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Astrophysics IV: Stellar and galactic dynamics

Solutions
Problem 1:
The vertical epicycle frequency is defined by:
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where ®(R, z) is an axi-symmetric potential. A spherical potential is a subclass of
axi-symmetric potentials and may then be written as:
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Thus, for a spherical potential, derivatives with respect to R and z writes:
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Thus, with partial derivatives computed in R and z=0, we have:
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Problem 2:

Stating that the azimuthal angle A¢ between successive pericenters lies in the range
m < A¢ < 27 is equivalent to state that the radial epicycle frenquency « is in the range
Q) < k <20, where € is the circular frequency.



We consider the two possible extreme cases of spherical mass distribution in which
the density decreases outwards. (ii) a constant density, (i) a mass point.
The radial dependency of the circular velocity for (i), i.e., a Keplerian orbit is:
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The gradient of Q2 is thus:
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we obtain:
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The radial dependency of the circular velocity for (ii) is:
Ve~ T and thus Q = cte. (14)
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we obtain:
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As (i) and (ii) encompass any other spherical mass distribution in which the density
is decreasing outwards, we reach the conclusion that Q < k < 2€) and thus 7 < A¢ <
2.

Problem 3:

The specific angular momentum of a circular orbit being decreasing outside write:
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The latter inequalities is true only for a radial epicycle frequency being complex. As
the radial motion obey the harmonic equation:
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this lead to a general solution of the form:
x(t) = AeM + Be™, (24)

where we have defined x = i\, with A a real positive number. If we request that
x(t = —o0) = 0, i.e., initially the orbit coincide with the circular orbit, B must be 0.
We are left with an exponential solution which means that the orbit will exponentially
deviates from the circular orbit, thus being unstable.

Problem 4:
The radial component of the equations of motion of an orbit in a spherical potential
is:
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The time average of the latter equation is:
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We can integrate by part the first term of the right hand side:
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If we decide to average over a large number of radial period and set ¢ = 0 at the
pericenter or apocenter, as at those points, r = 0:
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Moreover, the integrant of the last right hand side therm is the square of the velocity:
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We thus reach the conclusion that:
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Problem 5:

The definition of the Oort constants are:
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which leads to:
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The Poisson equation for an axi-symmetric potential ®(R, z) writes:
V20(R, 2) = 4mp(R, 2),

where p(R, z) is the corresponding density.
Using cylindrical coordinates, this gives:
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Using the circular frequency:
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the previous equation writes:
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