
Biomass: biogases

BIOGAS

Sources for biogas generation

=> essentially wet wastes, too inefficient too burn:

 organic industrial effluents 	<5% organic dry matter
 sewage 	5%
 farming residues 	10%
 solid wastes (digesters, landfill) 	>20%
 municipalities (≈20 m³/yr.person) 	MSW
 industry 	ISW
- >100 m ³ biogas produced per tonne	e 'solid' waste (≈20% org_solids)

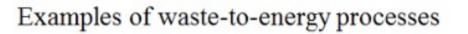
 - >100 m³ biogas produced per tonne 'solid' waste (≈20% org. solids) (ca. 500 L biogas per kg organic dry matter)

When to *digest* waste?

Waste disposal scheme options, in particular for organics :

- incineration:
- composting:
- methanisation:
- landfill:

for $\ensuremath{\textbf{solid}}$ wastes


= aerobic; for farming (fertilising)

= anaerobic digestion

as a lesser option, when none of the other options apply...; landfilling, however, is restricted in the case of <u>organic</u> wastes

=> most appropriate for **liquid** wastes with an organic fraction

EU "waste-to-energy hierarchy"

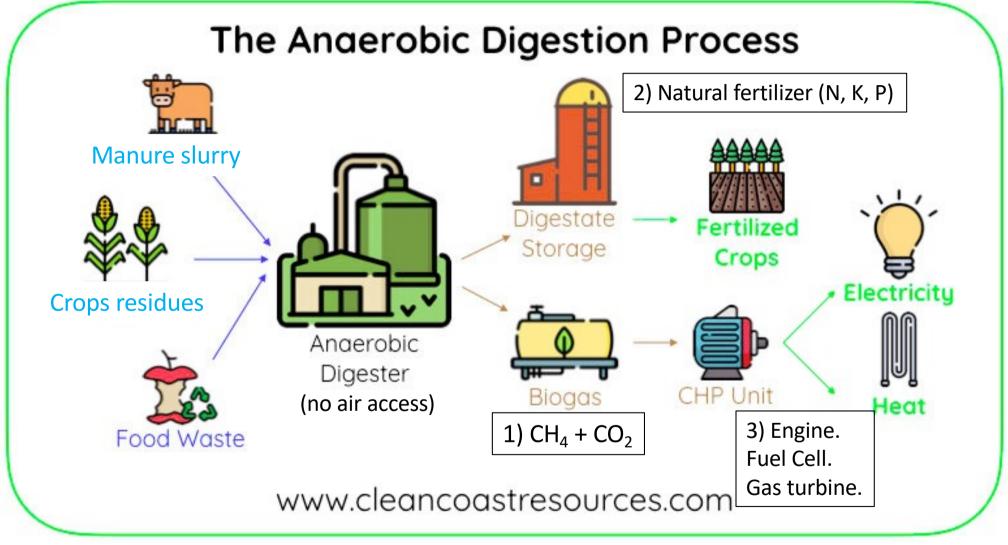
Anaerobic digestion of organic waste where the digestate is recycled as a fertliser

Waste incineration and co-incineration operations with a high level of energy recovery Reprocessing of waste into materials that are to be used as solid, liquid or gaseous fuels

Waste incineration and co-incineration operations with limited energy recovery Utilisation of captured landfill gas

"The role of waste-to-energy in the <u>circular economy</u>", Brussels, 26.1.2017 COM(2017) 34 final

Anaerobic digestion - AD (1)


- =transformation of organic matter by microorganisms (bacteria) in absence of O₂
- internal reduction + oxidation breakdown of the biomass polymers (C-H-O) to the simplest building blocks :

CH₄ (fully reduced) + **CO**₂ (fully oxidized) => biogas

- mature market technology
- drawback: lignine is nearly undigestable, cellulose is difficult to digest

=> AD is a slow process (10-20 days residence time), occurring at ≈35-55°C

Anaerobic digestion (AD) of biowaste

https://www.cleancoastresources.com/industry-resources/what-is-anaerobic-digestion

Digestion process (2)

