Solutions to Homework 8 CS-526 Learning Theory

Problem 1

1) For every $i \in [K]$, \underline{d}_i is the i^{th} canonical basis vector of \mathbb{R}^K and we define the latent random vector $\underline{h} \in \{\underline{d}_i : i \in [K]\}$ whose distribution is $\forall i \in [K] : \mathbb{P}(\underline{h} = \underline{d}_i) = w_i$. Finally, let $\underline{x} = \sum_{i=1}^K h_i \underline{a}_i + \underline{z}$ where $\underline{z} \sim \mathcal{N}(0, \sigma^2 I_{D \times D})$ is independent of \underline{h} . The random vector \underline{x} has a probability density function $p(\cdot)$. We have:

$$\mathbb{E}[\underline{x}] = \sum_{i=1}^{K} \mathbb{E}[h_i]\underline{a}_i + \mathbb{E}[\underline{z}] = \sum_{i=1}^{K} w_i \underline{a}_i \quad ;$$

$$\mathbb{E}[\underline{x}\underline{x}^T] = \mathbb{E}[\underline{z}\underline{z}^T] + \sum_{i=1}^{K} \mathbb{E}[h_i] \underbrace{\mathbb{E}}[\underline{z}]_{=0} \underline{a}_i^T + \mathbb{E}[h_i]\underline{a}_i \mathbb{E}[\underline{z}]^T + \sum_{i,j=1}^{K} \underbrace{\mathbb{E}}[h_ih_j] \underline{a}_i \underline{a}_j^T$$

$$= \sigma^2 I_{D \times D} + \sum_{i=1}^{K} w_i \underline{a}_i \underline{a}_i^T .$$

Finally, to compute the third moment tensor, note that $\mathbb{E}[\underline{z} \otimes \underline{z} \otimes \underline{z}] = 0$ and that for every $(i, j) \in [K]^2$: $\mathbb{E}[\underline{a}_i \otimes \underline{a}_j \otimes \underline{z}] = \mathbb{E}[\underline{a}_i \otimes \underline{z} \otimes \underline{a}_j] = \mathbb{E}[\underline{z} \otimes \underline{a}_i \otimes \underline{a}_j] = 0$. Hence:

$$\mathbb{E}[\underline{x} \otimes \underline{x} \otimes \underline{x}] = \sum_{i,j,k=1}^{K} \underbrace{\mathbb{E}[h_i h_j h_k]}_{=w_i \delta_{ij} \delta_{ik}} \underline{a}_i \otimes \underline{a}_j \otimes \underline{a}_k + \sum_{i=1}^{K} \mathbb{E}[h_i] \mathbb{E}[\underline{a}_i \otimes \underline{z} \otimes \underline{z}] + \mathbb{E}[h_i] \mathbb{E}[\underline{z} \otimes \underline{a}_i \otimes \underline{z}] + \mathbb{E}[h_i] \mathbb{E}[\underline{z} \otimes \underline{z} \otimes \underline{a}_i] = \sum_{i=1}^{K} w_i \underline{a}_i \otimes \underline{a}_i \otimes \underline{a}_i + \sigma^2 \sum_{j=1}^{D} \sum_{i=1}^{K} w_i (\underline{a}_i \otimes \underline{e}_j \otimes \underline{e}_j + \underline{e}_j \otimes \underline{a}_i + \underline{e}_j \otimes \underline{a}_i \otimes \underline{e}_j) .$$

2) Let $A = [\underline{a}_1, \underline{a}_2, \dots, \underline{a}_K] \in \mathbb{R}^{D \times K}$ and $A' = [\underline{a}'_1, \underline{a}'_2, \dots, \underline{a}'_K] \in \mathbb{R}^{D \times K}$. By definition, $\widetilde{R} = \Sigma^{-1} R \Sigma$ where Σ is the diagonal matrix such that $\Sigma_{ii} = \sqrt{w_i}$ and $A' = A \widetilde{R}^T$. We can directly apply the formula of question 1) to compute the second moment matrix of the new mixture of Gaussians:

$$\begin{split} \mathbb{E}[\underline{xx}^T] &= \sigma^2 I_{D \times D} + A' \Sigma^2 A'^T = \sigma^2 I_{D \times D} + A \widetilde{R}^T \Sigma^2 \widetilde{R} A^T \\ &= \sigma^2 I_{D \times D} + A \Sigma R^T R \Sigma A^T = \sigma^2 I_{D \times D} + A \Sigma^2 A^T \; . \end{split}$$

Problem 2: Examples of tensors and their rank

1) The matrices corresponding to B, P, E are:

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} ; P = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} ; E = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

The frontal slices of G and W are:

$$G_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, G_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}; W_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, W_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

