
Solutions to Homework 8
CS-526 Learning Theory

Problem 1

1) For every i ∈ [K], di is the ith canonical basis vector of RK and we define the latent random vector
h ∈ {di : i ∈ [K]} whose distribution is ∀i ∈ [K] : P(h = di) = wi. Finally, let x =

∑K
i=1 hiai + z

where z ∼ N (0, σ2ID×D) is independent of h. The random vector x has a probability density
function p(·). We have:

E[x] =
K∑
i=1

E[hi]ai + E[z] =
K∑
i=1

wi ai ;

E[xxT ] = E[zzT ] +
K∑
i=1

E[hi] E[z]︸︷︷︸
=0

aTi + E[hi]aiE[z]T +

K∑
i,j=1

E[hihj ]︸ ︷︷ ︸
=wiδij

aia
T
j

= σ2ID×D +
K∑
i=1

wi aia
T
i .

Finally, to compute the third moment tensor, note that E[z ⊗ z ⊗ z] = 0 and that for every
(i, j) ∈ [K]2: E[ai ⊗ aj ⊗ z] = E[ai ⊗ z ⊗ aj ] = E[z ⊗ ai ⊗ aj ] = 0. Hence:

E[x⊗ x⊗ x] =
K∑

i,j,k=1

E[hihjhk]︸ ︷︷ ︸
=wiδijδik

ai ⊗ aj ⊗ ak

+

K∑
i=1

E[hi]E[ai ⊗ z ⊗ z] + E[hi]E[z ⊗ ai ⊗ z] + E[hi]E[z ⊗ z ⊗ ai]

=
K∑
i=1

wi ai ⊗ ai ⊗ ai + σ2
D∑
j=1

K∑
i=1

wi(ai ⊗ ej ⊗ ej + ej ⊗ ej ⊗ ai + ej ⊗ ai ⊗ ej) .

2) Let A = [a1, a2, . . . , aK ] ∈ RD×K and A′ = [a′1, a
′
2, . . . , a

′
K ] ∈ RD×K . By definition, R̃ = Σ−1RΣ

where Σ is the diagonal matrix such that Σii =
√
wi and A′ = AR̃T . We can directly apply the

formula of question 1) to compute the second moment matrix of the new mixture of Gaussians:

E[xxT ] = σ2ID×D +A′Σ2A′T = σ2ID×D +AR̃TΣ2R̃AT

= σ2ID×D +AΣRTRΣAT = σ2ID×D +AΣ2AT .

Problem 2: Examples of tensors and their rank

1) The matrices corresponding to B, P , E are:

B =

[
1 0
0 1

]
; P =

[
1 1
1 1

]
; E =

[
1 1
0 1

]
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The frontal slices of G and W are:

G1 =

[
1 0
0 0

]
, G2 =

[
0 0
0 1

]
; W1 =

[
0 1
1 0

]
, W2 =

[
1 0
0 0

]
.

2) B and E are clearly rank-2 matrices, while P = (e0 + e1)⊗ (e0 + e1) is a rank-1 matrix.
By its definition, G is at most rank 2. Assume it is rank 1: G = a⊗ b⊗ c with a, b, c ∈ R2. We have
a1b1c1 = G111 = 1 and a2b1c1 = G211 = 0 so we must have a2 = 0. Besides, a2b2c2 = G222 = 1 and
a1b2c2 = G122 = 0 so a1 = 0. Hence aT = (0, 0) and G is the all-zero tensor. This is a contradiction
and we conclude that G is rank 2.
By its definition, W is at most rank 3. To prove the rank cannot be smaller than 3, we will proceed
by contradiction:

• Assume W is rank 1: W = a ⊗ b ⊗ c with a, b, c ∈ R2. We have a1b1c1 = W111 = 0 and
a2b1c1 = W211 = 1 so a1 = 0. Besides, a1b1c2 = W112 = 1 and a2b1c2 = W212 = 0 so a2 = 0.
Then a = (0, 0)T and W is the all-zero tensor, which is a contradiction.

