Recaps if needed:

The *tensor product* is denoted by \otimes . In other words, for vectors $\underline{a}, \underline{b}, \underline{c}$ we have that $\underline{a} \otimes \underline{b}$ is the square array $a^{\alpha}b^{\beta}$ where the superscript denotes the components, and $\underline{a} \otimes \underline{b} \otimes c$ is the cubic array $a^{\alpha}b^{\beta}c^{\gamma}$. We often denote components by superscripts because we need the lower index to label vectors themselves.

The Kronecker product \otimes_{Kro} of two vectors $\underline{a} \in \mathbb{R}^{I_1}$ and $\underline{b} \in \mathbb{R}^{I_2}$ is a vectorization of the tensor (or outer) product. This amounts to take the $I_1 \times I_2$ array $a^{\alpha}b^{\beta} = (\underline{a} \otimes \underline{b})^{\alpha\beta}$ and view it as a vector of size I_1I_2 . More precisely, we define the Kronecker product as the column vector:

$$\underline{a} \otimes_{\mathrm{Kro}} \underline{b} = \begin{bmatrix} a^1 \underline{b}^T & \cdots & a^{I_1} \underline{b}^T \end{bmatrix}^T \in \mathbb{R}^{I_1 I_2}$$

Let $A = \begin{bmatrix} \underline{a}_1 & \cdots & \underline{a}_R \end{bmatrix}$ and $B = \begin{bmatrix} \underline{b}_1 & \cdots & \underline{b}_R \end{bmatrix}$ be matrices of dimensions $I_1 \times R$ and $I_2 \times R$. We define the *Khatri-Rao* product as the $I_1 I_2 \times R$ matrix

$$A \odot_{\operatorname{KhR}} B = \left[\underline{a}_1 \otimes_{\operatorname{Kro}} \underline{b}_1 \quad \cdots \quad \underline{a}_R \otimes_{\operatorname{Kro}} \underline{b}_R\right] \;.$$

We recall that if both A and B are full column rank, then the Khatri-Rao product $A \odot_{\text{KhR}} B$ is also full column rank.

A summary of Jennrich's algorithm is found on page 3.

Problem 1: Jennrich's type algorithm for order 4 tensors

Consider an order four tensor

$$T = \sum_{r=1}^{R} \underline{a}_r \otimes \underline{b}_r \otimes \underline{c}_r \otimes \underline{d}_r$$

where $A = \begin{bmatrix} \underline{a}_1 & \cdots & \underline{a}_R \end{bmatrix} \in \mathbb{R}^{I_1 \times R}, B = \begin{bmatrix} \underline{b}_1 & \cdots & \underline{b}_R \end{bmatrix} \in \mathbb{R}^{I_2 \times R}, C = \begin{bmatrix} \underline{c}_1 & \cdots & \underline{c}_R \end{bmatrix} \in \mathbb{R}^{I_3 \times R}$ and $D = \begin{bmatrix} \underline{d}_1 & \cdots & \underline{d}_R \end{bmatrix} \in \mathbb{R}^{I_4 \times R}$ are full column rank.

1) Check that you can apply Jennrich's algorithm (see next page for a recap of this algorithm) to a "flattened" version of T, namely the order three tensor

$$\widetilde{T} = \sum_{r=1}^{R} \underline{a}_{r} \otimes \underline{b}_{r} \otimes (\underline{c}_{r} \otimes_{\mathrm{Kro}} \underline{d}_{r}) \ .$$

where \otimes_{Kro} is the Kronecker product defined in the previous question.

2) Deduce that the rank R as well as the matrices A, B, C, D can be uniquely determined from the four-dimensional array of numbers $T^{\alpha\beta\gamma\delta}$ (up to trivial rank permutation and feature scaling).

Problem 2: A multiple choice question

Find the correct answer(s).

Let $w_i(\epsilon)$ for $i \in \{1, \ldots, K\}$ be continuous functions of $\epsilon \in [0, 1]$. Suppose that for all $\epsilon \in [0, 1]$ the $N \times K$ matrices $[\mathbf{a}_1 + \epsilon \mathbf{a}'_1 \cdots \mathbf{a}_K + \epsilon \mathbf{a}'_K]$, $[\mathbf{b}_1 + \epsilon \mathbf{b}'_1 \cdots \mathbf{b}_K + \epsilon \mathbf{b}'_K]$ and $[\mathbf{c}_1 + \epsilon \mathbf{c}'_1 \cdots \mathbf{c}_K + \epsilon \mathbf{c}'_K]$ have rank K. Consider the tensor

$$T(\epsilon) = \sum_{i=1}^{K} w_i(\epsilon) \left(\mathbf{a}_i + \epsilon \mathbf{a}_1' \right) \otimes \left(\mathbf{b}_i + \epsilon \mathbf{b}_1' \right) \otimes \left(\mathbf{c}_i + \epsilon \mathbf{c}_1' \right) \,.$$

- (A) The tensor rank equals K for all $\epsilon \in [0, 1]$.
- (B) The tensor rank equals K for all $\epsilon \in [0, 1]$ such that $\forall i \in \{1, \dots, K\} : w_i(\epsilon) \neq 0$.
- (C) It may happen that the tensor rank of the limit $\lim_{\epsilon \to 0} T(\epsilon)$ is K + 1.
- (D) If we replace the assumption that $[\mathbf{c}_1 + \epsilon \, \mathbf{c}'_1 \, \cdots \, \mathbf{c}_K + \epsilon \, \mathbf{c}'_K]$ is rank K by the assumption that these vectors are pairwise independent, then the tensor rank can *never* be K whatever the assumptions on $w_i(\epsilon)$, $i = 1, \ldots, K$.

4.1.1 Jennrich's Algorithm. If A, B, and C are all linearly independent (i.e. have full rank), then $\mathfrak{X} = \sum_{r=1}^{R} \lambda_r a_r \odot b_r \odot c_r$ is unique up to trivial rank permutation and feature scaling and we can use Jennrich's algorithm to recover the factor matrices [23, 24]. The algorithm works as follows:

- (1) Choose random vectors \boldsymbol{x} and \boldsymbol{y} .
- (2) Take a slice through the tensor by hitting the tensor with the random vector \mathbf{x} : $\mathfrak{X}(\mathbf{I}, \mathbf{I}, \mathbf{x}) = \sum_{r=1}^{R} \langle c_r, \mathbf{x} \rangle a_r \odot b_r = A \text{Diag}(\langle c_r, \mathbf{x} \rangle) B^T.$

(3) Take a second slice through the tensor by hitting the tensor with the random vector *u*:

$$\mathfrak{X}(I, I, y) = \sum_{r=1}^{R} \langle c_r, y \rangle a_r \otimes b_r = A \text{Diag}(\langle c_r, y \rangle) B^T.$$
(4) Compute eigendecomposition to find A:

- (1) $\mathcal{X}(I, I, x) \mathcal{X}(I, I, y)^{\dagger} = A \text{Diag}(\langle c_r, x \rangle) \text{Diag}(\langle c_r, y \rangle)^{\dagger} A^{\dagger}$ (5) Compute eigendecomposition to find *B*:
- (6) Pair up the factors and solve a linear system to find \mathcal{L}^{T} (6) Pair up the factors and solve a linear system to find C.

Figure 1: Jennrich's algorithm (from Introduction to Tensor Decompositions and their Applications in Machine Learning Review, Rabanser, Shchur, Gunnemann)