4 distinct steps in time; using 3 different bacterial groups

1. Hydrolysis (uses exo-enzymes)

= the *slowest* of the 4 steps (<u>rate-determining</u>)

breaks solid org. matter down to liquified monomeres & dimeres:

cellulose \rightarrow cellobiose + glucose

starch \rightarrow maltose + glucose

2. Digestion

= formation of organic **acids**

acetic / propionic / butyric acid (= $C_2/C_3/C_4$ -OOH), lactic acid, ethanol, and little H₂ and CO₂

Digestion process (3)

3. 'Acidogenesis'

higher acids break down to CH_3COOH (acetic acid), H_2 and CO_2 , approximatively as in the overall reaction:

 $C_6H_{12}O_6 + 2H_2O \rightarrow 2 CH_3COOH + 2 CO_2 + 4 H_2$

4. 'Methanogenesis':

a. $2CH_3COOH \rightarrow 2 CH_4 + 2 CO_2$ (70-80% of CH_4 product) b. $CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$ (20-30% of CH_4 product)

Reactions a & b take place upon different bacterial actions. These 2 parallel CH_4 -synthesis reactions explain why biogas compositions typically are (60±5)% CH_4 and (40±5%) CO_2

Overall approximation: $C_6H_{12}O_6 \rightarrow 3CH_4 + 3CO_2$

Anaerobic digestion - AD (4)

- The main objective for <u>sewage and similar effluents</u> (e.g. food industry) is waste treatment, i.e. depollution of liquid streams that are too heavily charged in organics, which cannot be discharged directly into the aquatic ecosystem; hence biogas is here mainly a by-product (energy recovered to power the "depollution plant")
- However, in the case of largely untapped <u>farm waste</u> (manure, crop residues) and <u>MSW/ISW</u>, biogas is not a byproduct but an active <u>energy vector</u> (and especially for valorisation into electricity production, in gas <u>engines</u> or <u>fuel cells</u>)

Advantages of AD

- 1. Biowastes become an energy source (=> biogas), not a burden.
- 2. Biogas is a local universal versatile fuel similar to natural gas, and therefore reduces (fossil) energy import (e.g. in agriculture).
- 3. Digesting the biowastes in a sealed tank, especially manure, instead of letting them freely rot (compost) in open air, will recover the CH₄ as fuel in a controlled way.
- 4. Biodigestate is a natural fertilizer of superior quality (better absorbed by the soil) than synthetic fertilizer (made from fossil fuels through e.g. industrial ammonia-synthesis)
- 5. The installation brings revenue to e.g. farmers, who become producers of biogas (renewable energy suppliers instead of fossil energy importers) and of natural fertilizer.

Chemical formulae for biogas generation

'Buswell' formula:

 $C_a H_b O_c + \left[a - \frac{1}{4}b - \frac{1}{2}c\right] H_2 O \rightarrow \left(\frac{1}{2}a + \frac{1}{8}b - \frac{1}{4}c\right) C H_4 + \left(\frac{1}{2}a - \frac{1}{8}b + \frac{1}{4}c\right) C O_2$ e.g. for **manure**, approximated as $C_4H_8O_2$ (butyric acid): $C_4 H_8 O_2 + [4 - 2 - 1] H_2 O \rightarrow (2 + 1 - \frac{1}{2}) C H_4 + (2 - 1 + \frac{1}{2}) C O_2 = \frac{5}{8} C H_4 + \frac{3}{8} C O_2$ <u>'Buswell-Boyle'</u> (with N, S): $C_a H_b O_c N_d S_e + \frac{1}{4} [4a - b - 2c + 3d + 2e] H_2 O_c$ $\rightarrow \frac{1}{8}(4a+b-2c-3d-2e)CH_4$ + $\frac{1}{8}(4a - b + 2c + 3d + 2e)CO_2$ + dNH_3 + eH_2S

<u>Remark</u>: CO_2 , NH_3 , H_2S dissolve better in H_2O than CH_4 , hence the recovered gas is actually methane-enriched

Digestion is a batch process

- once a day, fresh organic substrate is filled in, and digested matter is removed from a batch reactor
- mean residence time (days):
 - saturation after 20 days

$$\theta = \frac{V_{reactor} \left[m^3 \right]}{V_{org} \left[\frac{m^3}{d} \right]}$$

