
Homework 8 - graded
CS-526 Learning Theory

Note: The tensor product is denoted by ⊗. In other words, for vectors a, b, c we have that
a⊗ b is the square array aαbβ where the superscript denotes the components, and a⊗ b⊗ c
is the cubic array aαbβcγ. We often denote components by superscripts because we need the
lower index to label vectors themselves.

Problem 1: Moments of Gaussian mixture model (GMM)

Consider the following mixture of Gaussians (we look at the special case where all the
covariance matrices are isotropic, equal to σ2ID×D):

p(x) =
K∑
i=1

wi
1

(2πσ2)
D
2

exp

(
− ∥x− ai∥2

2σ2

)
where x, ai ∈ RD are column vectors and the weights wi ∈ (0, 1] satisfy

∑K
i=1 wi = 1.

1) For j ∈ [D], ej is the jth canonical basis vector of RD. Prove the following identities
for the mean vector, the second moment matrix and the third moment tensor:

E[x] =
K∑
i=1

wi ai ;

E[x xT ] = σ2ID×D +
K∑
i=1

wi aia
T
i ;

E[x⊗ x⊗ x] =
K∑
i=1

wi ai ⊗ ai ⊗ ai + σ2

D∑
j=1

K∑
i=1

wi(ai ⊗ ej ⊗ ej + ej ⊗ ej ⊗ ai + ej ⊗ ai ⊗ ej) .

2) Let R be a K × K orthogonal (rotation) matrix. Define the matrix R̃ whose entries
are R̃ij =

1√
wi
Rij

√
wj, as well as the transformed vectors

a′i =
K∑
j=1

R̃ijaj .

Show that the mixture of Gaussians

p(x) =
K∑
i=1

wi
1

(2πσ2)
D
2

exp

(
− ∥x− a′i∥2

2σ2

)
has the same second moment matrix as the previous one.
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Problem 2: Examples of tensors and their rank

We recall that the rank of a tensor is the minimum possible number of terms in a decompo-
sition of a tensor as a sum of rank-one tensors. Let eT0 = (1, 0) and eT1 = (0, 1). Consider
the following second-order tensors (also called mode-2 or 2-way tensors):

B = e0 ⊗ e0 + e1 ⊗ e1

P = e0 ⊗ e0 + e1 ⊗ e1 + e0 ⊗ e1 + e1 ⊗ e0

E = e0 ⊗ e0 + e1 ⊗ e1 + e0 ⊗ e1

as well as the third-order tensors (mode-3 or 3-way):

G = e0 ⊗ e0 ⊗ e0 + e1 ⊗ e1 ⊗ e1

W = e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0 .

1) Draw the two and three-dimensional multiarrays for all these tensors.

2) Determine the rank of each tensor (and justify your answer).

3) Let ϵ > 0 and

Dϵ =
1

ϵ
(e0 + ϵe1)⊗ (e0 + ϵe1)⊗ (e0 + ϵe1)−

1

ϵ
e0 ⊗ e0 ⊗ e0

Check that limϵ→0 Dϵ = W . In other words, the rank-3 tensor W can be obtained as a
limit of a sum of two rank-one tensors: W is on the “boundary” of the space of rank-2
tensors.

Problem 3: Frobenius norm minimizations: matrix versus tensors.

The Frobenius norm ∥ · ∥F of a tensor is defined as the Euclidean norm of the multi-array:

∥T∥2F =
∑
α,β,γ

|T αβγ|2 .

We recall the following important theorem for matrices.

Theorem 1 (Eckart-Young-Mirsky theorem). Let A ∈ CM×N be a rank-R matrix whose
singular value decomposition is given by UΣV ∗ where U ∈ CM×M , V ∈ CN×N are both
unitary matrices and Σ ∈ RM×N is a diagonal matrix with real nonnegative diagonal entries.
Without loss of generality we assume that the singular values are arranged in decreasing
order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σmin{M,N} (where σi = Σii). Then, the best rank-k (k ≤ R)
approximation of A is given by the truncated SVD Â = UΣ̃V ∗ with Σ̃ the diagonal matrix
whose diagonal entries are Σ̃ii = σi if 1 ≤ i ≤ k, Σ̃ii = 0 otherwise. More precisely:

∥A− Â∥F = min
S:rank(S)≤k

∥A− S∥F .
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1) Do you think the analogous problem for tensors is well posed? In other words, given a
tensor T of order p ≥ 3 and rank R, can we always find a order-p tensor T̂ whose rank is
strictly smaller than R and that achieves the minimum of ∥T − S∥F over all the order-p
tensors S of rank k < R?

2) We wish to come back to the interesting phenomenon observed in question 4) of Problem
2. In this question we saw that an order-3 rank-3 tensor could be obtained as the limit of a
sequence of rank-2 tensors. Use the Eckart-Young theorem to show that a rank R+1 matrix
cannot be obtained as a limit of a sum of R rank-one matrices. Can we obtain a rank-(R−1)
matrix as the limit of a sequence of rank-R matrices? And what about tensors?

3) Independent question on the Frobenius norm. The multilinear transformation of a tensor
is the new tensor T (R1, R2, R3) with components

T (R1, R2, R3)
αβγ =

∑
δ,ϵ,ζ

Rαδ
1 Rβϵ

2 Rγζ
3 T δϵζ .

Check that if R1, R2, R3 are unitary matrices then the Frobenius norm is invariant, i.e.,
∥T∥F = ∥T (R1, R2, R3)∥F . You can limit your proof to real-valued tensors if you wish1.

Problem 4: Kronecker and Khatri-Rao products

The Kronecker product ⊗Kro of two vectors a ∈ RI1 and b ∈ RI2 is a vectorization of the
tensor (or outer) product. This amounts to take the I1 × I2 array aαbβ = (a⊗ b)αβ and view
it as a vector of size I1I2. More precisely, we define the Kronecker product as the column
vector:

a⊗Kro b =
[
a1bT · · · aI1bT

]T ∈ RI1I2 .

Let A =
[
a1 · · · aR

]
and B =

[
b1 · · · bR

]
be matrices of dimensions I1 ×R and I2 ×R.

We define the Khatri-Rao product as the I1I2 ×R matrix

A⊙KhR B =
[
a1 ⊗Kro b1 · · · aR ⊗Kro bR

]
.

1) Assume that both A and B are full column rank. Prove that the Khatri-Rao product
A⊙KhR B is also full column rank.

Problem 5: Check useful identities

Besides the tensor product (ntroduced in class), and the Kronecker and Khatri-Rao prod-
ucts (introduced in the previous exercise), we also introduce the Hadamard product. The
Hadamard product of two matrices (of same dimensions) is the matrix given by the point-
wise product of components, i.e, if A, B have matrix elements aij and bij then the Hadamard
product A ◦B has matrix elements aijbij.

1In this case R1, R2, R3 are orthogonal matrices.
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Let b,d ∈ RI and c, e ∈ RJ be column vectors. Let B,D ∈ RI×R and C,E ∈ RJ×R be four
matrices. Check the following identities that will be used in class:

(c⊗Kro b)
T = cT ⊗Kro b

T ;

(e⊗Kro d)
T (c⊗Kro b) = (eTc)(dTb) ;

(E ⊗Khr D)T (C ⊗Khr B) = (ETC) ◦ (DTB) .
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