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Morphology Representations

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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What you will learn in this class

• Direct encoding of body parameters

• aircraft morphologies

• Rewriting representations 

• fractals

• plants 

• neural architectures
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Direct Encoding of Body Parameters

• Start from a body template

• Define parameters of body parts

• Use direct encoding: each parameter is directly encoded in the 

genotype (i.e., without using a growth process)



The “art” of aircraft design
Jets: High speed, high payload aircraft

Propellers: Low speed, low payload aircraft and drones

Designing an aircraft, big or small, is 
an iterative process (Raymer, 2015)

Each design is a compromise of 
requirements, efficiency, and control



E. Ajanic et al., “Bioinspired wing and tail morphing extends drone flight capabilities,” Science Robotics, 2020.
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Morphological template

morphing mechanisms
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Aerodynamic Model

Lift Drag

Angle of Attack Sideslip angle



Trajectory Optimisation in Simulation

Identify time-varying control inputs for optimal trajectory with constraints



Mission definition: Collision-Free Flight

Minimise: 

Energy Consumption 

Flight Time

Constraints: 

1) start at blue location; 

2) pass through green sides 

3) arrive to green target, stay within mechanical limits of aircraft



NSGA-II
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Results from 9 runs of NSGA-II
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comparing results with a commercial fixed-winged (Bixler3)
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comparing results with a commercial fixed-winged (Bixler3)
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Comparing results with a commercial fixed-winged (Bixler3)

Bixler3
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Technical Specifications

name bix3 opt1 Opt2 opt3 Opt4

mass 1012 g 760 g 800 g 920 g 940 g

max 

thrust
7.0 N 4.1 N 4.1 N 4.1 N 10.7 N

wingspan 1.55 m 1.86 m 1.86 m 1.24 m 1.10 m

morphing 

strategies
- incidence

sweep

incidence

incidence

sweep

dihedral

dihedral

sweep

incidence
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time x0.5

time x0.5
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Validation

Test the drones in 972 scenarios (different from those used for evolution)

22

consume 37-74% less energy
reduce mission time of 22-33%



Bergonti, Nava, Wüest, Paolino, L’Erario, Pucci, Floreano (2024) Proceedings of ICRA
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Rewriting representations
Rewriting System: recursively replace a sub-component with another sub-component 

Fractals: Replace edges of a polygon with open polygons and rescale at each iteration [von Koch, 

1905] 

Several types of rewriting 

systems have been developed. 

For example: 

L-systems (plants) 

Cellular automata (anything) 

Language systems (language)

Matrix rewriting (neural networks)

Koch 

snowflake

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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L-systems [Lindenmayer, 1968]

Lindenmayer systems, or L-systems for short, are mathematical models to describe biological 

morphologies through a growth process. They were originally applied to model growth of plants.

Aristid Lindenmayer Artificially generated tree
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Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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L-system: Definition
L-systems are rewriting systems that operate on symbol strings. 

An L-system is composed of: 

1. A set of symbols s forming an alphabet  A

2. An axiom  (initial string of symbols) sk, sz, sv,… 

3. A set = {pi} of production rules pi : sk → sz.

The following assumptions hold:

1.Production rules are applied in parallel and replace recursively all 

symbols in the string.

2.If no production rule is specified for a symbol s, then we assume the 

identity production rule po : sk → sk

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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L-system: 1D Example
Development of a multicellular filament of blue-green bacteria Anabaena catenula [Lindenmayer 1968]

 = dl

p1 = dr → dl gr

p2 = dl → gl dr

p3 = gr → dr

p4 = gl → dl

 = {gr , gl , dr , dl }

Cells can be in a “growing” state g or in a 

“dividing” state d with left or right polarity

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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Graphics Interpretation

• Using symbols that represent directly geometric entities such as 1D or 2D cells becomes 

rapidly impractical.

• We can increase the graphic potential of L-systems by following the phase of production of 

strings of symbols with a phase of graphic interpretation of the strings 

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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Turtle Graphics Interpretation

In 2D, the turtle (printer) state is defined by the triplet x, y,  where the Cartesian coordinates (x, y) 

represent the turtle’s position and the angle , also known as heading, represents the facing direction.

Given the step size d and the angle increment , the 

turtle can respond to the following commands:

F : move forward by a step while drawing a line. 

f : move forward by a step without drawing a line.

+ : turn left (counterclockwise) by angle 

− : turn right (clockwise) by angle . 

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press



3030

Examples

 = 90°,  A={ F, f, +,− }

= FF − FFF − F − FF +F − 

        F + f f F + FFF + F +FFF

 = 60°,  A={ F, f, +,− },   = F

p = F → F+F− −F+F

axiom

step 1

step 2

step 3

step 4

step 5

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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• Two new symbols:

[ Save current state of the turtle 

(position, orientation, color, 

thickness, etc.).

] Restore the state of the turtle 

using the last saved state (no line 

is drawn).

Bracketed L-systems
In drawing branching structures using the turtle interpreter it is necessary to reposition the turtle at 

the base of a branch after the drawing of the branch itself

 = 29°,  A={ F,+,−, [, ] }

 = F

p = F → F [+F]F [−F [+F][−F]]F

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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axiom step 1 step 2 step 3 step 4

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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Stochastic L-systems

•  In nature individuals of the same species are not identical. 

•  Specimen variability can be modeled by associating probabilities to production rules 

•  The sum of all probabilities over the same symbol must be 1

   = 29°,  A={ F,+,−, [, ] }

 = F

p1 = F → F[+F]F[−F]F

p2 = F → F[−F]F[+F]F

p3 = F → F[−FF−F]F







Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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Application to computer graphics
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Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press



3535

How to identify rewriting rules?

• By hand 

– When the rewriting rules are explicitly given (e.g., fractal curve)

– When the rewriting rules can be easily deduced from the description of the developmental 

process (e.g., development of bacteria filaments and moss leaves)

– When the resulting morphologies have only an aesthetic function

• With evolutionary algorithms

– When the morphology serves a function that can be measured: neural network, a gene 

regulatory network, an electronic circuit, a robotic body, etc.

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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Neural architecture by matrix rewriting
A rewriting system [Kitano, 1990]  that encodes a grammar to represent network topologies 

Genome encodes the rewriting (grammar) rules, such as: ABCD adaa cbba baac abad 0001 1000 0010 0100

Only the presence/absence of connections is evolved. Weights are trained with backpropagation. 

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press
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Direct Encoding of Network Topology

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press

Length of genetic code is proportional to number of neurons in the network



Evolving autoencoder architectures

Performance comparison

• Autoencoder performance is worse with direct encoding and worsens with network size

• Topologies evolved with grammar encoding are more regular (good for spatial information 

processing, such as convolutional neural networks).

Architecture comparison

Direct encoding Grammar encoding
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