- daily specific load (kg/m³.d)
- $M_{day} = V_{org} \cdot \frac{M}{V} = \frac{M}{\theta}$ – M can designate fresh or dry organic matter
- biogas production can be expressed as:

 $m^{3}_{biogas}/m^{3}_{reactor}$ $m^{3}_{biogas}/kg_{org.matter}$

Digestor reactor temperature

Enzyme				Optimal T range
'Psychrophilic'				20°C
'Mesophilic'				20-45°C
'Thermophilic'				>45°C
relative CH₄ production		100%		many reactors operate at 28-37°C U they are heated by burning part of the biogas
	10	20	30	40 50 60 °C

ME460 Biogas

Experience values

- The determining factors in biogas production are:
 - temperature; part of the biogas is used to heat the reactor; the biogas production rate saturates at 40°C
 - residence time (days); saturates at 20 days
 - organic matter charge (usually 3-10%)

Production	Unit	Cows	Pigs
per animal and day	m_{biogas}^3 /head.day	1.3 <u>+</u> 0.3	1.5 <u>+</u> 0.6
per mass	$m_{biogas}^{3}/kg_{org.matter}$	0.3 <u>+</u> 0.05	0.5 <u>+</u> 0.05

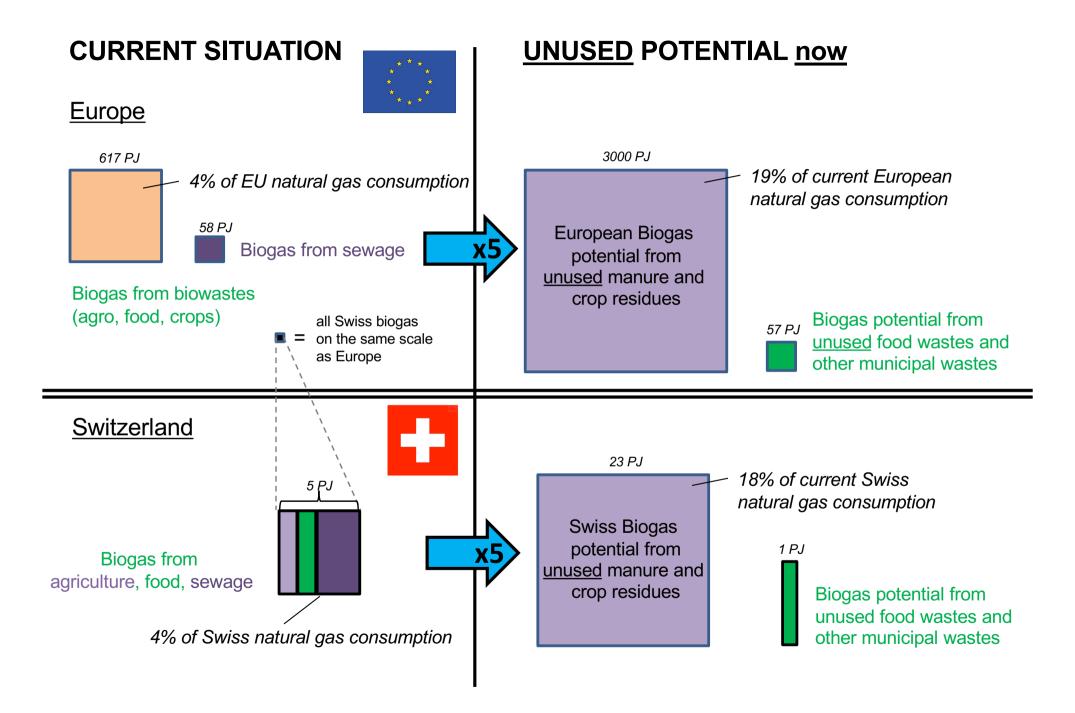
 \rightarrow 1.5 m³/day @ 20 MJ/m³ = 30 MJ/day \approx 8 kWh/day

= equivalent to 2 m^2 of thermal solar collectors

Any farm animal produces ca. 18-20 kg of manure per year per kg of its own body weight

