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Equilibria of collisionless 
systems

1st part
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Outlines
Weak bars

- the Lindblad resonances
- orbit families in realistic bars

The collisonless Boltzmann equation

- The distribution function (DF) of stellar systems
- The Collisionless Boltzmann equation
- Limitations

Relations between DFs and observables

- Density, velocity distribution function, mean velocity, velocity dispersion

The Jeans theorems

- Steady-state solutions of the Collisionless Boltzmann equation
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Stellar Orbits

Orbits
in weak rotating bars
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.8 --norbits 50
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.7 --norbits 50
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.6 --norbits 50
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.5 --norbits 50
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.5 --norbits 50
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.5  --x 0.0268

Bifurcation : apparition of x2 (stabe)/x3 (unstable) orbits 

x2
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.5  --x 0.0766659
./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.5  --x -0.034

x1 : prograde  x4 : retrograde 

x1

x4
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -1.4 --norbits 50
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -1.3 --norbits 50
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -1.2 --norbits 50

Bifurcation : x2/x3 disappeared 
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -1.2 --x 0.315099
./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -1.2 --x -0.1283

x1

x4
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The X-orbit families 
(characteristics curves)
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Objective

● Split a loop orbit in two parts:

- a circular motion of a guiding center

- oscillations around the guiding center
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The weakly-bared galaxy model
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The weakly-bared galaxy model
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The weakly-bared galaxy model
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Disk : Miyamoto-Nagai
Bulge : Plummer
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Corotation (CR)

is a decreasing function in a galaxy
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Inner Lindblad resonnances 
(ILR1, ILR2)

Outer Lindblad resonnance 
(OLR)

Corotation (CR)

is a decreasing function in a galaxy
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Disk : Miyamoto-Nagai
Bulge : Plummer

Inner Lindblad resonnances 
(ILR1, ILR2)

Outer Lindblad resonnance 
(OLR)

Corotation (CR)
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+ closed orbits
around L4, L5
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Outside the OLR, orbits are 
nearly circular
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.5  --x 0.0268

Bifurcation : apparition of x2 (stabe)/x3 (unstable) orbits 

x2
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./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.5  --x 0.0766659
./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.5  --x -0.034

x1 : prograde  x4 : retrograde 

x1

x4
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Lindblad frequencies for the 
Logarithmic potential

Buta & Combes 1998
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Equilibria of collisionless systems

The collisionless Boltzmann 
equation
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Introduction / Motivations

So far, we :

1. we modelled static potentials from a mass distribution (Poisson equation)

2. from the potential, we obtained forces and derived equations of motion 
leading us study orbits in different idealized potentials :

- spherical potentials
- axi-symmetric potentials (epicycles motions)
- orbits in bared rotating potentials (motions around Lagrange points)

But :

1. We did not used any velocity constraints. We only used the positions 
of stars through the emission of light.

2. Nothing tells us that the models we used are at the equilibrium. 
      This is not guarantee, if, for e.g., all velocities are zero...

3. We did do not include the self-gravity of the model or perturbations on it due 
 to the orbits of stars.
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Introduction / Motivations
Goal :

Build a self-consistent way galaxies, ensuring that they are at the equilibrium, i.e.,
if we compute the evolution of the galaxy under its own gravity, the evolution will be 
stationary.

→ requires the description of the density but also the velocity field

Assumptions :

1. We will consider systems with a very large number of “particles” (stars, DM)

→ the collisionless approximation is valid 
→ real orbits deviate not too much from the one predicted from the model 

(very large relaxation time)

We will seek for solution corresponding to 

2. We will consider systems composed of N identical particles, i.e., 
with all the same mass.

All particles will be equivalent
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Introduction / Motivations
Goal :

Build a self-consistent way galaxies, ensuring that they are at the equilibrium, i.e.,
if we compute the evolution of the galaxy under its own gravity, the evolution will be 
stationary.

