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Preface

The explosion in the development of methods for analyzing categorical data that began in
the 1960s has continued apace in recent years. This book provides an overview of these
methods, as well as older, now standard, methods. It gives special emphasis to generalized
linear modeling techniques, which extend linear model methods for continuous variables,
and their extensions for multivariate responses.

OUTLINE OF TOPICS

Chapters 1-10 present the core methods for categorical response variables. Chapters 1-3
cover distributions for categorical responses and traditional methods for two-way contin-
gency tables. Chapters 4-8 introduce logistic regression and related models such as the
probit model for binary and multicategory response variables. Chapters 9 and 10 cover
loglinear models for contingency tables.

In the past quarter century, a major area of new research has been the development of
methods for repeated measurement and other forms of clustered categorical data. Chapters
11-14 present these methods, including marginal models and generalized linear mixed
models with random effects. Chapter 15 introduces non-model-based methods for classi-
fication and clustering. Chapter 16 presents theoretical foundations as well as alternatives
to the maximum likelihood paradigm that this text adopts. Chapter 17 is devoted to a
historical overview of the development of the methods. It examines contributions of noted
statisticians, such as Pearson and Fisher, whose pioneering efforts—and sometimes vocal
debates—broke the ground for this evolution.

Appendices illustrate the use of statistical software for analyzing categorical data. The
website for the text, www.stat.ufl.edu/~aa/cda/cda.html, contains an appendix
with detailed examples of the use of software (especially R, SAS, and Stata) for performing
the analyses in this book, solutions to many of the exercises, extra exercises, and corrections.

CHANGES IN THIS EDITION

Given the explosion of research in the past 50 years on categorical data methods, it is an
increasing challenge to write a comprehensive book covering all the commonly used meth-
ods. The second edition of this book already exceeded 700 pages. In including much new

xiii
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material without letting the book grow much, I have necessarily had to make compromises
in depth and use relatively simple examples. I try to present a broad overview, while pre-
senting bibliographic notes with many references in which the reader can find more details.
In attempting to make the book relatively comprehensive while presenting substantive new
material, every chapter of the first two editions has been extensively rewritten. The major
changes are:

o A new Chapter 7 presents alternative methods for binary response data, including
some regularization methods that are becoming popular in this age of massive data
sets with enormous numbers of variables.

o A new Chapter 15 introduces non-model-based methods of classification, such as
linear discriminant analysis and classification trees, and cluster analysis.

e Many chapters now include a section describing the Bayesian approach for the meth-
ods of that chapter. We also have added material (e.g., Sections 6.5 and 7.4) about ways
that frequentist methods can deal with awkward situations such as infinite maximum
likelihood estimates.

o The use of various software for categorical data methods is discussed at a much ex-
panded website for the text, www.stat .ufl.edu/~aa/cda/cda.html. Examples
are shown of the use of R, SAS, and Stata for most of the examples in the text, and
there is discussion also about SPSS, StatXact, and other software. That website also
contains many of the text’s data sets, some of which have only excerpts shown in the
text itself, as well as solutions for many exercises and corrections of errors found in
early printings of the book. I recommend that you refer to this appendix (or special-
ized software manuals) while reading the text, perhaps printing the pages about the
software you prefer, as an aid to implementing the methods. This material was placed
at the website partly because the text is already so long without it and also because it
is then easier to keep the presentation up-to-date.

In this text, I interpret categorical data analysis to refer to methods for categorical
response variables. For most methods, explanatory variables can be categorical or quan-
titative, as in ordinary regression. Thus, the focus is intended to be more general than
contingency table analysis, although for simplicity of data presentation, most examples use
contingency tables. These examples are simplistic, but should help you focus on under-
standing the methods themselves and make it easier for you to replicate results with your
favorite software.

Other special features of the text include:

e More than 100 analyses of data sets.

o About 600 exercises, some directed toward theory and methods and some toward
applications and data analysis.

o Notes at the end of each chapter that provide references for recent research and many
topics not covered in the text, linked to a bibliography of more than 1200 sources.

INTENDED AUDIENCE AND USE AS A TEXTBOOK

I intend this book to be accessible to the diverse mix of students who take graduate-level
courses in categorical data analysis. But I have also written it with practicing statisticians
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and biostatisticians in mind. I hope it enables them to catch up with recent advances and
learn about methods that sometimes receive inadequate attention in the traditional statistics
curriculum.

The development of new methods has influenced—and been influenced by—the in-
creasing availability of data sets with categorical responses in the social, behavioral, and
biomedical sciences, as well as in public health, genetics, ecology, education, marketing and
the financial industry, and industrial quality control. And so, although this book is directed
mainly to statisticians and biostatisticians, I also aim for it to be helpful to methodologists
in these fields.

Readers should possess a background that includes regression and analysis of variance
models, as well as maximum likelihood methods of statistical theory. Those not having
much theory background should be able to follow most methodological discussions. Those
with mainly applied interests can skip most of Chapter 4 on the theory of generalized linear
models and proceed to other chapters. However, the book has a distinctly higher technical
level and is more thorough and complete than my lower-level text, An Introduction to
Categorical Data Analysis, Second Edition (Wiley, 2007).

Today, because of the ubiquity of categorical data in applications, most statistics and
biostatistics departments offer courses on categorical data analysis or on generalized linear
models with strong emphasis on methods for discrete data. This book can be used as a text
for such courses. The material in Chapters 1-6 forms the heart of most courses. There is
too much material in this book for a single course, but a one-term course can be based on
the following outline:

e Basic contingency table analysis, covering Chapters 1-3, perhaps skipping some
tangential sections such as 1.5.7, 1.6, 2.4, 3.4-3.7.

o Logistic regression and related methods for binary data, covering Chapters 4-6,
perhaps skipping some tangential sections such as 4.4-4.7 and 6.4-6.6.

e Multinomial response models, covering at least Sections 8.1 and 8.2.
e Matched pairs and clustered data, covering at least Sections 11.1-11.2.

Courses with biostatistical orientation may want to include bits from Chapters 12 and 13
on marginal and random effects models. Courses with social science emphasis may want
to include some topics on loglinear modeling from Chapters 9 and 10. Some courses may
want to select specialized topics from Chapter 7, such as probit modeling, conditional
logistic regression, Bayesian binary data modeling, smoothing, and issues in the analysis
of high-dimensional data.
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CHAPTER 1

Introduction: Distributions and
Inference for Categorical Data

From helping to assess the value of new medical treatments to evaluating the factors that
affect our opinions and behaviors, analysts today are finding myriad uses for categorical
data methods. In this book we introduce these methods and the theory behind them.