Biogas vs. natural gas

Property	Unit	NG	BG (60% CH ₄)
LHV	MJ / m ³	36	21.5
Density	kg/m ³	0.82	1.21
Ignition T	°C	620	700
Ignition speed in air	m/s	39	0.25
Air factor	-	9.5	5.7
Exhaust, max CO ₂	Vol%	11.9	17.8
Exhaust, dew point	°C	59	60-160

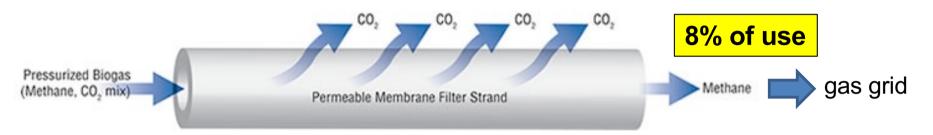

Some characteristics of biogas production

- the digestate is a good quality **fertilizer** (2% nitrogen)
 - better than (air-)composted waste (<1% nitrogen)
- else N-fertilizer has to be imported, which is made from natural gas in huge plants (1.5% of global energy consumption).
- a significant part of the produced biogas is used for **heating** of the digester and the installation itself (farm,...)
- (cold) desulfurisation of the biogas is done with FeCl₃ solution (to precipitate FeS); sulfur is removed as it is poisonous (for the atmosphere but also in downstream CHP engines or fuel cells)

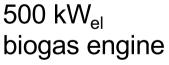
Biogas application examples (CH)

Source	Biogas m³/day	% CH ₄	% yr Ioad	Installed power	Effi- ciency
Farm 37 cattle	70	57	60	5 kW _{el}	18%
Sewage 30'000 p.	1000	65	65	130 kW _{el}	28%
MSW 80'000 p.	1300	60	95	90 kW _{el}	25%

=> small power sites (gas engines); low (electrical) efficiency

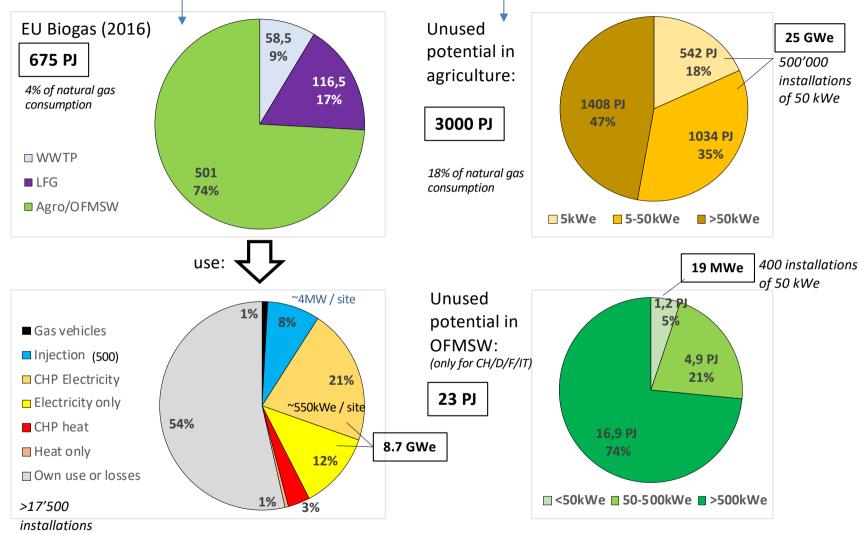


Current uses of biogas


There are presently 2 main ways to valorise biogas (CH_4/CO_2) as fuel:

