
Homework 7
CS-526 Learning Theory

1. Short problems

1. [Several correct answers possible.] Let (xi, yi) ∈ R × {0, 1} for i ∈ {1, . . . , n}. Let
ŷi(w) = 1/ (1 + e−wxi). Define

f : w ∈ R 7→ −
n∑

i=1

[yi log (ŷi(w)) + (1− yi) log (1− ŷi(w))] + λ|w|,

where λ > 0. The function f is:

(a) convex.
(b) differentiable everywhere.
(c) subdifferentiable everywhere.
(d) Lipschitzian.

2. Consider the function
f(x) = x2 + 2.5 cos x+ |x|,

defined on the real line R. Which of the following statements is correct and why/why
not? The function f is:

(a) convex
(b) differentiable everywhere
(c) subdifferentiable everywhere

3. Let g : R 7→ R be a differentiable Lipschitz function with constant ρ. Define hα : Rd 7→
R, with hα(x) = g(‖x‖α) where α > 0. For which values of α > 0 can we conclude that
hα a Lipschitz function without further information on g ? Give a Lipschitz constant
when this is the case.

4. Let f(x) = a|x|3 + b|x| + c for a, b ∈ R+ and c ∈ R. Is this function convex ? If yes
what are the subgradient sets ∂f(x) ?

5. Let G(z) = e−
z2

2√
2π

and the convolution fG(x) =
∫
R dzG(z − x)f(z). Consider the

standard Gaussian random variable Z ∼ N (0, 1). Consider the random map x 7→
Zf(x+ Z). Which is true ?

(a) This random map is a stochastic gradient of fG.
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(b) This random map cannot be a stochastic gradient since it does not contain any
derivative.

2. Gradient Descent for Positive Semi-definite Matrices
Let X,Y ∈ Rn×n be n × n real matrices and A,B ∈ Rn×n be n × n real symmetric and

positive definite matrices. Let F : Rn×n 7→ R the function F (X) = 1
2
TrXTBX.

1. Show that F (X) ≥ 0 for any X.

2. Compute the second derivative of

f(s) = Tr(sXT + (1− s)Y T )B(sX + (1− s)Y )

for s ∈ [0, 1] and deduce that F is a convex function.

3. Deduce the inequality F (Y )− F (X) ≥ TrXTB(Y −X). Is F Lipschitz ?

4. Consider now the function G : Rn×n 7→ R with G(X) = 1
2
Tr(X − I)TA(X − I) where

I is the identity matrix. Define L(X) = F (X) +G(X).

(a) Write down the gradient descent algorithm for L. Call Xt the updated matrix at
time t.

(b) Assume that the operator norm ‖Xt‖ ≤ M stays bounded uniformly in n. Show
that

‖ 1
T

T∑
t=1

Xt − (B + A)−1A‖ ≤ 2M

ηT
‖(B + A)−1‖

3. Variants of standard gradient descent; forward and backward schemes
Let f : Rd → R be a convex Lipshitz continuous differentiable function with Lipshitz

constant ρ > 0. Let S be a real symmetric strictly positive-definite d×d matrix with smallest
eigenvalue λmin > 0. We consider a gradient descent iteration for t ≥ 1 and step size η > 0:

xt+1 = xt − ηS−1∇f(xt) (1)

with initial condition x1 = 0. Further, define x∗ = argmin∥x∥∈B(0,R)f(x), where B(0, R) is
the ball of radius R.

1. The update equation (1) is in the form of an Euler forward scheme. Write down the
associated backward Euler scheme.

2. Consider the following iterations (assume the argmin exists and is unique)

xt+1 = argminx

{
f(x) +

1

2η
(x− xt)TS(x− xt)

}
Is the quantity in the bracket simply convex or strictly convex ? Show that this
iteration is equivalent to one of the two Euler schemes.
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3. Show that if we choose the step size η = R
√
λmaxλmin

ρ
√
T

after T iterations we have

f
( 1
T

T∑
t=1

xt
)
− f(x∗) ≤ ρR√

T

√
λmax

λmin

Hint: recall that in class we proved this statement when S = I the identity matrix.
Here you can use an eigenvalue decomposition S−1 = UTΛ−1U . The following is also
useful:

⟨
∇f

(
xt
)
, xt − x∗⟩ = ⟨

U∇f
(
xt
)
, Uxt − Ux∗⟩ = d∑

k=1

(U∇f)k(x
t)
(
Uxt − Ux∗)

k

Justify why these steps can be used.