Statistical methods for categorical responses were late in gaining the level of sophistica-
tion achieved early in the twentieth century by methods for continuous responses. Despite
influential work around 1900 by the British statistician Karl Pearson, relatively little de-
velopment of models for categorical responses occurred until the 1960s. In this book we
describe the early fundamental work that still has importance today but place primary
emphasis on more recent modeling approaches.

1.1 CATEGORICAL RESPONSE DATA

A categorical variable has a measurement scale consisting of a set of categories. For
instance, political philosophy is often measured as liberal, moderate, or conservative. Diag-
noses regarding breast cancer based on a mammogram use the categories normal, benign,
probably benign, suspicious, and malignant.

The development of methods for categorical variables was stimulated by the need to
analyze data generated in research studies in both the social and biomedical sciences.
Categorical scales are pervasive in the social sciences for measuring attitudes and opinions.
Categorical scales in biomedical sciences measure outcomes such as whether a medical
treatment is successful.

Categorical data are by no means restricted to the social and biomedical sciences. They
frequently occur in the behavioral sciences (e.g., type of mental illness, with the categories
schizophrenia, depression, neurosis), epidemiology and public health (e.g., contraceptive
method at last sexual intercourse, with the categories none, condom, pill, IUD, other),
genetics (type of allele inherited by an offspring), botany and zoology (e.g., whether or
not a particular organism is observed in a sampled quadrat), education (e.g., whether a stu-
dent response to an exam question is correct or incorrect), and marketing (e.g., consumer

Categorical Data Analysis, Third Edition. Alan Agresti.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.



2 INTRODUCTION: DISTRIBUTIONS AND INFERENCE FOR CATEGORICAL DATA

preference among the three leading brands of a product). They even occur in highly quan-
titative fields such as engineering sciences and industrial quality control. Examples are the
classification of items according to whether they conform to certain standards, and subjec-
tive evaluation of some characteristic: how soft to the touch a certain fabric is, how good a
particular food product tastes, or how easy a worker finds it to perform a certain task.

Categorical variables are of many types. In this section we provide ways of classifying
them.

1.1.1 Response-Explanatory Variable Distinction

Statistical analyses distinguish between response (or dependent) variables and explana-
tory (or independent) variables. This book focuses on methods for categorical response
variables. As in ordinary regression modeling, explanatory variables can be any type. For
instance, a study might analyze how opinion about whether same-sex marriages should be
legal (yes or no) changes according to values of explanatory variables, such as religious
affiliation, political ideology, number of years of education, annual income, age, gender,
and race.

1.1.2 Binary-Nominal-Ordinal Scale Distinction

Many categorical variables have only two categories. Such variables, for which the two
categories are often given the generic labels “success” and “failure,” are called binary
variables. A major topic of this book is the modeling of binary response variables.

When a categorical variable has more than two categories, we distinguish between
two types of categorical scales. Variables having categories without a natural ordering are
said to be measured on a nominal scale and are called nominal variables. Examples are
mode of transportation to get to work (automobile, bicycle, bus, subway, walk), favorite
type of music (classical, country, folk, jazz, rock), and choice of residence (apartment,
condominium, house, other). For nominal variables, the order of listing the categories is
irrelevant to the statistical analysis.

Many categorical variables do have ordered categories. Such variables are said to be
measured on an ordinal scale and are called ordinal variables. Examples are social class
(upper, middle, lower), political philosophy (very liberal, slightly liberal, moderate, slightly
conservative, very conservative), patient condition (good, fair, serious, critical), and rating
of a movie for Netflix (1 to 5 stars, representing hated it, didn’t like it, liked it, really liked
it, loved it). For ordinal variables, distances between categories are unknown. Although
a person categorized as very liberal is more liberal than a person categorized as slightly
liberal, no numerical value describes iow much more liberal that person is.

An interval variable is one that does have numerical distances between any two values.
For example, systolic blood pressure level, length of prison term, and annual income are
interval variables. For most such variables, it is also possible to compare two values by
their ratio, in which case the variable is also called a ratio variable.

The way that a variable is measured determines its classification. For example, “educa-
tion” is only nominal when measured as (public school, private school, home schooling);
it is ordinal when measured by highest degree attained, using the categories (none, high
school, bachelor’s, master’s, doctorate); it is interval when measured by number of years
of education completed, using the integers 0, 1,2, 3, .. ..



CATEGORICAL RESPONSE DATA 3

A variable’s measurement scale determines which statistical methods are appropriate.
It is usually best to apply methods appropriate for the actual scale. In the measurement
hierarchy, interval variables are highest, ordinal variables are next, and nominal variables
are lowest. Statistical methods for variables of one type can also be used with variables at
higher levels but not at lower levels. For instance, statistical methods for nominal variables
can be used with ordinal variables by ignoring the ordering of categories. Methods for
ordinal variables cannot, however, be used with nominal variables, since their categories
have no meaningful ordering. The distinction between ordered and unordered categories
is not important for binary variables, because ordinal methods and nominal methods then
typically reduce to equivalent methods.

In this book, we present methods for the analysis of binary, nominal, and ordinal
variables. The methods also apply to interval variables having a small number of distinct
values (e.g., number of times married, number of distinct side effects experienced in taking
some drug) or for which the values are grouped into ordered categories (e.g., education
measured as <12 years, >12 but <16 years, >16 years).

1.1.3 Discrete-Continuous Variable Distinction

Variables are classified as discrete or continuous, according to whether the number of
values they can take is countable. Actual measurement of all variables occurs in a discrete
manner, due to precision limitations in measuring instruments. The discrete—continuous
classification, in practice, distinguishes between variables that take few values and variables
that take lots of values. For instance, statisticians often treat discrete interval variables having
a large number of values (such as test scores) as continuous, using them in methods for
continuous responses.

This book deals with certain types of discretely measured responses: (1) binary vari-
ables, (2) nominal variables, (3) ordinal variables, (4) discrete interval variables hav-
ing relatively few values, and (5) continuous variables grouped into a small number of
categories.

1.1.4 Quantitative—Qualitative Variable Distinction

Nominal variables are qualitative—distinct categories differ in quality, not in quantity. In-
terval variables are quantitative—distinct levels have differing amounts of the characteristic
of interest. The position of ordinal variables in the qualitative—quantitative classification
is fuzzy. Analysts often treat them as qualitative, using methods for nominal variables.
But in many respects, ordinal variables more closely resemble interval variables than they
resemble nominal variables. They possess important quantitative features: Each category
has a greater or smaller magnitude of the characteristic than another category; and although
not possible to measure, an underlying continuous variable is often present. The political
ideology classification (very liberal, slightly liberal, moderate, slightly conservative, very
conservative) crudely measures an inherently continuous characteristic.