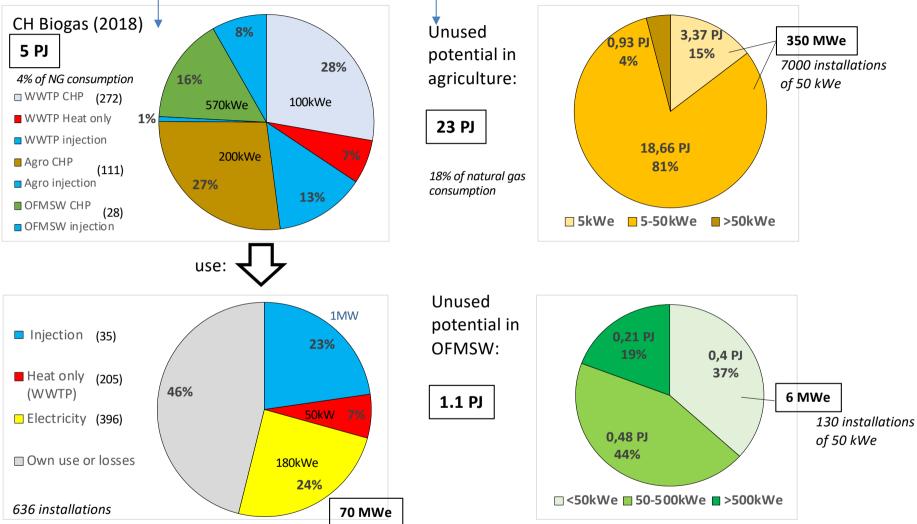
1) Separate CH_4 from CO_2 and inject the CH_4 into the natural gas grid.

2) Burn the biogas into a large engine to generate electricity and heat.



92% of use

Part is used in burners only


Status and potential in Europe

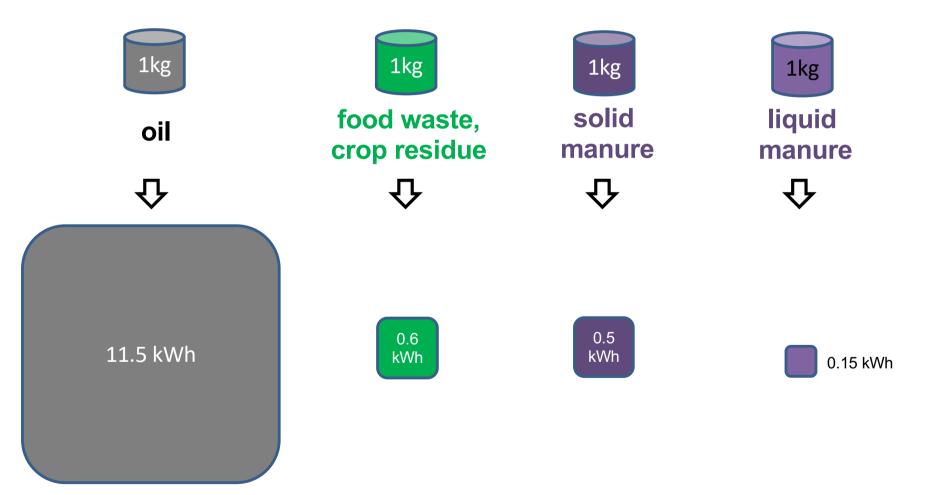
Use : mainly large installations >200m³/h (>1 MW_{CH4})