2) *B* and *E* are clearly rank-2 matrices, while $P = (e_0 + e_1) \otimes (e_0 + e_1)$ is a rank-1 matrix. By its definition, *G* is at most rank 2. Assume it is rank 1: $G = a \otimes b \otimes c$ with $a, b, c \in \mathbb{R}^2$. We have $a_1b_1c_1 = G_{111} = 1$ and $a_2b_1c_1 = G_{211} = 0$ so we must have $a_2 = 0$. Besides, $a_2b_2c_2 = G_{222} = 1$ and $a_1b_2c_2 = G_{122} = 0$ so $a_1 = 0$. Hence $a^T = (0,0)$ and *G* is the all-zero tensor. This is a contradiction and we conclude that *G* is rank 2.

By its definition, W is at most rank 3. To prove the rank cannot be smaller than 3, we will proceed by contradiction:

- Assume W is rank 1: $W = a \otimes b \otimes c$ with $a, b, c \in \mathbb{R}^2$. We have $a_1b_1c_1 = W_{111} = 0$ and $a_2b_1c_1 = W_{211} = 1$ so $a_1 = 0$. Besides, $a_1b_1c_2 = W_{112} = 1$ and $a_2b_1c_2 = W_{212} = 0$ so $a_2 = 0$. Then $a = (0, 0)^T$ and W is the all-zero tensor, which is a contradiction.
- Assume W is rank 2: $W = a \otimes b \otimes c + d \otimes e \otimes f$. We claim that a and d must be linearly independent. Indeed, suppose they are parallel and take a vector x perpendicular to both a and d. Then

$$W(x, I, I) = (x^T a)b \otimes c + (x^T d)e \otimes f = 0$$

but also

$$W(x, I, I) = (x^T e_0)e_0 \otimes e_1 + (x^T e_0)e_1 \otimes e_0 + (x^T e_1)e_0 \otimes e_0 = \begin{bmatrix} x^T e_1 & x^T e_0 \\ x^T e_0 & 0 \end{bmatrix}$$

which cannot be zero since x cannot be perpendicular to both e_0 and e_1 . Now, we take x perpendicular to d. We have

$$W(x, I, I) = (x^T a)b \otimes c$$

which is rank one. Therefore, we must have $x^T e_0 = 0$ which implies that x is parallel to e_1 and thus d parallel to e_0 . Now, if we take x perpendicular to a, the matrix

$$W(x, I, I) = (x^T d) e \otimes f$$

is rank one and, once again, we must have $x^T e_0 = 0$, which implies x parallel to e_1 and thus <u>a parallel to e_0 </u>. Hence, we have shown that a and d are linearly independent but also that both are parallel to e_0 . This is a contradiction.

3) We expand the tensor products in the definition of D_{ϵ} :

$$\begin{split} D_{\epsilon} &= \frac{1}{\epsilon} \Big[(e_0 + \epsilon e_1) \otimes (e_0 + \epsilon e_1) \otimes (e_0 + \epsilon e_1) - e_0 \otimes e_0 \otimes e_0 \Big] \\ &= \frac{1}{\epsilon} \Big[e_0 \otimes e_0 \otimes e_0 + \epsilon e_0 \otimes e_0 \otimes e_1 + \epsilon e_0 \otimes e_1 \otimes e_0 + \epsilon e_1 \otimes e_0 \otimes e_0 \\ &\quad + \epsilon^2 e_1 \otimes e_1 \otimes e_0 + \epsilon^2 e_1 \otimes e_0 \otimes e_1 + \epsilon^2 e_0 \otimes e_1 \otimes e_1 + \epsilon^3 e_1 \otimes e_1 \otimes e_1 - e_0 \otimes e_0 \otimes e_0 \Big] \\ &= e_0 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_0 + e_1 \otimes e_0 \otimes e_0 \\ &\quad + \epsilon (e_1 \otimes e_1 \otimes e_0 + e_1 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_1) + \epsilon^2 e_1 \otimes e_1 \otimes e_1 \\ &= W + \epsilon (e_1 \otimes e_1 \otimes e_0 + e_1 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_1) + \epsilon^2 e_1 \otimes e_1 \otimes e_1 . \end{split}$$

Hence $\lim_{\epsilon \to 0} D_{\epsilon} = W$.

Problem 3

1) There cannot be an analogous general result for tensors. Indeed, the order-3 tensor W of Problem 2 is rank 3 and we showed in 3) that $\lim_{\epsilon \to 0} ||W - D_{\epsilon}||_F = 0$. So there is no minimum attained in the space of rank 2 tensors. In this sense, there is simply no *best* rank-two approximation of W.