Analysts often utilize the quantitative nature of ordinal variables by assigning numerical
scores to the categories or assuming an underlying continuous distribution. This requires
good judgment and guidance from researchers who use the scale, but it provides benefits
in the variety of methods available for data analysis.
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1.1.5 Organization of Book and Online Computing Appendix

The models for categorical response variables discussed in this book resemble regres-
sion models for continuous response variables; however, they assume binomial or multi-
nomial response distributions instead of normality. One type of model receives special
attention—/ogistic regression. Ordinary logistic regression models apply with binary re-
sponses and assume a binomial distribution. Generalizations of logistic regression apply
with multicategory responses and assume a multinomial distribution.

The book has four main units. In the first, Chapters 1 through 3, we summarize descriptive
and inferential methods for univariate and bivariate categorical data. These chapters cover
discrete distributions, methods of inference, and measures of association for contingency
tables. They summarize the non-model-based methods developed prior to about 1960.

In the second and primary unit, Chapters 4 through 10, we introduce models for cate-
gorical responses. In Chapter 4 we describe a class of generalized linear models having
models of this text as special cases. Chapters 5 and 6 cover the most important model for bi-
nary responses, logistic regression. Chapter 7 presents alternative methods for binary data,
including the probit, Bayesian fitting, and smoothing methods. In Chapter 8 we present
generalizations of the logistic regression model for nominal and ordinal multicategory
response variables. In Chapters 9 and 10 we introduce the modeling of multivariate cate-
gorical response data, in terms of association and interaction patterns among the variables.
The models, called loglinear models, apply to counts in the table that cross-classifies those
responses.

In the third unit, Chapters 11 through 14, we discuss models for handling repeated
measurement and other forms of clustered data. In Chapter 11 we present models for
a categorical response with matched pairs; these apply, for instance, with a categorical
response measured for the same subjects at two times. Chapter 12 covers models for more
general types of repeated categorical data, such as longitudinal data from several times
with explanatory variables. In Chapter 13 we present a broad class of models, generalized
linear mixed models, that use random effects to account for dependence with such data. In
Chapter 14 further extensions of the models from Chapters 11 through 13 are described,
unified by treating the response as having a mixture distribution of some type.

The fourth and final unit has a different nature than the others. In Chapter 15 we consider
non-model-based classification and clustering methods. In Chapter 16 we summarize large-
sample and small-sample theory for categorical data models. This theory is the basis for
behavior of model parameter estimators and goodness-of-fit statistics. Chapter 17 presents
a historical overview of the development of categorical data methods.

Maximum likelihood methods receive primary attention throughout the book. Many
chapters, however, contain a section presenting corresponding Bayesian methods.

In Appendix A we review software that can perform the analyses in this book. The
website www. stat.ufl.edu/~aa/cda/cda.html for this book contains an appendix
that gives more information about using R, SAS, Stata, and other software, with sample
programs for text examples. In addition, that site has complete data sets for many text
examples and exercises, solutions to some exercises, extra exercises, corrections, and links
to other useful sites. For instance, a manual prepared by Dr. Laura Thompson provides
examples of how to use R and S-Plus for all examples in the second edition of this text,
many of which (or very similar ones) are also in this edition.

In the rest of this chapter, we provide background material. In Section 1.2 we review the
key distributions for categorical data: the binomial and multinomial, as well as another that
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is important for discrete data, the Poisson. In Section 1.3 we review the primary mechanisms
for statistical inference using maximum likelihood. In Sections 1.4 and 1.5 we illustrate
these by presenting significance tests and confidence intervals for binomial and multinomial
parameters. In Section 1.6 we introduce Bayesian inference for these parameters.

1.2 DISTRIBUTIONS FOR CATEGORICAL DATA

Inferential data analyses require assumptions about the random mechanism that generated
the data. For regression models with continuous responses, the normal distribution plays the
central role. In this section we review the three key distributions for categorical responses:
binomial, multinomial, and Poisson.

1.2.1 Binomial Distribution

Many applications refer to a fixed number n of binary observations. Let yi, y2,..., yu
denote observations from n independent and identical trials such that P(Y; = 1) = & and
P(Y; =0)=1—m. We refer to outcome 1 as “success” and outcome 0 as “failure.”
Identical trials means that the probability of success 7 is the same for each trial. Independent
trials means that the {Y;} are independent random variables. These are often called Bernoulli
trials. The total number of successes, Y = Y _;_, Y;, has the binomial distribution with index
n and parameter 7, denoted by bin(n, 7).
The probability mass function for the possible outcomes y for Y is

P()’)=(;)7Ty(1—rr)""y, y=0,1,2,...,n, (1.1)

where the binomial coefficient (y) — n!/[y!n — y)!]. Since E(Y)) = EFF) = 1 x 7 +
Ox(-m)y=m,

EXY)=m and var(Y;)=n(l —m).

The binomial distribution for ¥ = ), ¥; has mean and variance

2 = var(Y) = nw(l — 7).

u=E¥)=nr and o
The skewness is described by E(Y — u)}/03 = (1 — 2r)/+/nw(1 — 7). The distribution
is symmetric when 7 = 0.50 but becomes increasingly skewed as 7 moves toward either
boundary. The binomial distribution converges to normality as » increases, for fixed 7, the
approximation being reasonable' when n[min(r, 1 — )] is as small as about 5.

There is no guarantee that successive binary observations are independent or identical.
Thus, occasionally, we will utilize other distributions. One such case is sampling binary
outcomes without replacement from a finite population, such as observations on whether a
homework assignment was completed for 10 students sampled from a class of size 20. The

ISee www.stat .tamu.edu/~west/applets/binomialdemo2.html.
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hypergeometric distribution, studied in Section 3.5.1, is then relevant. In Section 1.2.4 we
discuss another case that violates the binomial assumptions.

1.2.2 Multinomial Distribution

Some trials have more than two possible outcomes. Suppose that each of n independent,
identical trials can have outcome in any of ¢ categories. Let y;; = 1 if trial / has outcome
in category j and y;; = O otherwise. Then y; = (yi1, yi2. ..., Yic) represents a multinomial
trial, with Zj yi; = 1; for instance, (0, 0, 1, 0) denotes outcome in category 3 of four
possible categories. Note that y;. is redundant, being linearly dependent on the others.
Let n; = ) ; yi; denote the number of trials having outcome in category j. The counts
(n, na, ..., n.) have the multinomial distribution.

Let m; = P(Y;; = 1) denote the probability of outcome in category j for each trial. The
multinomial probability mass function is

A n! H n He
P(”l,nz,---,”(-—1)=(ﬁ>n]'n22~--n(.‘. (1.2)
nilny!--ne!