The unused potential lies in small scale installations of <20 m³/h

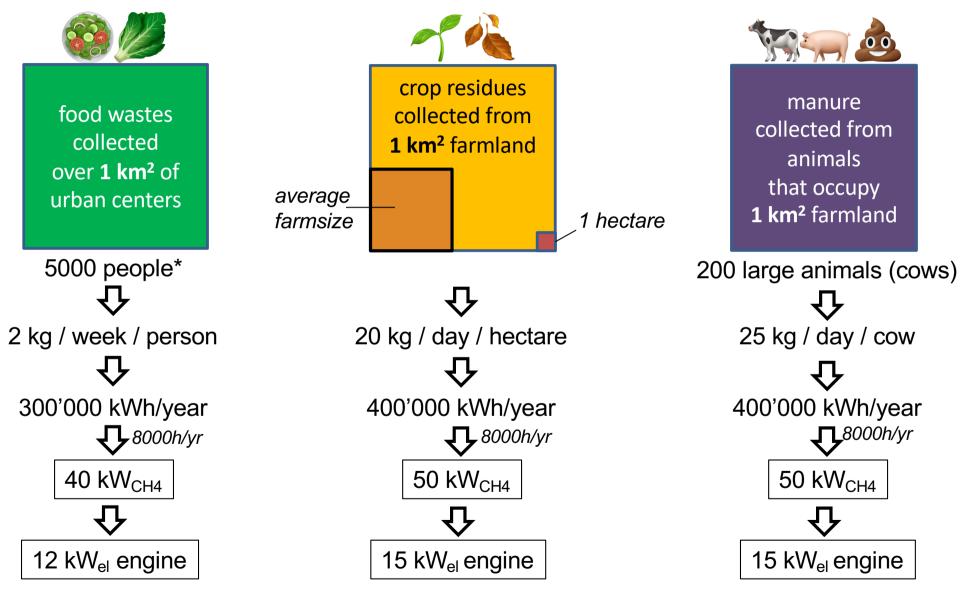
Status and potential in Switzerland

The issues

- The current use technologies of biomethane injection and CHP engines impose a scale of biogas production in <u>large digesters</u> to generate biogas <u>flows of 100-1000 m³/h</u> (0.6-6 MW_{CH4}), because at lower scale:
 - CH₄/CO₂ separation becomes expensive
 - Engines (and turbines) are electrically inefficient:
 - at 500 kWe, a biogas engine reaches up to 40% electrical efficiency*
 - at <50 kWe, a biogas engine does not reach 30% electrical efficiency


=> as a consequence, small-scale biogas generation remains unused, whereas this represents the majority of the resource

 Biogas engines pollute (they generate NO, CO, SO₂), are noisy, and expensive in maintenance (need regular replacement of parts). In fact small engines are replaced almost yearly.


*presently, average biogas engine efficiency is 38% in Europe and 34% in Switzerland

The issue of scale (1)

Biowastes are a <u>dilute</u> energy source

The issue of scale (2)

*5000 people/km² is a dense city (Lausanne: 3400 hab / km²)

Transporting biowaste fuel

- A tractor consumes 50 L diesel/100km = 500 kWh/100km
- 1 ton biowaste contains
 - 500 kWh for solids (crop residues, solid manure)
 - 150 kWh for liquid manure
- => it is not very sensical to transport a few tonnes of biowaste over more than 5-10km.

Special case of landfill gas (LFG)

- (multi) MW_{el} -size sites (with gas engines, gas turbines)
- an important fraction of world biogas (20 Mtoe)
- 3 Mtoe in EU-27
- often heavily contaminated (with F, Cl, NH₃, H₂S, Si,...)
- often of low calorific value (diluted with N_2/O_2)
 - engines stop running <45% CH₄
 - fuel-assisted flaring or venting !

Summarised:

- Biowaste is best used <u>locally</u>, over a few km²
- The available energy is then a few 100 kW_{CH4}, in biogas flows of 10-50 m³/h*

This requires:

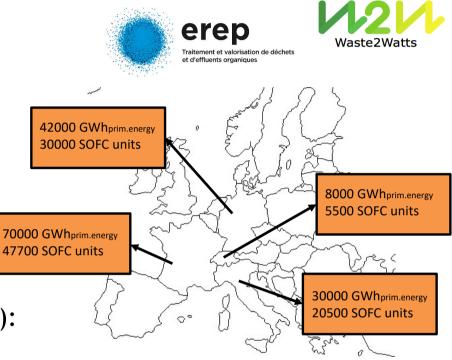
- 1. cost-effective small-scale AD (digesters)
- 2. a valorisation technology that is more efficient and cleaner than engines, on small-scale

```
\RightarrowSolid Oxide Fuel Cells : >50% electrical efficiency
no pollution (NO, CO, SO<sub>2</sub>)
```

*1.6 m³/h biogas (60%CH₄-40%CO₂) = 1 m³/h CH₄ = 10 kWh_CH₄ = 3 kWe in a 30% efficient engine