2) Let M a matrix of rank R + 1 with singular values $\sigma_1 \geq \sigma_2 \cdots \geq \sigma_R \geq \sigma_{R+1} > 0$. By the Eckart-Young-Mirsky theorem, the minimum of $||M - \widehat{M}||_F$ over all the matrices \widehat{M} of rank less than, or equal to, R is $\sigma_{R+1} > 0$. Therefore, there cannot be a sequence of matrices M_n given by a sum of R rank-one matrices such that $\lim_{n \to +\infty} ||M - M_n||_F = 0$.

Now let $M \in \mathbb{C}^{M \times N}$ be a matrix of rank R-1 with $R \leq \min\{M, N\}$. Let $M = U\Sigma V^*$ be the SVD of M where $\sigma_1 \geq \cdots \geq \sigma_{R-1} > 0$ are its singular values. For all positive integer n, we define $\sigma_R^{(n)} := \sigma_{R-1}/n$ as well as the rank-R matrix $M_n = U\Sigma_n V^*$ where Σ_n is a $M \times N$ diagonal matrix whose nonzero diagonal entries are $\sigma_1 \geq \cdots \geq \sigma_{R-1} \geq \sigma_R^{(n)}$. Clearly $\lim_{n \to +\infty} ||M - M_n||_F = \lim_{n \to +\infty} \frac{\sigma_{R-1}}{n} = 0$. A similar procedure can be applied if M is a tensor.

3) In the real-valued case, we have:

$$|T(R_1, R_2, R_3)^{\alpha\beta\gamma}|^2 = \sum_{\delta, \epsilon, \zeta, \delta', \epsilon', \delta'} R_1^{\delta\alpha} R_1^{\delta'\alpha} R_2^{\epsilon\beta} R_2^{\epsilon'\beta} R_3^{\zeta\gamma} R_3^{\zeta'\gamma} T^{\delta\epsilon\zeta} T^{\delta'\epsilon'\zeta'} .$$

Summing over α, β, γ and using the orthogonality of rotation matrices, we find:

$$\sum_{\alpha} R_1^{\delta \alpha} R_1^{\delta' \alpha} = \delta_{\delta \delta'}, \quad \sum_{\beta} R_2^{\epsilon \beta} R_2^{\epsilon' \beta} = \delta_{\epsilon \epsilon'}, \quad \sum_{\gamma} R_3^{\zeta \gamma} R_3^{\zeta' \gamma} = \delta_{\zeta \zeta'}.$$

The result directly follows:

$$\|T(R_1, R_2, R_3)\|_F^2 = \sum_{\alpha, \beta, \gamma} |T(R_1, R_2, R_3)^{\alpha\beta\gamma}|^2$$
$$= \sum_{\delta, \epsilon, \zeta, \delta', \epsilon', \delta'} \delta_{\delta\delta'} \delta_{\epsilon\epsilon'} \delta_{\zeta\zeta'} T^{\delta\epsilon\zeta} T^{\delta'\epsilon'\zeta'}$$
$$= \sum_{\delta\epsilon\zeta} |T^{\delta\epsilon\zeta}|^2$$
$$= \|T\|_F^2 .$$

Problem 4: Kronecker and Khatri-Rao products

1) To show that $A \odot_{\text{KhR}} B$ is full column rank, we have to prove that the kernel of the linear application $\underline{x} \mapsto (A \odot_{\text{KhR}} B)\underline{x}$ is {0}. Let $\underline{x} \in \mathbb{R}^R$ with components (x^1, x^2, \dots, x^R) be such that $(A \odot_{KhR} B)\underline{x} = 0$. Then, $\forall \alpha \in [I_1]$:

$$\sum_{r=1}^{R} a_r^{\alpha} x^r \underline{b}_r = 0$$

Because B is full column rank, $\sum_{r=1}^{R} a_r^{\alpha} x^r \underline{b}_r = 0 \Rightarrow \forall r \in [R] : a_r^{\alpha} x^r = 0$. Hence, $\forall r \in [R] : x_r \underline{a}_r = 0$. A is full column rank so none of its columns can be the all-zero vector. It follows that x_r must be zero for all $r \in [R]$, i.e., $\underline{x} = 0$. $A \odot_{KhR} B$ is full column rank. 2) Suppose we are given a tensor (the weights λ_r that usually appear in the sum are absorbed in the vectors \underline{a}_r)

$$\mathcal{X} = \sum_{r=1}^{R} \underline{a}_{r} \otimes \underline{b}_{r} \otimes \underline{c}_{r} , \qquad (1)$$