Since Z/- n; = n, this is (¢ — 1)-dimensional, withn. = n — (n1 + - - - + n.-1). The bino-
mal distribution is the special case with ¢ = 2.
For the multinomial distribution,

E(nj)=nm;, var(n;)=nn;(1 —mn;), covin;, ng)=—nm;my. (1.3)

We derive the covariance in Section 16.1.4. The marginal distribution of each n is binomial.

1.2.3 Poisson Distribution

Sometimes, count data do not result from a fixed number of trials. For instance, if ¥ =
number of automobile accidents today on motorways in Italy, there 1s no fixed upper bound n
for Y (as you are aware 1f you have driven in Italy!). Since Y must take a nonnegative integer
value, its distribution should place its mass on that range. The simplest such distribution
1s the Poisson. Its probabilities depend on a single parameter, the mean p. The Poisson
probability mass function (Poisson 1837, p. 206) 1s

e—ulb\'
y!

p(y)= ,oy=01.2.... (1.4)

It satisfies E(Y) = var(Y) = w. It is unimodal with mode equal to the integer part of u.
Its skewness is described by E(Y — u)} /o3 = 1/./w. The Poisson distribution approaches
normality as p increases, the normal approximation being quite good when y 1s at least
about 10.

The Poisson distribution 1s used for counts of events that occur randomly over time or
space, when outcomes in disjoint periods or regions are independent. It also applies as an
approximation for the binomial when # is large and 7 1s small, with & = nm. For example,
suppose Y = number of deaths today in auto accidents in Italy (rather than the number of
accidents). Then, Y has an upper bound. If each of the 50 million people driving in Italy
1s an independent trial with probability 0.0000003 of dying today in an auto accident, the
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number of deaths Y is a bin(50000000, 0.0000003) variate. This is approximately Poisson
with ¢ = nr = 50000000(0.0000003) = 15.

A key feature of the Poisson distribution is that its variance equals its mean. Sample
counts vary more when their mean is higher. When the mean number of daily fatal accidents
equals 15, greater variability occurs from day to day than when the mean equals 2.

1.2.4 Overdispersion

In practice, count observations often exhibit variability exceeding that predicted by the
binomial or Poisson. This phenomenon is called overdispersion. We assumed above that
each person has the same probability each day of dying in a fatal auto accident. More
realistically, these probabilities vary from day to day according to the amount of road traffic
and weather conditions and vary from person to person according to factors such as the
amount of time spent in autos, whether the person wears a seat belt, how much of the
driving is at high speeds, gender, and age. Such variation causes fatality counts to display
more variation than predicted by the Poisson model.

Suppose that Y is a random variable with variance var(Y |u) for given u, but u itself
varies because of unmeasured factors such as those just described. Let 8 = E(w). Then
unconditionally,

EY)= E[EY|w)], var(Y)= E[var(Y|w)] + var[E(Y |u)].

When Y is conditionally Poisson (given p), then E(Y) = E(u) = 6 and var(Y) = E(u) +
var(u) = 6 + var(u) > 6.

Assuming a Poisson distribution for a count variable is often too simplistic, because of
factors that cause overdispersion. The negative binomial is a related distribution for count
data that has a second parameter and permits the variance to exceed the mean. We introduce
it in Section 4.3 4.

Analyses assuming binomial (or multinomial) distributions are also sometimes invalid
because of overdispersion. This might happen because the true distribution is a mixture
of different binomial distributions, with the parameter varying because of unmeasured
variables. To illustrate, suppose that an experiment exposes pregnant mice to a toxin and
then after a week observes the number of fetuses in each mouse’s litter that show signs of
malformation. Let n; denote the number of fetuses in the litter for mouse i. The pregnant
mice also vary according to other factors, such as their weight, overall health, and genetic
makeup. Extra variation then occurs because of the variability from litter to litter in the
probability 7t of malformation. The distribution of the number of fetuses per litter showing
malformations might cluster near 0 and near #;, showing more dispersion than expected
for binomial sampling with a single value of 7. Overdispersion could also occur when &
varies among fetuses in a litter according to some distribution (Exercise 1.17). In Chapters
4, 13, and 14 we introduce methods for data that are overdispersed relative to binomial and
Poisson assumptions.

1.2.5 Connection Between Poisson and Multinomial Distributions

For adult residents of Britain who visit France this year, let Y; = number who fly there,
Y; = number who travel there by train without a car (Eurostar), Y3 = number who travel
there by ferry without a car, and Y4 = number who take a car (by Eurotunnel Shuttle or
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a ferry). A Poisson model for (Y}, Y3, Y3, Y4) treats these as independent Poisson random
variables, with parameters (4, (2, 43, 44). The joint probability mass function for {¥;} is
the product of the four mass functions of form (1.4). The total n = Zi Y; also has a Poisson
distribution, with parameter ) _; u;.

With Poisson sampling the total count » is random rather than fixed. If we assume a
Poisson model but condition on n, {¥;} no longer have Poisson distributions, since each
Y; cannot exceed n. Given n, {Y;} are also no longer independent, since the value of one
affects the possible range for the others.

For ¢ independent Poisson variates, with E(Y;) = u;, the conditional probability of a
set of counts {rn;} satisfying ", ¥; = n is

PI:(YI =}1|,Y2 =n2,...,Y(' =n()|ZYI =n]
j

_PXi=n,Ya=ny,....Yc=n)
P(X;Y=n)

= [T Texp(—mi)ui /i !1 _ n! 1—[ , (1.5)
exp (= ;) (X, my)"/nt - Thimt Y,
where {n,- = u,-/( Zj uj) } This is the multinomial (n, {7r;}) distribution, characterized by
the sample size n and the probabilities {7;}.

Many categorical data analyses assume a multinomial distribution. Such analyses usually
have the same inferential results as those of analyses assuming a Poisson distribution,
because of the similarity in the likelihood functions.

1.2.6 The Chi-Squared Distribution

Another distribution of fundamental importance for categorical data is the chi-squared,
not as a distribution for the data but rather as a sampling distribution for many statistics.
Because of its importance, we summarize here a few of its properties.

The chi-squared distribution with degrees of freedom denoted by df has mean df, vari-
ance 2(df), and skewness /8/df. It converges (slowly) to normality as df increases, the
approximation being reasonably good when df is at least about 50.

Let Z denote a standard normal random variable (mean 0, variance 1). Then Z? has a
chi-squared distribution with df = 1. A chi-squared random variable with df = v has rep-
resentation le +--- 4+ ZS, where Z,, ..., Z, are independent standard normal variables.
Thus, a chi-squared statistic having df = v has partitionings into independent chi-squared
components—for example, into v components each having df = 1. Conversely, the repro-
ductive property states that if X f and X % are independent chi-squared random variables
having degrees of freedom v; and v,, then X? = X? + X3 has a chi-squared distribution
with df = vy + vs.

