Solutions to Homework 8
(CS-526 Learning Theory

Problem 1

1) For every i € [K], d; is the i*" canonical basis vector of R® and we define the latent random vector
h e {d; : i € [K]} whose distribution is Vi € [K] : P(h = d;) = w;. Finally, let z = S5 hia; + 2
where z ~ N (0,02I Dxp) is independent of h. The random vector x has a probability density
function p(-). We have:
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Finally, to compute the third moment tensor, note that E[z ® z ® z] = 0 and that for every
(i,4) € [K]*: Elg; ® a; ® 2] = Elg; ® 2® a;] = E[z ® a; ® a;] = 0. Hence:
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2) Let A =[ay,ay,...,a5] € RP*K and A’ = [d},d), ..., d,] € RP*K. By definition, R = X' RY
where ¥ is the diagonal matrix such that ¥; = \/w; and A’ = ART. We can directly apply the
formula of question 1) to compute the second moment matrix of the new mixture of Gaussians:

Elza"] = 0?Ipyp + A'S? AT = 6%Ipyp + ARTS2RAT
=’Ipyp + AXRTRYAT = 6%Ipyp + AX2AT .

Problem 2: Examples of tensors and their rank

1) The matrices corresponding to B, P, E are:
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The frontal slices of G and W are:

10 0 0 0 1 10
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2) B and FE are clearly rank-2 matrices, while P = (eg + €1) @ (eg + €1) is a rank-1 matrix.

By its definition, G is at most rank 2. Assume it is rank 1: G = a®b® ¢ with a, b, ¢ € R%2. We have
a1bicr = G111 = 1 and agbic; = Go11 = 0 so we must have as = 0. Besides, asbaco = G99 = 1 and
a1bacs = Ghog = 050 a; = 0. Hence a® = (0,0) and G is the all-zero tensor. This is a contradiction
and we conclude that G is rank 2.

By its definition, W is at most rank 3. To prove the rank cannot be smaller than 3, we will proceed
by contradiction:

e Assume W is rank 1: W = ¢ ® b ® ¢ with a,b,¢ € R%2. We have ajbic; = Wip1 = 0 and
agblcl = WQll =1so a] = 0. Besides, a1b102 = W112 =1 and a2b102 = W212 =0 so as = 0.
Then a = (0,0)T and W is the all-zero tensor, which is a contradiction.

o Assume Wisrank 2: W =a®b®c+d®e® f. We claim that a and d must be linearly
independent. Indeed, suppose they are parallel and take a vector x perpendicular to both a
and d. Then

W(x, I,I) = (zTa)pb@ c+ (zTd)e® f =0

but also

T T T Z'Tel acTeO
W(z,I,I)=(x"eg)eo @e1+ (x" eg)e1 ® eg+ (2" e1)ep ® eg = ey 0

which cannot be zero since x cannot be perpendicular to both ey and e;. Now, we take x
perpendicular to d. We have

Wz, 1,1) = (eTa)b @ c
which is rank one. Therefore, we must have 27 ey = 0 which implies that z is parallel to e;
and thus d parallel to eg. Now, if we take x perpendicular to a, the matrix

Wz, I,I) = (zTd)e ® f
is rank one and, once again, we must have 2”eq = 0, which implies = parallel to e; and thus
a parallel to eg. Hence, we have shown that a and d are linearly independent but also that
both are parallel to ey. This is a contradiction.

3) We expand the tensor products in the definition of D:
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Hence lim._,g D, = W.



Problem 3

1) There cannot be an analogous general result for tensors. Indeed, the order-3 tensor W of Prob-
lem 2 is rank 3 and we showed in 3) that lim._,o ||W — D¢||r = 0. So there is no minimum attained
in the space of rank 2 tensors. In this sense, there is simply no best rank-two approximation of W.

2) Let M a matrix of rank R + 1 with singular values 5 01 > 09+ > OR > OR+1 > 0. By the
Eckart-Young-Mirsky theorem, the minimum of ||[M — M | over all the matrices M of rank less
than, or equal to, R is or+1 > 0. Therefore, there cannot be a sequence of matrices M,, given by
a sum of R rank-one matrices such that lim,, 4 [|M — M,||r = 0.

Now let M € CM*N be a matrix of rank R — 1 with R < min{M,N}. Let M = ULV*

be the SVD of M where 01 > --- > or—1 > 0 are its singular values. For all positive inte-

ger n, we define Ug) := op—1/n as well as the rank-R matrix M, = UX,V* where %, is a

M x N diagonal matrix whose nonzero diagonal entries are o; > -+ > orp_1 > O'g:). Clearly
OR—1

lim, 00 || M — My || p = limy,— 4 oo = 0. A similar procedure can be applied if M is a tensor.

n

3) In the real-valued case, we have:

IT(Ri, Ry, R3)* P = > RERYRY Ry RY RS ToTY¢¢
57€7<7§’76/76/

Summing over «, 3, and using the orthogonality of rotation matrices, we find:
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The result directly follows:
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Problem 4: Kronecker and Khatri-Rao products

1) To show that A ®kpr B is full column rank, we have to prove that the kernel of the linear
application z — (A Oknr B)z is {0}. Let z € R¥ with components (z!,22,---,2®) be such that
(A OKhR B)g = 0. Then, YVa € [Il]:
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Because B is full column rank, Y% | a%27b, = 0 = Vr € [R] : a®z” = 0. Hence, Vr € [R] : z,a, = 0.
A is full column rank so none of its columns can be the all-zero vector. It follows that z, must be

zero for all r € [R], i.e., z = 0. A ®gppr B is full column rank.



2) Suppose we are given a tensor (the weights A, that usually appear in the sum are absorbed in
the vectors a,.)

R
X:Zgréébr@gr, (1)
r=1
where A = [ay,a9,...,a5] € RIVE B =[b,by,...,bg] € REXE and C = [¢y, ¢y, . .., cp] € RBXE

are full column rank. By Jennrich’s algorithm, the decomposition (1) is unique up to trivial rank
permutation and feature scaling and Jennrich’s algorithm is a way to recover this decomposition.
At the end of the step (5) of the algorithm, we have computed A, B and it remains to recover C.
We now show how the result in question 1) allows to recover C' uniquely. For each 7 € [I3], define
the slice X, as the I x I matrix with entries (X,)* = X*%7 and denote F(X,) the I; 5 column
vector with entries F(X,) 20~ = x5 We have:
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Therefore, the I1 Iy x I3 matrix F(X) = [F(X1), F(Xb), ..., F(XL)] satisfies:
F(X) = (Aokur B)CT
Because A Okyr B is full column rank, we can invert the system with the Moore-Penrose pseudoin-
verse: CT = (A Ogur B)TF(X).
Problem 5: Check of useful identities

The first identity simply follows from the definitions:
(¢ ®krob)T = [e1bT b -+ ¢;bT] =c” @Ko b’ .

For the second identity on the inner product between the two column vectors e Qo d and ¢ Rk, b,
we simply have:

Clb
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(e ®Kkro d)” (€ ®Kyro b) = [eldT eod? - eJdT} | = Zejcjd b= (e'c)(d"b).
cjb
Finally, the product of the R x I.J matrix (E ®xp, D)T and the IJ x R matrix (C ®ky, B) is the
R x R matrix whose entries are V(i, j) € {1,..., R}?:
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The third equality follows from the identity on the inner product of two Kronecker products. Hence
(E ®@kne D)1 (C @k B) = (ETC) o (DT B).