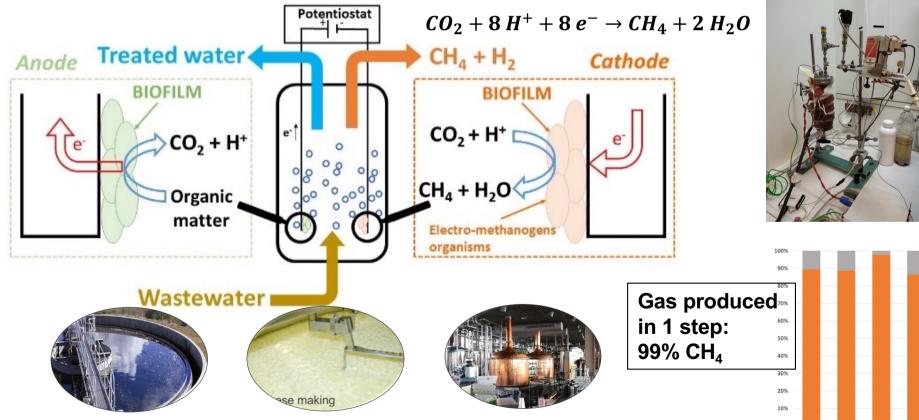
Demo biogas fuel cell

=> Semester or master project


Biogas potential

For 📕 + 🚺 + 🚺 + 🛱 :

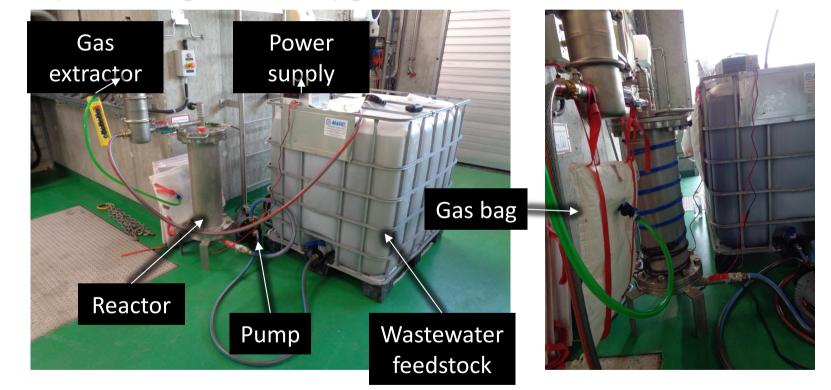
>100'000 sites of 50 kWe equiv.
from agrowaste presently not-used,
assuming only 50% of potential sites
would be equipped


- For Switzerland (5500 units of 50 kWe):
- 275 MWe * 8000 h => 2.2 TWhe
- = 4% of CH electricity
- = as much as the solid waste incineration plants (2.2 TWhe from 13 TWh solid wastes, electrical efficiency <20%)

Bio-electrical systems (BES)

- In BES, the biological methanation of CO₂ is electrocatalyzed in a single step at ambient P & T, using microbes as renewable catalyst.
- The microbes methanogenic bacteria (Archaea) act as electron bridges to reduce the high energy step from CO₂ to CH₄. Only a small amount of electrical energy is needed to maintain microbial conversion.

The business case is lowering the COD (chemical oxygen demand) of the WW treatment

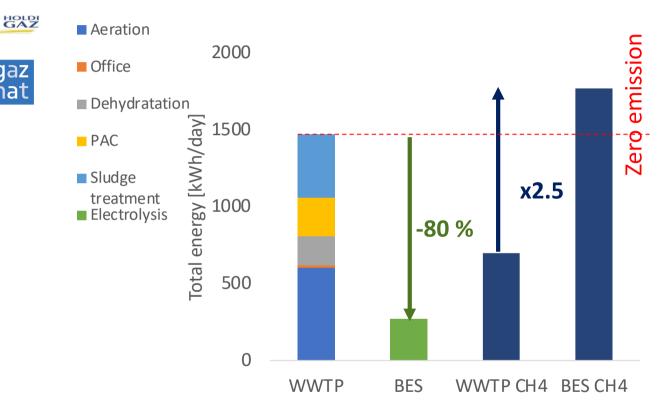

BES prototype tested

HOLDI GAZ

gaz

nat

 30 L (10 bar) microbial electrolysis reactor was operated at a local wastewater treatment plant producing 90% CH₄ gas:


1. In laboratory conditions, we achieve >99% CH4 gas

2. The process can also convert NH_4^+ to N_2 , to meet new strict regulations

Waste water treatment with BES

WWTP data :

gaz nat

Potential impact: 80% of energy consumption reduction using BES 2.5 more CH₄ production Savings and production: Savings: 167 kCHF/yr in electricity **Production: +13 kCHF/yr** in CH₄ sale

Perspective : turning a WWTP from energy-negative to energy-positive CH_4 potential from waste waters = replace 2% of natural gas import

^{=&}gt; Semester or master project