1.3 STATISTICAL INFERENCE FOR CATEGORICAL DATA

In practice, the probability distribution assumed for the response variable has unknown
parameter values. In this section we review methods of using sample data to make
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inferences about the parameters. Sections 1.4 and 1.5 illustrate these methods for bino-
mial and multinomial parameters.

1.3.1 Likelihood Functions and Maximum Likelihood Estimation

In this book we use maximum likelihood for parameter estimation. Maximum likelihood
estimators have desirable properties: They have large-sample normal distributions; they
are asymptotically consistent, converging to the parameter as » increases; and they are
asymptotically efficient, producing large-sample standard errors no greater than those from
other estimation methods. These results hold under weak regularity conditions, mainly that
the number of parameters remains constant as » increases and that the true values of those
parameters fall in the interior (rather than on the boundary) of the parameter space.

Given the data, for a chosen probability distribution the likelihood function is the prob-
ability of those data, treated as a function of the unknown parameter. The maximum
likelihood (ML) estimate is the parameter value that maximizes this function. This is the
parameter value under which the data observed have the highest probability of occurrence.
We denote a parameter for a generic problem by 8 and its ML estimate by . We de-
note the likelihood function by £(8). The B value that maximizes £(8) also maximizes
L(B) = log[e(B)]. It is simpler to maximize L(B) since it is a sum rather than a product of
terms. For many models, L(8) has concave shape and § is the point at which the derivative
equals 0. The ML estimate is then the solution of the likelihood equation, dL(8)/38 = 0.
Often, B is multidimensional, denoted by B, and B is the solution of a set of likelihood
equations.

Let cov(B) denote the asymptotic covariance matrix of 8. Under regularity conditions
(Rao 1973, p. 364), Cov(f?) is the inverse of the information matrix. The (j, k) element of
the information matrix is

82L(ﬂ))
— E , 1.6
<aﬂj8ﬂk (16)

The standard errors are the square roots of the diagonal elements for the inverse of the
information matrix. The greater the curvature of the log likelihood function, the smaller
the standard errors. This is reasonable, since large curvature implies that the log likelihood
drops quickly as 8 moves away from B; hence, the data would have been much more likely
to occur if B took a value near f? rather than a value far from f?

1.3.2 Likelihood Function and ML Estimate for Binomial Parameter

The part of a likelihood function involving the parameters is called the kernel. Since the
maximization of the likelihood is done with respect to the parameters, the rest is irrelevant.

To illustrate, consider the binomial distribution (1.1). The binomial coefficient
n!/[y!(n — y)!] has no influence on where the maximum occurs with respect to 7. Thus,
we ignore it and treat the kernel as the likelihood function. The binomial log likelihood
function is then

L) = log[m*(1 — )" = ylog(w) + (n — y) log(l — 7). (1.7)
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Differentiating with respect to w yields
dL(w)/om = y/m —(n — y)/(A1 =) =(y — nm)/7(1 — 7). (1.8)

Equating this to O gives the likelihood equation, which has solution # = y/n, the sample
proportion of successes for the # trials.
Calculating 9*L(r)/d7?, taking the expectation, and combining terms, we get

— E[3°L(m)/on*] = E[y/n* + (n — y)/(1 = n)*] = n/[n (1 — )]. (1.9)

Thus, the asymptotic variance of 7 is w(1 — x)/n. This is no surprise. Since E(Y) = nw
and var(Y) = nm (1 — ), the distribution of # = Y /» has mean and standard deviation

E@#) =, a(ﬁ):JW.

1.3.3 Wald-Likelihood Ratio—Score Test Triad

There are three standard ways to use the likelihood function to perform large-sample
inference. We introduce these for a significance test of a null hypothesis Hy: 8 = S and
then discuss their relation to interval estimation. They all exploit the large-sample normality
of ML estimators.

Standard errors obtained from the inverse of the information matrix depend on the
unknown parameter values. When we substitute the unrestricted ML estimates (i.e., not
assuming the null hypothesis) we obtain an estimated standard error of 8, which we denote
by SE. Denote —E[82L(8)/88?%] (i.e., the information) evaluated at 8 by «(8). The first
large-sample inference method has test statistic using this estimated standard error,

z=(f - By)/SE, where SE =1/\/u(§B).

This statistic has an approximate standard normal distribution when 8 = fy. We refer z
to the standard normal table to obtain one- or two-sided P-values. Equivalently, for the
two-sided alternative, z2 has an approximate chi-squared null distribution with df = 1;
the P-value is then the right-tailed chi-squared probability above the observed value. This
type of statistic, using the nonnull estimated standard error, is called a Wald statistic (Wald
1943).

The multivariate extension® for the Wald test of Hy: 8 = B has test statistic

W = (B — Bo) [cov(B)] ™ (B — Bo).

The nonnull covariance is based on the curvature (1.6) of the log-likelihood function at 3
and typically itself requires estimation. The asymptotic multivariate normal distribution for
B implies an asymptotic chi-squared distribution for W. The df equal the rank of cov(B),
which is the number of nonredundant parameters in B.

2The T superscript on a vector or matrix denotes the transpose.
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A second general-purpose method uses the likelihood function through the ratio of two
maximizations: (1) the maximum over the possible parameter values under Hy, and (2) the
maximum over the larger set of parameter values permitting Hy or an alternative H, to be
true. Let €y denote the maximized value of the likelihood function under Hy, and let ¢,
denote the maximized value generally (i.e., under Hy U H,). For instance, for parameters
B = (B, B1) and Hy: By = 0, £, is the likelihood function calculated at the B value for
which the data would have been most likely; £ is the likelihood function calculated at the
B value for which the data would have been most likely, when 8y = 0. Then £, is always
at least as large as £y, since £, results from maximizing over a restricted set of the parameter
values.

The ratio A = £y/£, of the maximized likelihoods cannot exceed 1. Wilks (1935, 1938)
showed that —2 log A has a limiting null chi-squared distribution, as # — oo. The df equal
the difference in the dimensions of the parameter spaces under Hy U H, and under Hy. The
likelihood-ratio test statistic equals

—2log A = —2log(£y/€i) = —2(Ly — Ly),

where Ly and L, denote the maximized log-likelihood functions. [In this book, we use
the natural logarithm throughout, for which its inverse is the exponential function; so, 1f
a = log(b), then b = exp(a) = ¢“.]

