
Solution 7
CS-526 Learning Theory

1. Short problems
1. A,C and D. The first sum is the classical cross entropy loss in a logistic regression

problem. We can check that this first sum is convex (nonnegative second derivative)
and Lipschitzian (bounded first derivative). These properties remain when summing
the regularization term.

2. (a) For x ≥ 0, f ′′(x) = 2 − 2.5 cos(x), which is negative for some values of x ≥ 0.
Hence the function is not convex.

(b) f is not differentiable at x = 0 due to the term |x|.
(c) This is a little tricky. The function has a derivative everywhere except at 0

where it has a subderivative. But it is not convex and hence not subdifferentiable
everywhere.

3. We have ∇∥x∥α = α∥x∥(α−1) x
∥x∥ . Therefore ∇hα(x) = α∥x∥(α−1) x

∥x∥g
′(∥x∥α) and

∥∇hα(x)∥ = α∥x∥(α−1)|g′(∥x∥α)| ≤ αρ∥x∥(α−1)

So hα=1 is a Lipschitz function with constant ρ. For α > 1 the equality shows that
∥∇hα(x)∥ is not bounded so we dont have a Lipschitz function. For α < 1 ∥∇hα(x)∥
is unbounded when x → 0 unless we assume that g vanishes fast enough at the origin
so we dont have a Lipschitz constant.

4. The function |x|3 is convex (but not strictly convex) and this can be seen by computing
the second derivative. Also |x| is convex. The sum of convex fuunctions is convex
therefore the whole function is convex. For x ̸= 0 the subgradient is just the derivative
3ax2 + bsgn(x). For x = 0 the subgradient is [−b,+b].

5. Small calculation shows that (a) is true.

2. Gradient Descent for Positive Semi-definite Matrices
1. Use the spectral decomposition B =

∑n
j=1 λjuju

T
j and since B is positive definite all

λj > 0 (and we can take eigenvectors with real components). Then

F (X) =
n∑

j=1

λjTrX
Tuju

T
j X =

n∑
j=1

λjTr(X
Tuj)(X

Tuj)
T

=
n∑

j=1

λj(X
Tuj)

T (XTuj) =
n∑

j=1

λj∥XTuj∥2 ≥ 0

since λj > 0 for all j.
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2. We find

f
′′
(s) = 2TrXTBX + 2TrY TBY − TrXTBY − TrY TBX

= 2Tr(X − Y )TB(X − Y ) ≥ 0

Thus f is convex. Since f(s) = f((1− s).0 + s.1) we have f(s) ≤ (1− s)f(0) + sf(1).
This inequality reads

F ((sX + (1− s)Y ) ≤ sF (X) + (1− s)F (Y )

3. The gradient of F (X) is the matrix

∇XF (X) = BX

This can be computed using components ∂
∂Xij

F (X). Since F is convex it is above its
tangent and this shows (see class)

F (Y )− F (X) ≥ ⟨∇XF (X), Y −X⟩ = Tr(BX)T (Y −X)

Note the last result can also be found working with components.

The function is not Lipschitz because the gradient BX is not bounded (locally it is
Lipschitz but we did not talk about this in class).

4. For L the gradient is ∇L(X) = BX + AX − A. The gradient descent algorithm is as
follows: initialize with X1 and for t = 1, · · · , T do

Xt+1 = Xt − η(BXt + AXt − A)

Summing over t = 1, · · · , T we get

1

T
(XT+1 −X1) = −η((B + A)

1

T

T∑
t=1

Xt − A)

Since we assume ∥Xt∥ ≤ M uniformly in t, we can use ∥X1∥ ≤ M and ∥XT+1∥ ≤ M
to get

∥ 1
T

T∑
t=1

Xt − (B + A)−1A∥ ≤ 2M

ηT
∥(B + A)−1∥

3. Variant of standard gradient descent; forward and backward schemes

1. The backward Euler scheme is

xt+1 = xt + S−1∇f(xt+1).
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2. The first term f is convex. The second term is strictly convex because S is positive
definite (with λmin > 0). Thus the sum is strictly convex.

Since f is differentiable we can differentiate the gradient of the quantity in the bracket
in order to find the argmin:

∇f(x) + η−1S(x− xt) = 0

which implies the backward Euler scheme:

xt+1 = xt − ηS−1∇f(xt+1)

3. Let S−1 = UTΛ−1U with U an orthogonal matrix, and Λ = Diag (λ1 · · ·λd). With
x̄ = 1

T

∑T
t=1 x

t, we have

f(x̄)− f (x∗) ⩽ 1

T

T∑
t=1

(
f
(
xt
)
− f (x∗)

)
convexity

⩽ 1

T

T∑
t=1

〈
∇f

(
xt
)
, xt − x∗〉 convexity

=
1

T

T∑
t=1

〈
U∇f

(
xt
)
, Uxt − Ux∗〉

=
d∑

k=1

1

T

T∑
t=1

(U∇f)k(x
t)
(
U
(
xt − x∗))

k

=
d∑

k=1

λk

ηT

T∑
t=1

(
η

λk

)
(U∇f)k(x

t)
(
U
(
xt − x∗))

k

=
d∑

k=1

λk

2ηT

T∑
t=1

{
−
((

U
(
xt − x∗))

k
− η

λk

(U∇f)k(x
t)

)2

+
(
U
(
xt − x∗))2

k
+

η2

λ2
k

(U∇f )k (x
t)2

}

Now, from the backward equation we have:

xt+1 = xt − ηUTΛ−1U∇(xt)

⇒ Uxt+1 = Uxt − ηΛ−1U∇f(xt)(
Uxt+1

)
k
=

(
Uxt

)
k
− η

λk

(U∇f)k(x
t)
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From which we get

f(x̄)− f (x∗) ≤
d∑

k=1

λk

2ηT

T∑
t=1

{
−
(
U
(
xt+1 − x∗))2

k
+
(
U
(
xt − x∗))2

k
+

η2

λ2
k

(U∇f )k (x
t)2

}

=
d∑

k=1

λk

2ηT

[(
U
(
x1 − x∗))2

k
−

(
U
(
xT+1 − x∗))2

k

]
+

d∑
k=1

λk

2ηT

T∑
t=1

η2

λ2
k

(U∇f)k(x
t)2

≤ λmax

2ηT

d∑
k=1

(
U
(
x1 − x∗))2

k
+

η

2Tλmin

T∑
t=1

∥U∇f∥2

=
λmax

2ηT

∥∥U (
x1 − x∗)∥∥2

+
η

2λmin

∥∇f∥2

≤ λmax

2ηT
R2 +

η

2λmin

ρ2

where we used that x1 = 0 and ∥x∗∥2 ≤ R2 (by assumption) in the last inequality.
Set

η2 =
λmaxλminR

2

ρ2T

Then, we find:

f(x̄)− f (x∗) ≤ λmaxR
2ρ
√
T

2
√
λmaxλminRT

+

√
λmaxλminR

ρ
√
T

ρ2

2λmin

=

√
λmax

λmin

ρR

2
√
T

+

√
λmax

λmin

ρR

2
√
T

=

√
λmax

λmin

ρR√
T
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