfigurable organisms.

Sam Kriegman, Douglas Blackiston, Michael Levin, Josh Bongard

University of Vermont, Tufts University.




Manufacturing of self-assembling organism

Linage manipulation Tissue layering

A ICD-Noteh
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Caution: insertion of cardiac cells within
Xenobot is not shown in the video




Assembly of Xenobots by frog cells

Spontaneous motion of frog cells assemble clusters of ectodermal stem cells that become Xenobots

mature gen n+1

...but Xenobots assembled by frog cells do not self-replicate



Kinematic self-replication of Xenobots

In silico evolution designs frog cell shapes that assemble self-replicating Xenobots
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Spheroid Xenobots

Evolved Xenobots

Kriegman, Sam, Douglas Blackiston, Michael Levin, and Josh Bongard (2021) Kinematic Self-Replication in Reconfigurable
Organisms. Proceedings of the National Academy of Sciences 118(49) htips://doi.org/10.1073/pnas.2112672118.



https://doi.org/10.1073/pnas.2112672118

Kinematic self replication in reconfigurable organisms.

Sam Kriegman'? Douglas Blackiston’* Michael Levin'? & Josh Bongard®*

' Allen Discovery Center, Tufts University
2 Wyss Institute for Biologically Inspired Engineering, Harvard University
°> Department of Computer Science, University of Vermont
* jbongard@uvm.edu
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