Homework 9
(CS-526 Learning Theory

Recaps if needed:

The tensor product is denoted by ®. In other words, for vectors a, b, ¢ we have that a ® b
is the square array a®b® where the superscript denotes the components, and a ® b ® ¢ is the
cubic array a®b’c’. We often denote components by superscripts because we need the lower
index to label vectors themselves.

The Kronecker product Qo of two vectors a € R and b € R”2 is a vectorization of the
tensor (or outer) product. This amounts to take the I} x Iy array a®0? = (a ® b)*’ and view
it as a vector of size I;I,. More precisely, we define the Kronecker product as the column
vector:

a®kob=[a't" -+ "] eRME
Let A = [a, -+ ap] and B = [b; --- bg] be matrices of dimensions I; x R and
I, x R. We define the Khatri-Rao product as the I11, x R matrix
A Oknr B = [Ql QKo by 0 AR Pkro QR} :

We recall that if both A and B are full column rank, then the Khatri-Rao product A ®xnr B
is also full column rank.

A summary of Jennrich’s algorithm is found on page 3.

Problem 1: Jennrich’s type algorithm for order 4 tensors

Consider an order four tensor

R
T=> 0a8bccod,
r=1
where A = [Ql QR} € RixE B = [[21 QR} € REXE (O = [gl QR] € RBxE
and D = [d; --- dg| € RI*F are full column rank.

1) Check that you can apply Jennrich’s algorithm (see next page for a recap of this
algorithm) to a “flattened” version of 7', namely the order three tensor

R
T=>4a0b®C Okod,).
r=1

where ®k;, is the Kronecker product defined in the previous question.

2) Deduce that the rank R as well as the matrices A, B, C, D can be uniquely determined
from the four-dimensional array of numbers T (up to trivial rank permutation and
feature scaling).



Problem 2: A multiple choice question
Find the correct answer(s).

Let w;(e) for i € {1,..., K} be continuous functions of ¢ € [0,1]. Suppose that for all
€ € [0,1] the N x K matrices [a; +ea] --- agx +eal], [b1+eb] -+ bg+ebi] and
[c1+e€c] -+ cg+eck] have rank K. Consider the tensor

T(e) = Zwi(e) (a; 4 €a)) ® (b; + b)) @ (¢; + ec}) .

A) The tensor rank equals K for all € € [0, 1].

)
B) The tensor rank equals K for all € € [0,1] such that Vi € {1,..., K} : w;(e) # 0.
C) It may happen that the tensor rank of the limit lim. o 7'(¢) is K + 1.

)
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(
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D) If we replace the assumption that [cl +ecy - cx+ ec’K} is rank K by the as-
sumption that these vectors are pairwise independent, then the tensor rank can never
be K whatever the assumptions on w;(e), i =1,..., K.



4.1.1 Jennrich’s Algorithm. If A, B, and C are all linearly inde-
pendent (i.e. have full rank), then X = Zil Ara,@®b,®c, is unique
up to trivial rank permutation and feature scaling and we can use
Jennrich’s algorithm to recover the factor matrices [23, 24]. The
algorithm works as follows:

(1) Choose random vectors x and y.
(2) Take a slice through the tensor by hitting the tensor with

the random vector x:
X(I.Ix) = ¥R (c;.x)a, @ b, = ADiag({c,.x))BT.

(3) Take a second slice through the tensor by hitting the tensor
with the random vector y:
X(I.Ly) = ¥R (c;.y)a, ©b, = ADiag((c,.y))BT.
(4) Compute eigendecomposition to find A:
X(I.I.x) X(I.I.y)" = ADiag({c,. x))Diag({c,.y)) AT
(5) Compute eigendecomposition to find B:
X(I.1.x)" X(I.1.y) = (BT)"Diag({cy. x)) " Diag((c,.y))B'
(6) Pair up the factors and solve a linear system to find C.

Figure 1: Jennrich’s algorithm (from Introduction to Tensor Decompositions and their Ap-
plications in Machine Learning Review, Rabanser, Shchur, Gunnemann)