• Assume W is rank 2: W = a ⊗ b ⊗ c + d ⊗ e ⊗ f . We claim that a and d must be linearly
independent. Indeed, suppose they are parallel and take a vector x perpendicular to both a
and d. Then

W (x, I, I) = (xTa)b⊗ c+ (xTd)e⊗ f = 0

but also

W (x, I, I) = (xT e0)e0 ⊗ e1 + (xT e0)e1 ⊗ e0 + (xT e1)e0 ⊗ e0 =

[
xT e1 xT e0
xT e0 0

]
which cannot be zero since x cannot be perpendicular to both e0 and e1. Now, we take x
perpendicular to d. We have

W (x, I, I) = (xTa)b⊗ c

which is rank one. Therefore, we must have xT e0 = 0 which implies that x is parallel to e1
and thus d parallel to e0. Now, if we take x perpendicular to a, the matrix

W (x, I, I) = (xTd)e⊗ f

is rank one and, once again, we must have xT e0 = 0, which implies x parallel to e1 and thus
a parallel to e0. Hence, we have shown that a and d are linearly independent but also that
both are parallel to e0. This is a contradiction.

3) We expand the tensor products in the definition of Dϵ:

Dϵ =
1

ϵ

[
(e0 + ϵe1)⊗ (e0 + ϵe1)⊗ (e0 + ϵe1)− e0 ⊗ e0 ⊗ e0

]
=

1

ϵ

[
e0 ⊗ e0 ⊗ e0 + ϵ e0 ⊗ e0 ⊗ e1 + ϵ e0 ⊗ e1 ⊗ e0 + ϵ e1 ⊗ e0 ⊗ e0

+ ϵ2 e1 ⊗ e1 ⊗ e0 + ϵ2 e1 ⊗ e0 ⊗ e1 + ϵ2 e0 ⊗ e1 ⊗ e1 + ϵ3 e1 ⊗ e1 ⊗ e1 − e0 ⊗ e0 ⊗ e0

]
= e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0

+ ϵ(e1 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e1) + ϵ2 e1 ⊗ e1 ⊗ e1

= W + ϵ(e1 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e1) + ϵ2 e1 ⊗ e1 ⊗ e1 .

Hence limϵ→0Dϵ = W .
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Problem 3

1) There cannot be an analogous general result for tensors. Indeed, the order-3 tensor W of Prob-
lem 2 is rank 3 and we showed in 3) that limϵ→0 ‖W −Dϵ‖F = 0. So there is no minimum attained
in the space of rank 2 tensors. In this sense, there is simply no best rank-two approximation of W .

2) Let M a matrix of rank R + 1 with singular values σ1 ≥ σ2 · · · ≥ σR ≥ σR+1 > 0. By the
Eckart-Young-Mirsky theorem, the minimum of ‖M − M̂‖F over all the matrices M̂ of rank less
than, or equal to, R is σR+1 > 0. Therefore, there cannot be a sequence of matrices Mn given by
a sum of R rank-one matrices such that limn→+∞ ‖M −Mn‖F = 0.

Now let M ∈ CM×N be a matrix of rank R − 1 with R ≤ min{M,N}. Let M = UΣV ∗

be the SVD of M where σ1 ≥ · · · ≥ σR−1 > 0 are its singular values. For all positive inte-
ger n, we define σ

(n)
R := σR−1/n as well as the rank-R matrix Mn = UΣnV

∗ where Σn is a
M × N diagonal matrix whose nonzero diagonal entries are σ1 ≥ · · · ≥ σR−1 ≥ σ

(n)
R . Clearly

limn→+∞ ‖M −Mn‖F = limn→+∞
σR−1

n = 0. A similar procedure can be applied if M is a tensor.

3) In the real-valued case, we have:

|T (R1, R2, R3)
αβγ |2 =

∑
δ,ϵ,ζ,δ′,ϵ′,δ′

Rδα
1 Rδ′α

1 Rϵβ
2 Rϵ′β

2 Rζγ
3 Rζ′γ

3 T δϵζT δ′ϵ′ζ′ .

Summing over α, β, γ and using the orthogonality of rotation matrices, we find:∑
α

Rδα
1 Rδ′α

1 = δδδ′ ,
∑
β

Rϵβ
2 Rϵ′β

2 = δϵϵ′ ,
∑
γ

Rζγ
3 Rζ′γ

3 = δζζ′ .