The third method uses the score statistic, due to R. A. Fisher and C. R. Rao. The score
test, referred to in some literature as the Lagrange multiplier test, is based on the slope and
expected curvature of the log-likelihood function L(B8) at the null value Bo. It utilizes the
size of the score function

u(p) = 9IL(B)/0B,

evaluated at By. The value u(By) tends to be larger in absolute value when f is farther
from By. Denote —E[82L(ﬁ)/3,32] evaluated at S by «(fy). The score statistic is the ratio
of u(By) to its null SE, which is [¢(By)]'/?. This has an approximate standard normal null
distribution. The chi-squared form of the score statistic is

(B _ _[3L(B)/8Bo”
uBo) —E[32L(B)/3B}]

where the notation reflects derivatives with respect to 8 that are evaluated at By. In the
multiparameter case, the score statistic is a quadratic form based on the vector of partial
derivatives of the log likelihood with respect to 8 and the inverse information matrix, both
evaluated at the H, estimates (i.e., assuming that § = B).

Figure 1.1 shows a plot of a generic log-likelihood function L(8) for the univariate
case. It illustrates the three tests of Hy: B = 0. The Wald test uses the behavior of L(8) at
the ML estimate A, having chi-squared form (8/SE)?. The SE of B depends on the cur-
vature of L(f8) at B. The score test is based on the slope and curvature of L(8) at 8 = 0.
The likelihood-ratio test combines information about L(8) at both 8 and gy = 0. It com-
pares the log-likelihood values L at B and Lg at By = 0 using the chi-squared statistic
—2(Ly — Ly). In Figure 1.1, this statistic is twice the vertical distance between values of
L(B)at B and at 0.
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Figure 1.1 Log-likelihood function and information used in three tests of Hy: 8 = 0.

Section 1.4.1 illustrates the Wald, likelihood-ratio, and score tests for inference about a
binomial parameter., As n — 00, the three tests have certain asymptotic equivalences (Cox
and Hinkley 1974, Sec. 9.3). For small to moderate sample sizes, the likelihood-ratio and
score tests are usually more reliable than the Wald test, having actual error rates closer to
the nominal level.

1.3.4 Constructing Confidence Intervals by Inverting Tests

In practice, it is more informative to construct confidence intervals for parameters than to
test hypotheses about their values. For any of the three test methods, we can construct a
confidence interval by inverting the test. For instance, a 95% confidence interval for 8 is
the set of By for which the test of Hy: 8 = By has P-value exceeding 0.05.

Let z, denote the z-score from the standard normal distribution having right-tailed
probability a; this is the 100(1 — a) percentile of that distribution. A 100(1 — «)% confi-
dence interval based on asymptotic normality uses z, 2, for instance zg s = 1.96 for 95%
confidence. The Wald confidence interval is the set of Bg for which |8 — Bol/SE < zq 2.
This gives the interval ,3 £z, o(SE). Let )(dzf(a) denote the 100(1 — a) percentile of the
chi-squared distribution with degrees of freedom df. The likelihood-ratio-based confidence
interval is the set of By for which —2[L(By) — L(,é)] < )(12((1). [Note that )(]2((1) = 25/2.]

When 8 has a normal distribution, the log-likelihood function has a parabolic shape. For
small samples with categorical data, # may be far from normality and the log-likelihood
function can be far from a symmetric, parabolic-shaped curve. This can also happen with
moderate to large samples when 8 falls near the boundary of the parameter space, such
as a population proportion that is near O or near 1. In such cases, inference based on
asymptotic normality of # may have inadequate performance. A marked divergence in
results of Wald and likelihood-ratio inference indicates that the distribution of 4 may not
be close to normality. The example in Section 1.4.3 illustrates.

The Wald confidence interval is commonly used in practice, because it is simple to
construct using ML estimates and standard errors reported by statistical software. The
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likelihood-ratio-test-based interval is becoming more widely available in software and is
preferable for categorical data with small to moderate n. The score-test-based interval is
widely available only in certain cases, such as for proportions as outlined in Section 1.4.2.
For the best known statistical model, regression for a normal response, the three types of
inference provide identical results. In later chapters, we’ll use versions of these intervals
that apply for models with multiple parameters. Especially useful is the profile likelihood
approach based on inverting likelihood-ratio tests (e.g., Section 3.2.6).

1.4 STATISTICAL INFERENCE FOR BINOMIAL PARAMETERS

In this section we illustrate inference methods for categorical data by presenting tests and
confidence intervals for the binomial parameter w. With y successes in # independent
trials, recall that the ML estimator of 7 is 7 = y/n, for which E(#) = 7 and var(#®) =
a(l —m)/n.

1.4.1 Tests About a Binomial Parameter

Consider Hy: m = mg. Since Hy has a single parameter, we use the normal rather than
chi-squared forms of Wald and score test statistics. They permit tests against one-sided as
well as two-sided alternatives.

The Wald statistic for testing Hy: m = mg is

S k. S St (1.10)
VT USE JEA—m)/n '

To find the score statistic, we evaluate the binomial score (1.8) and information (1.9) at 7.
This yields

y n—y n
u(my) = — — , Umy) = ———.
Ty 1 —m (1 — m9)

The normal form of the score statistic simplifies to

u(7mgp) y — 1y T — 7y

)2 /o1 — 7o) - V(I =mo)/n’

(1.11)

Whereas the Wald statistic zy uses the standard error evaluated at 77, the score statistic zg
uses it evaluated at 7. The score statistic is preferable, as it uses the actual null SE rather
than an estimate. Its null sampling distribution is closer to standard normal than that of the
Wald statistic.

The binomial log-likelihood function (1.7) equals Ly = ylogmg + (n — y)log(l — my)
under Hyand L; = ylog @ + (n — y)log(l — ) more generally. The likelihood-ratio test
statistic simplifies to

b 1 -7
—2(Ly— L) =2|ylog— +(n—y)log .
70 1 —
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Expressed as

.
—2(L0—L1>=2[ylogi+(n—y>1og 4 ]
niy n— nmy

it compares observed success and failure counts with fitted counts under Hy by

observed
2 b dil — |- 1.12
Z observe { og ( fitted )] (1.12)

We’ll see that this formula also holds for tests about Poisson and multinomial parameters.
Since no unknown parameters occur under Hy and one occurs under H,, the asymptotic
chi-squared distribution for (1.12) hasdf =1 - 0 = 1.

1.4.2 Confidence Intervals for a Binomial Parameter

Inverting the Wald test statistic gives the interval of my values for which |zw | < z4/2, Or

ok 2oy w (1.13)

Historically, this was one of the first confidence intervals used for any parameter (Laplace
1812, p. 283). Unfortunately, it performs poorly unless # is very large (e.g., Brown et al.
2001), in the sense that the actual probability that the interval contains 7z usually falls below
the nominal confidence coefficient, much below when 7 is near O or 1.

