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Astrophysics IV: Stellar and galactic dynamics
Solutions

Problem 1:

The vertical epicycle frequency is defined by:

ν2(R) =
∂

∂z

(
∂Φ

∂z

)
(R,z=0)

(1)

and the circular frequency is:

Ω2(R) =
1

R

(
∂Φ

∂R

)
(R,z=0)

(2)

where Φ(R, z) is an axi-symmetric potential. A spherical potential is a subclass of
axi-symmetric potentials and may then be written as:

Φ(r) = Φ(R, z) = Φ(R2 + z2). (3)

Thus, for a spherical potential, derivatives with respect to R and z writes:

∂Φ

∂z
= 2

∂Φ

∂r
z (4)

∂2Φ

∂z2
= 4

∂2Φ

∂r2
z2 + 2

∂Φ

∂r
(5)

∂Φ

∂R
= 2

∂Φ

∂r
R. (6)

Thus, with partial derivatives computed in R and z=0, we have:

ν2(R) = 2
∂Φ

∂r
(7)

and
Ω2(R) = 2

∂Φ

∂r
. (8)

Problem 2:

Stating that the azimuthal angle ∆ϕ between successive pericenters lies in the range
π ≤ ∆ϕ ≤ 2π is equivalent to state that the radial epicycle frenquency κ is in the range
Ω ≤ κ ≤ 2Ω, where Ω is the circular frequency.

1



We consider the two possible extreme cases of spherical mass distribution in which
the density decreases outwards. (ii) a constant density, (i) a mass point.

The radial dependency of the circular velocity for (i), i.e., a Keplerian orbit is:

vc ∼ r−1/2 (9)

and thus:
Ω ∼ r−3/2 and thus Ω2 ∼ r−1/2. (10)

The gradient of Ω2 is thus:

∂ (Ω2)

∂r
∼ 2Ω

∂Ω

∂r
∼ −3

Ω2

r
(11)

Using:

κ2 = r
∂ (Ω2)

∂r
+ 4Ω2, (12)

we obtain:
κ = Ω, (13)

The radial dependency of the circular velocity for (ii) is:

vc ∼ r and thus Ω = cte. (14)

Using:

κ2 = r
∂ (Ω2)

∂r
+ 4Ω2, (15)

we obtain:
κ = 2Ω, (16)

As (i) and (ii) encompass any other spherical mass distribution in which the density
is decreasing outwards, we reach the conclusion that Ω ≤ κ ≤ 2Ω and thus π ≤ ∆ϕ ≤
2π.

Problem 3:

The specific angular momentum of a circular orbit being decreasing outside write:

∂ (Lz)

∂R
< 0 but thus also

∂ (L2
z)

∂R
< 0. (17)

As Lz = VcR, we have:

∂ (L2
z)

∂R
< 0 (18)

∂ (V 2
c R2)

∂R
< 0 (19)

2RV 2
c +R2∂ (V

2
c )

∂R
< 0 (20)

2
V 2
c

R2
+

1

R

∂ (V 2
c )

∂R
< 0 (21)

κ2 < 0. (22)
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The latter inequalities is true only for a radial epicycle frequency being complex. As
the radial motion obey the harmonic equation:

ẍ = −κ2x, (23)

this lead to a general solution of the form:

x(t) = Aeλt +B e−λt, (24)

where we have defined κ = iλ, with λ a real positive number. If we request that
x(t = −∞) = 0, i.e., initially the orbit coincide with the circular orbit, B must be 0.
We are left with an exponential solution which means that the orbit will exponentially
deviates from the circular orbit, thus being unstable.

Problem 4:

The radial component of the equations of motion of an orbit in a spherical potential
is:

r̈ − r θ̇2 = − ∂

∂r
Φ(r). (25)

Thus,

r
∂

∂r
Φ(r) = −rr̈ +−r2 θ̇2. (26)

The time average of the latter equation is:

1

T

∫ T

0

dt r
∂

∂r
Φ(r) = − 1

T

∫ T

0

dt rr̈ +
1

T

∫ T

0

dt r2 θ̇2. (27)

We can integrate by part the first term of the right hand side:

1

T

∫ T

0

dt r
∂

∂r
Φ(r) = − 1

T

(
rṙ

∣∣∣∣T
0

−
∫ T

0

dt ṙ2

)
+

1

T

∫ T

0

dt r2 θ̇2 (28)

= − 1

T

(
rṙ

∣∣∣∣T
0

)
+

∫ T

0

dt
(
ṙ2 + r2 θ̇2

)
. (29)

If we decide to average over a large number of radial period and set t = 0 at the
pericenter or apocenter, as at those points, ṙ = 0:

rṙ

∣∣∣∣T
0

= 0. (30)

Moreover, the integrant of the last right hand side therm is the square of the velocity:

ṙ2 + r2 θ̇2 = v2. (31)

We thus reach the conclusion that:〈
r
∂

∂r
Φ(r)

〉
= ⟨v2⟩. (32)
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Problem 5:

The definition of the Oort constants are:

A = −1

2
R
∂Ω

∂R
and B = −

(
Ω +

1

2
R
∂Ω

∂R

)
. (33)

Thus:

A2 = −1

4
R2

(
∂Ω

∂R

)2

and B2 = Ω2 +
1

4
R2

(
∂Ω

∂R

)2

+ ΩR

(
∂Ω

∂R

)
, (34)

which leads to:
2
(
A2 −B2

)
= −2Ω2 − 2ΩR

(
∂Ω

∂R

)
. (35)

The Poisson equation for an axi-symmetric potential Φ(R, z) writes:

∇2Φ(R, z) = 4πρ(R, z), (36)

where ρ(R, z) is the corresponding density.
Using cylindrical coordinates, this gives:

∇2Φ(R, z) =
1

R

∂

∂R

(
R
∂Φ

∂R

)
+

∂2Φ

∂z2
, (37)

and thus:
∂2Φ

∂z2
= 4πρ(R, z)− 1

R

∂

∂R

(
R
∂Φ

∂R

)
, (38)

and in particular:
∂2Φ

∂z2

∣∣∣∣
z=0

= 4πρ0 −
1

R

∂

∂R

(
R
∂Φ

∂R

)∣∣∣∣
z=0

, (39)

Using the circular frequency:

Ω = R
∂Φ

∂R

∣∣∣∣
z=0

, (40)

the previous equation writes:

∂2Φ

∂z2

∣∣∣∣
z=0

= 4πρ0 −
1

R

∂

∂R

(
Ω2R2

)
(41)

= 4πρ0 − 2Ω2 − 2ΩR

(
∂Ω

∂R

)
(42)

= 4πρ0 + 2
(
A2 −B2

)
. (43)
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