The result directly follows:

‖T (R1, R2, R3)‖2F =
∑
α,β,γ

|T (R1, R2, R3)
αβγ |2

=
∑

δ,ϵ,ζ,δ′,ϵ′,δ′

δδδ′δϵϵ′δζζ′T
δϵζT δ′ϵ′ζ′

=
∑
δϵζ

|T δϵζ |2

= ‖T‖2F .

Problem 4: Kronecker and Khatri-Rao products

1) To show that A �KhR B is full column rank, we have to prove that the kernel of the linear
application x 7→ (A �KhR B)x is {0}. Let x ∈ RR with components (x1, x2, · · · , xR) be such that
(A�KhR B)x = 0. Then, ∀α ∈ [I1]:

R∑
r=1

aαr x
rbr = 0 .

Because B is full column rank,
∑R

r=1 a
α
r x

rbr = 0 ⇒ ∀r ∈ [R] : aαr x
r = 0. Hence, ∀r ∈ [R] : xrar = 0.

A is full column rank so none of its columns can be the all-zero vector. It follows that xr must be
zero for all r ∈ [R], i.e., x = 0. A�KhR B is full column rank.
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2) Suppose we are given a tensor (the weights λr that usually appear in the sum are absorbed in
the vectors ar)

X =

R∑
r=1

ar ⊗ br ⊗ cr , (1)

where A = [a1, a2, . . . , aR] ∈ RI1×R, B = [b1, b2, . . . , bR] ∈ RI2×R and C = [c1, c2, . . . , cR] ∈ RI3×R

are full column rank. By Jennrich’s algorithm, the decomposition (1) is unique up to trivial rank
permutation and feature scaling and Jennrich’s algorithm is a way to recover this decomposition.
At the end of the step (5) of the algorithm, we have computed A,B and it remains to recover C.
We now show how the result in question 1) allows to recover C uniquely. For each γ ∈ [I3], define
the slice Xγ as the I1 × I2 matrix with entries (Xγ)

αβ = Xαβγ and denote F (Xγ) the I1I2 column
vector with entries F (Xγ)

β+I2(α−1) = Xαβγ . We have:

∀(α, β) ∈ [I1]× [I2] : F (Xγ)
β+I2(α−1) =

R∑
r=1

aαr b
β
r c

γ
r =

R∑
r=1

(A�KhR B)β+I2(α−1),rcγr .

Therefore, the I1I2 × I3 matrix F (X ) = [F (X1), F (X2), . . . , F (XI3)] satisfies:

F (X ) = (A�KhR B)CT .

Because A�KhRB is full column rank, we can invert the system with the Moore-Penrose pseudoin-
verse: CT = (A�KhR B)†F (X ).

Problem 5: Check of useful identities

The first identity simply follows from the definitions:

(c⊗Kro b)
T =

[
c1b

T c2b
T · · · cJb

T
]
= cT ⊗Kro b

T .

For the second identity on the inner product between the two column vectors e⊗Krod and c⊗Krob,
we simply have:

(e⊗Kro d)
T (c⊗Kro b) =

[
e1d

T e2d
T · · · eJd

T
]

c1b
c2b

...
cJb

 =
J∑

j=1

ejcjd
Tb = (eT c)(dTb) .

Finally, the product of the R × IJ matrix (E ⊗Khr D)T and the IJ ×R matrix (C ⊗Khr B) is the
R×R matrix whose entries are ∀(i, j) ∈ {1, . . . , R}2:

[
(E ⊗Khr D)T (C ⊗Khr B)

]
ij
=

IJ∑
k=1

[
E ⊗Khr D

]
ki

[
C ⊗Khr B

]
kj

= (ei ⊗Kro di)(cj ⊗Kro bj)

= (eTi cj)(d
T
i bj)

= [ETC]ij [D
TB]ij

= [(ETC) ◦ (DTB)]ij .

The third equality follows from the identity on the inner product of two Kronecker products. Hence
(E ⊗Khr D)T (C ⊗Khr B) = (ETC) ◦ (DTB).
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