The likelihood-ratio-based confidence interval is more complex computationally, but
simple in principle. It is the set of my for which the likelihood-ratio test has a P-value
exceeding «. Equivalently, it is the set of ¢ for which double the log likelihood drops by
less than Xlz(oe) from its value at the ML estimate # = y/n. For example, the endpoints of
the 95% confidence interval can be found using numerical methods to iteratively solve for
the values of m that satisty

il } = x2(0.05) = 3.84.
0

7
2{ylogn— —i—(n—y)log1
0

The score confidence interval contains 7y values for which |zg| < z4/2. Its endpoints are
the 7y solutions to the equations

(7 — 7o)/ 7ol — o) /n = Ezop.

These are quadratic in 7. First discussed by Wilson (1927), this interval is

2

n 1 Zy
b4 5 + = —/22
n+zg, 2 n+zg,
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The midpoint is a weighted average of # and % where the weight n/(n + 22/2) given 7
increases as # increases. Combining terms, this midpoint equals 7 = (y + 22/2/2)/(n +
zi ;2)- This is the sample proportion for an adjusted sample that adds zi /2 oObservations,
half of each type, for example, 2(2)'025/2 = 1.96?/2 ~ 2 of each type for 95% intervals.
The square of the coefficient of z,,; in (1.14) is a weighted average of the variance of a
sample proportion when # = 7 and the variance of a sample proportion when 7 = % using
the adjusted sample size n + 22/2 in place of n.

For 95% confidence, the score interval can be approximated by a simple adjustment of
the Wald interval (see Exercise 1.25) that adds 2 observations of each type to the sample
before using the Wald formula (1.13). This interval and the ordinary score interval tend to
have actual coverage probability much closer to the nominal level than the Wald interval
(Agresti and Coull 1998, Agresti and Caffo 2000).

1.4.3 Example: Estimating the Proportion of Vegetarians

To collect data to illustrate concepts in introductory statistics courses, often 1 have given the
students a questionnaire. One year I asked each student in an honors class at the University
of Florida whether he or she was a vegetarian. Of n = 25 students, y = 0 answered “yes.”
They were not arandom sample of a particular population, but we use these data to illustrate
95% confidence intervals for a binomial parameter 7.

Since y = 0,the ML estimate # = 0/25 = 0. With the Wald method, the 95% confidence
interval for 7 is

f +1.96y/A(1 —A#)/n, whichis 0+1.96y/(0.0 x 1.0)/25, or (0,0).

When a parameter falls near the boundary of the sample space, often sample estimates of
standard errors are poor and the Wald method does not provide a sensible answer.

By contrast, the 95% score interval equals (0.0, 0.133). That is, when # = 0.0 and
n = 25, the two roots for 7 that satisfy the equation

| — mo| = 1.96y/mo(1 — 1)/ n

are o = 0.0 and my = 0.133. This interval provides a more believable inference. It
contains the values not rejected in corresponding score tests with size (probability of
type I error) 0.05. For Hy: @ = 0.20, for instance, the score test statistic is zg = (0 —
0.20)/./(0.20 x 0.80)/25 = —2.50, which has two-sided P-value 0.012 < 0.05, so 0.20
does not fall in the interval. By contrast, for Hy: m =0.10, zg=(0-—
0.10)/,/(0.10 x 0.90)/25 = —1.67, which has P-value 0.096 > 0.05, so 0.10 falls in the
interval.

When y = 0 and n = 25, the kernel of the likelihood function is £() = 7% —=nm)® =
(1 —m)®. The log-likelihood function (1.7) is L() = 25log(l — 7). Note that L(#) =
L(0) = 0. The 95% likelihood-ratio confidence interval is the set of my for which the
likelihood-ratio statistic

—2(Lo — L) = —2[L(mp) — L(#)]
= —50log(l — mp) < x2(0.05) = 3.84.
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Figure 1.2 Binomial likelihood and log likelihood when y = 0 in n = 25 trials, and likelihood-ratio test-based
confidence interval for 7.

The upper bound is 1 — exp(—3.84/50) = 0.074, and the confidence interval equals (0.0,
0.074). Figure 1.2 shows the likelihood and log-likelihood functions and the corresponding
confidence region for 7.

The three large-sample methods yield quite different results. When 7 is near 0, the
sampling distribution of # is highly skewed to the right for small #n. From numerical
evaluations, we prefer the interval based on inverting the score test.

144 Exact Small-Sample Inference and the Mid P-Value

With modern computational power, it is not necessary to rely on large-sample approxima-
tions for the distribution of estimators such as 7. Tests and confidence intervals can directly
use the binomial distribution rather than its normal approximation. Such inferences occur
naturally for small samples, but apply for any n.

We illustrate by testing Hy: 7 = 0.50 against H,: 7 # 0.50 for the survey results
on vegetarianism just discussed, namely, y = 0 with n = 25. We noted that the score
statistic equals z = —5.0. The exact P-value for this statistic, based on the null bin(25, 0.50)
distribution, is

P(z] > 5.0)= P(Y =0orY = 25) = 0.50% + 0.50% = 0.00000006.

Because of discreteness, in testing Hy: © = 7, it is not usually possible to achieve a
particular fixed size such as 0.05. With a finite number of possible samples, there is a finite
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number of possible P-values, of which 0.05 may not be one. When n = 25 and 7y = 0.50,
for example, the two-sided P-value using the binomial probabilities is 0.043 if y = 7 or if
y = 18 and it is 0.108 if y = 8 or if y = 17. Thus, if we reject Hy when y < 7 or y > 18,
the test is conservative, in the sense that the actual size (i.e., 0.043) is less than the nominal
size (0.05).

To adjust somewhat for discreteness in small-sample distributions, we can base inference
on the mid P-value (Lancaster 1949b, 1961). For a test statistic T with observed value ¢,
and one-sided H, such that large T contradicts Hy,

mid P-value = 1P(T =1t,) + P(T > t,),

with probabilities calculated from the null distribution. Thus, the mid P-value is less than
the ordinary P-value by half the probability of the observed result. Although discrete,
compared with the ordinary P-value, the mid P-value behaves more like the P-value for a
test statistic having a continuous distribution: The sum of its two one-sided P-values equals
1.0. Under Hy, it has a null expected value of 0.50 (like the uniform distribution that occurs
in the continuous case), whereas this expected value exceeds 0.50 for the ordinary P-value
for a discrete test statistic.

