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Astrophysics IV: Stellar and galactic dynamics
Solutions

Problem 1:

In two dimensions, assuming a bar rotating with a pattern speed Ωb, in cylindrical
coordinates, the Lagrangian writes: 2D, with Ω⃗b = Ωbe⃗z gives

L
(
R, Ṙ, θ, θ̇

)
=

1

2
Ṙ2 +

1

2

(
R
(
θ̇ + Ωb

))2

− ϕ (R, θ) . (1)

The equation of motion is derived using the Euler-Lagrange equation:R̈ = R
(
θ̇ + Ωb

)2

− ∂ϕ
∂R

d
dt

(
R2

(
θ̇ + Ωb

))
= −∂ϕ

∂θ

. (2)

We assume a weak bar with

ϕ (R, θ) = ϕ0 (R) + ϕ1 (R, θ) ,

∣∣∣∣ϕ1

ϕ0

∣∣∣∣ ≪ 1, (3)

where ϕ0 represents the cylindrical symmetry, while ϕ1 the perturbation. We then split
the motion in two parts {

R (t) = R0 +R1 (t)

θ (t) = θ0 (t) + θ1 (t)
(4)

with R0 the radius of the guiding centre (circular orbit). The goal is then to develop
the equation of motions at the first order and interpret both the zero and first order
terms. To do so, we first need to Taylor expand the potential:

ϕ (R, θ) ∼= ϕ0 (R0) + ϕ1 (R0, θ) +
∂ϕ0

∂R

∣∣∣∣
R0

(R−R0) +
∂ϕ1

∂R

∣∣∣∣
R0

(R−R0) (5)

+
1

2

∂2ϕ0

∂R2

∣∣∣∣
R0

(R−R0)
2 +

1

2

∂2ϕ1

∂R2

∣∣∣∣
R0

(R−R0)
2, (6)

Then, differentiating the potential with respect to R and θ, we get: ∂ϕ
∂R

∼= ∂ϕ0

∂R

∣∣
R0

+ ∂ϕ1

∂R

∣∣
R0

+ ∂2ϕ0

∂R2

∣∣∣
R0

(R−R0)

∂ϕ
∂θ

∼= ∂ϕ1

∂θ

∣∣
R0

. (7)

Note, we drop the ∂2ϕ1

∂R2

∣∣∣
R0

(R−R0) term, as ϕ1 ≪ ϕ0.

Now, the goal is to introduce Eq. 3 and Eq. 7 in the equation of motion (1) and
discuss the terms of different orders.
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Zero order terms :

1. Radial equation

R̈ = R
(
θ̇ + Ωb

)2

− ∂ϕ

∂R
→ R0

(
θ̇0 + Ωb

)2

=
∂ϕ0

∂R

∣∣∣∣
R0

; (8)

2. Azimuthal equation

d

dt

(
R2

(
θ̇ + Ωb

))
= −∂ϕ

∂θ
→ θ̇0 = const. (9)

Interpretation: in absence of perturbation, the circular frequency at the radius R0

write:
Ω2 (R0) =

1

R0

∂ϕ0

∂R

∣∣∣∣
R0

, (10)

thus, Eq. 8 leads to
θ̇0 + Ωb = Ω(R0) = Ω0, (11)

and the angular frequency in the rotating rest frame is then

θ0 (t) = (Ω0 − Ωb) t. (12)

First order terms :

1. Radial equation

R̈ = R
(
θ̇ + Ωb

)2

− ∂ϕ

∂R
→ R̈1 +R1

(
∂2ϕ0

∂R2
− Ω2

b

)∣∣∣∣
R0

− 2R0θ̇1Ω0 = − ∂ϕ1

∂R

∣∣∣∣
R0

;

(13)

2. Azimuthal equation

d

dt

(
R2

(
θ̇ + Ωb

))
= −∂ϕ

∂θ
→ θ̈1 + 2Ω0

Ṙ1

R0

= − 1

R2
0

∂ϕ1

∂θ

∣∣∣∣
R0

. (14)