where $A = [\underline{a}_1, \underline{a}_2, \dots, \underline{a}_R] \in \mathbb{R}^{I_1 \times R}$, $B = [\underline{b}_1, \underline{b}_2, \dots, \underline{b}_R] \in \mathbb{R}^{I_2 \times R}$ and $C = [\underline{c}_1, \underline{c}_2, \dots, \underline{c}_R] \in \mathbb{R}^{I_3 \times R}$ are full column rank. By Jennrich's algorithm, the decomposition (1) is unique up to trivial rank permutation and feature scaling and Jennrich's algorithm is a way to recover this decomposition. At the end of the step (5) of the algorithm, we have computed A, B and it remains to recover C. We now show how the result in question **1**) allows to recover C uniquely. For each $\gamma \in [I_3]$, define the slice \mathcal{X}_{γ} as the $I_1 \times I_2$ matrix with entries $(\mathcal{X}_{\gamma})^{\alpha\beta} = \mathcal{X}^{\alpha\beta\gamma}$ and denote $F(\mathcal{X}_{\gamma})$ the I_1I_2 column vector with entries $F(\mathcal{X}_{\gamma})^{\beta+I_2(\alpha-1)} = \mathcal{X}^{\alpha\beta\gamma}$. We have:

$$\forall (\alpha, \beta) \in [I_1] \times [I_2] : F(\mathcal{X}_{\gamma})^{\beta + I_2(\alpha - 1)} = \sum_{r=1}^R a_r^{\alpha} b_r^{\beta} c_r^{\gamma} = \sum_{r=1}^R (A \odot_{\mathrm{KhR}} B)^{\beta + I_2(\alpha - 1), r} c_r^{\gamma}$$

Therefore, the $I_1I_2 \times I_3$ matrix $F(\mathcal{X}) = [F(\mathcal{X}_1), F(\mathcal{X}_2), \dots, F(\mathcal{X}_{I_3})]$ satisfies:

$$F(\mathcal{X}) = (A \odot_{\mathrm{KhR}} B)C^T$$

Because $A \odot_{\text{KhR}} B$ is full column rank, we can invert the system with the Moore-Penrose pseudoinverse: $C^T = (A \odot_{\text{KhR}} B)^{\dagger} F(\mathcal{X}).$

Problem 5: Check of useful identities

The first identity simply follows from the definitions:

$$(\mathbf{c} \otimes_{\mathrm{Kro}} \mathbf{b})^T = \begin{bmatrix} c_1 \mathbf{b}^T & c_2 \mathbf{b}^T & \cdots & c_J \mathbf{b}^T \end{bmatrix} = \mathbf{c}^T \otimes_{\mathrm{Kro}} \mathbf{b}^T.$$

For the second identity on the inner product between the two column vectors $\mathbf{e} \otimes_{\mathrm{Kro}} \mathbf{d}$ and $\mathbf{c} \otimes_{\mathrm{Kro}} \mathbf{b}$, we simply have:

$$(\mathbf{e} \otimes_{\mathrm{Kro}} \mathbf{d})^T (\mathbf{c} \otimes_{\mathrm{Kro}} \mathbf{b}) = \begin{bmatrix} e_1 \mathbf{d}^T & e_2 \mathbf{d}^T & \cdots & e_J \mathbf{d}^T \end{bmatrix} \begin{bmatrix} c_1 \mathbf{b} \\ c_2 \mathbf{b} \\ \vdots \\ c_J \mathbf{b} \end{bmatrix} = \sum_{j=1}^J e_j c_j \mathbf{d}^T \mathbf{b} = (\mathbf{e}^T \mathbf{c}) (\mathbf{d}^T \mathbf{b}) .$$

Finally, the product of the $R \times IJ$ matrix $(E \otimes_{\text{Khr}} D)^T$ and the $IJ \times R$ matrix $(C \otimes_{\text{Khr}} B)$ is the $R \times R$ matrix whose entries are $\forall (i, j) \in \{1, \ldots, R\}^2$:

$$\left[(E \otimes_{\mathrm{Khr}} D)^T (C \otimes_{\mathrm{Khr}} B) \right]_{ij} = \sum_{k=1}^{IJ} \left[E \otimes_{\mathrm{Khr}} D \right]_{ki} \left[C \otimes_{\mathrm{Khr}} B \right]_{kj}$$
$$= (\mathbf{e}_i \otimes_{\mathrm{Kro}} \mathbf{d}_i) (\mathbf{c}_j \otimes_{\mathrm{Kro}} \mathbf{b}_j)$$
$$= (\mathbf{e}_i^T \mathbf{c}_j) (\mathbf{d}_i^T \mathbf{b}_j)$$
$$= [E^T C]_{ij} [D^T B]_{ij}$$
$$= [(E^T C) \circ (D^T B)]_{ij} .$$

The third equality follows from the identity on the inner product of two Kronecker products. Hence $(E \otimes_{\text{Khr}} D)^T (C \otimes_{\text{Khr}} B) = (E^T C) \circ (D^T B).$