→ requires the description of the density but also the velocity field

But :

It is impossible to describe analytically the orbits of billions of stars :

→ we need a probabilistic approach
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(See Ogorodnikov)
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Illustration 1 : Ideal race: each runner has a constant speed

The distribution function remains constant along the flow



64




65

Illustration 1 : Ideal race: each runner has a constant speed

The distribution function remains constant along the flow
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Illustration 2 : Harmonic oscillator
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Illustration 2 : Harmonic oscillator
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Illustration 3 : Plummer
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The Collisionless Boltzmann equation in various coordinates

Generalized coordinates Cartesian coordinates

Spherical coordinates

Cylindrical coordinates



  
74

Limits of the Collisionless Boltzmann equation 

I. Finite stellar lifetime

● Stars are created and die. The hypothesis of conservation of the probability/number
is violated.

We should better have (in Cartesian coordinates):

● Define

Rate per unit phase-space 
volume at which stars are 

born and die

If                  the approximation is ok

i.e. : the fractional change in the number of stars per crossing time must be small.
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Limits of the Collisionless Boltzmann equation 

Examples:

● M-stars in an elliptical galaxies
• Life time > 10 Gyr (> tcross)
• B=0 (no star formation)

● O-stars in the Milky Way
• Life time < 100 Myr (< tcross)
• Do not move much, the phase space distribution will be 

dominated by star formation processes 

● Main sequence stars (M<1.5Mo)
• Life time > 1 Gyr (> tcross)

Tcross ~= 300 Myr
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Limits of the Collisionless Boltzmann equation 

II. Correlation between stars

● We assumed that the probability of finding one peculiar stars somewhere in the 
phase space is independent of the others. Mathematically: the probability of finding
particle “i” in          and ”j” in          is : 

This is not completely true, as stars interact gravitationally and my generate 
correlations. 

However, this is not a real problem as long as the forces between nearby stars do 
not dominates over the forces due to the rest of the system (the definition of a 
collisionless system).



77

Equilibria of collisionless systems

Relations between the DFs 
and observables
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Equilibria of collisionless systems

The Jeans Theorems
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Jeans theorems

I. Any steady-state solution of the collisionless Boltzmann equation depends on the 
phase-space coordinates only through integrals of motion.

II.Any function of integrals of motion yields a steady-state solution of the collisonless 
Boltzmann equation.

James Jeans
1877-1947
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Jeans theorems

I. Any steady-state solution of the collisionless Boltzmann equation depends on the 
phase-space coordinates only through integrals of motion.

Demonstration:

If a function is a solution of the steady-state collisionless Boltzmann equation, 
then, it is an integral of motion, thus the function depends on the phase-space 
coordinates only through integrals of motion (itself !).

II.Any function of integrals of motion yields a steady-state solution of the collisonless 
Boltzmann equation.

James Jeans
1877-1947



  
90

Jeans theorems

I. Any steady-state solution of the collisionless Boltzmann equation depends on the 
phase-space coordinates only through integrals of motion.

Demonstration:

If a function is a solution of the steady-state collisionless Boltzmann equation, 
then, it is an integral of motion, thus the function depends on the phase-space 
coordinates only through integrals of motion (itself !).

II.Any function of integrals of motion yields a steady-state solution of the collisonless 
Boltzmann equation.

Demonstration:

Assume                                                                                   

James Jeans
1877-1947
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Jeans theorems

I. Any steady-state solution of the collisionless Boltzmann equation depends on the 
phase-space coordinates only through integrals of motion.

Demonstration:

If a function is a solution of the steady-state collisionless Boltzmann equation, 
then, it is an integral of motion, thus the function depends on the phase-space 
coordinates only through integrals of motion (itself !).

II.Any function of integrals of motion yields a steady-state solution of the collisonless 
Boltzmann equation.

Demonstration:

Assume                                                                                   

James Jeans
1877-1947

Extremely useful to generate DFs
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The End
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