To move forwards, we have go guess some specific potential. We assume the perturba-
tion of the type:

ϕ1 (R, θ) = ϕb (R) cos (mθ). (15)
m = 2 corresponds to a bar. Note also that any other perturbation can be obtained
by summing over m. Assuming θ1 ≪ θ0, the gradients of Eq. 7 can now be written as:{∂ϕ1

∂R
= ϕb

∂R
cos (mθ) ≈ ∂ϕb

∂R
cos (mθ0) =

∂ϕb

∂R
cos (m (Ω0 − Ωb) t)

∂ϕ1

∂θ
= −ϕb (R) sin (mθ)m ≈ −ϕb (R)m sin (m (Ω0 − Ωb) t)

. (16)

Introducing those gradients in Eq 13 and 2, we get:R̈1 +R1

(
∂2ϕ0

∂R2 − Ω2
)∣∣∣

R0

− 2R0θ̇1Ω0 = − ∂ϕb

∂R

∣∣
R0

cos (m (Ω0 − Ωb) t)

θ̈1 + 2Ω0
Ṙ1

R0
= mϕb(R0)

R2
0

sin (m (Ω0 − Ωb) t)
. (17)
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At this stage, it is possible to integrate θ̈1 over time:

θ̇1 = −2Ω0
R1

R0

− ϕb (R0)

R2
0 (Ω0 − Ωb)

cos (m (Ω0 − Ωb) t) + const, (18)

and replacing it in the equation for R̈1 we find

R̈1 + κ2
0R1 = −

[
∂ϕb

∂R
+

2Ω0ϕb

R (Ω0 − Ωb)

]
R0

cos (m (Ω0 − Ωb) t) + const. (19)

Note that we have used the radial epicycle frequency:

κ2
0 =

(
∂2ϕ

∂R2
+ 3Ω2

)∣∣∣∣
R0

. (20)

The general solution is an harmonic oscillator of frequency κ0 driven at frequency
m (Ω0 − Ωb). Using Eq. 12 we find

R1 (θ0) = C1 cos

(
χ0θ0

Ω0 − Ωb

+ α

)
−
[
∂ϕb

∂R
+

2Ω0ϕb

R (Ω0 − Ωb)

]
R0

cos (mθ0)

χ2
0 −m2 (Ω0 − Ωb)

2 , (21)

with C1 and α arbitrary constants.

Problem 2:
We start from the Hamiltonian a 1-D harmonic oscillator, assuming a frequency ω:

H =
1

2
ẋ2 +

1

2
ω2x2

The equation of motion (Hamilton equations) are:{
ẋ = ẋ

ẍ = −ω2x

with the general solution:{
x(t) = A cos(ωt+ α) +B sin(ωt+ α)

ẋ(t) = −Aω sin(ωt+ α) +Bω cos(ωt+ α)

Taking the square, we get:{
x2(t) = A2 cos2(ωt+ α) +B2 sin2(ωt+ α) + 2AB cos2(ωt+ α) sin2(ωt+ α)

ẋ2(t) = A2ω2 sin2(ωt+ α) +B2ω2 cos2(ωt+ α)− 2ABω2 cos2(ωt+ α) sin2(ωt+ α)

and thus:
x(t)2 +

ẋ2(t)

w2
= A2 +B2

which is the equation of an ellispe of ellipticity w (if w < 1) or 1/w (if w > 1).
Assuming α = 0 we have: {

A = x0

B = v0/ω
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and the evolution is equivalent to multiplying the initial position and velocity by a
matrix (time operator):(

x(t)
ẋ(t)

)
=

(
cos(ωt) 1

ω
sin(ωt)

−ω sin(ωt) cos(ωt)

)
·
(
x0

ẋ0

)
The geometrical interpretation of the matrix is to apply a rotation with some defor-
mation (if w = 1, this is a pure rotation). But as the determinant of the matrix is 1,
the area is conserved and thus the density of the phase space too.
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