Unlike an exact test with ordinary P-value, a test using the mid P-value does not guarantee
that the size of the test is no greater than a nominal value (Exercise 1.12). However, it usually
performs well. It is less conservative than the ordinary exact test. Inference based on the
mid P-value compromises between the conservativeness of exact methods and the uncertain
adequacy of large-sample methods.

Similarly, we can use small-sample distributions to construct confidence intervals for
parameters. Some subtle issues arise such that the choice of such an interval is not straight-
forward, and we defer this topic to a special section (16.6) in Chapter 16 about small-sample
intervals for categorical data.

1.5 STATISTICAL INFERENCE FOR MULTINOMIAL PARAMETERS

Next we consider inference for multinomial parameters {7 ;}. Of n observations in ¢ cate-
gories, n; occur in category j, j = 1,...,c.

1.5.1 Estimation of Muitinomial Parameters

First, we obtain ML estimates of {w;}. As a function of {r;}, the multinomial probability
mass function (1.2) is proportional to the kernel

l—[n;’j, whereall 7; >0 and Zm:l. (1.15)
J J

The ML estimates are the {7} that maximize (1.15).
The multinomial log-likelihood function is

L(x) = an log ;.

J
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To eliminate redundancies, we treat L as a function of (74, .. ., m._1),since 7, = 1 — (7 +
-+ m_y). Thus, 8m./om; = =1, j=1,...,c— 1. Since

dlogm, 1 dm, 1

>

om; o o T,
differentiating L () with respect to 7; gives the likelihood equation

oL(x) n; n _0
om; ;o T o

The ML solution satisfies 7 ; /i, = n;/n.. Now

A ﬁ‘( Zj nf) ﬁcn
Y= = M) 2
- ne ne
J
so fi. = n./n and then #; = n;/n. From general results presented later in the book (Sec-

tion 9.6), this solution does maximize the likelihood. Thus, the ML estimates of {r;} are
the sample proportions.

1.5.2 Pearson Chi-Squared Test of a Specified Multinomial

In 1900 the eminent British statistician Karl Pearson introduced a hypothesis test that
was one of the first inferential methods. It had a revolutionary impact on categorical data
analysis. Pearson’s test evaluates whether multinomial parameters equal certain values. His
original motivation in developing this test was to analyze whether possible outcomes on a
particular Monte Carlo roulette wheel were equally likely (Stigler 1986).

Consider Hy:r; =mj, j = 1,...,c, where Zj mjo = 1. When Hy is true, the expected
values of {n}, called expected frequencies, are p.; = nm;o, j = 1, ..., c. Pearson proposed
the test statistic

(nj —w;)’
x?=) = 1.16
; " (1.16)
Greater differences |n; — ;| produce greater X 2 values, for fixed {7 jo} and n. Let X g
denote the observed value of X2. The P-value is the null value of P(X? > X g). This equals
the sum of the null multinomial probabilities of all count arrays (having a sum of n) with
X?> X2
For large samples, X? has approximately a chi-squared distribution with df = ¢ — 1.
The P-value is approximated by P(x 3_1 > X g), where Xf_l denotes a chi-squared random
variable with df = ¢ — 1. Statistic (1.16) is called the Pearson chi-squared statistic.

1.5.3 Likelihood-Ratio Chi-Squared Test of a Specified Multinomial

An alternative test for multinomial parameters uses the likelihood-ratio test. The kernel of
the multinomial likelihood is (1.15). Under Hj the likelihood is maximized when 7; = 7.
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In the general case, it is maximized when #; = n;/n. The ratio of the likelihoods equals

A= Hj(”jO)"j ‘
[1;(n;/nym

Thus, the likelihood-ratio statistic, denoted by G2, is

G2=—210gA=22njlog(nj/mtj0). (1.17)
j

This statistic, which has form (1.12), is called the likelihood-ratio chi-squared statistic.
The larger the value of G2, the greater the evidence against H.

In the general case, the parameter space consists of {rr;} subject to D ;7 =1,s0the
dimensionality is ¢ — 1. Under Hy, the {r;} are specified completely, so the dimension is
0. The difference in these dimensions equals (¢ — 1). For large n, G? has a chi-squared null
distribution with df = ¢ — 1.

When H, holds, the Pearson X? and the likelihood ratio G? both have large-sample
chi-squared distributions with df = ¢ — 1. In fact, they are asymptotically equivalent in
that case; specifically, X? — G2 converges in probability to zero. [This means that for any
€ >0, P(|X* — G?| <€) — lasn — oo; See Section 16.3.4.] When H, is false, X? and
G? grow in expectation proportionally to n; they need not take similar values, however,
even for very large n.

For fixed c, as # increases the distribution of X? usually converges to chi-squared more
quickly than that of G2. The chi-squared approximation is often poor for G* whenn/c < 5.
When c is large, it can be decent for X2 for n/c as small as 1 if the table does not contain
both very small and moderately large expected frequencies.

Alternatively, the multinomial probabilities induce exact distributions of these test statis-
tics. When it is not feasible to quickly enumerate all the possible samples, it is simple to
simulate the exact distributions by randomly generating a very large number of multinomial
samples of size n with the null probabilities, and calculating X2 and or G? for each sample
(Hirji 2005, Chap. 13). The simulated P-value is the proportion of test statistic values that
are at least as large as the observed value.

1.5.4 Example: Testing Mendel’s Theories

Among its many applications, Pearson’s test was used in genetics to test Mendel’s theories
of natural inheritance. Mendel crossed pea plants of pure yellow strain with plants of pure
green strain. He predicted that second-generation hybrid seeds would be 75% yellow and
25% green, yellow being the dominant strain. One experiment produced n = 8023 seeds,
of which ny = 6022 were yellow and n, = 2001 were green. The expected frequencies
for Hy: m19 = 0.75, 590 = 0.25 are iy = 8023(0.75) = 6017.25 and u, = 2005.75. The
Pearson statistic X2 = 0.015 and the likelihood-ratio statistic GZ = 0.015 (df = 1) have
P-values of P = 0.90. They do not contradict Mendel’s hypothesis.

When ¢ = 2, Pearson’s X2 simplifies to the square of the normal score statistic (1.11).
For Mendel’s data, #; = 6022/8023, ;o = 0.75, » = 8023, and zg = 0.123, for which
X? = (0.123)2 = 0.015. In fact, for general ¢ the Pearson test is the score test about
specified values for multinomial parameters.
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Mendel performed several experiments of this type. In 1936, R. A. Fisher summarized
Mendel’s results. He used the reproductive property of chi-squared: If X2, ..., X,% are
independent chi-squared statistics with degrees of freedom vy, .. ., v, then Zle X? has a
chi-squared distribution with df = Zf:l v;. Fisher obtained a summary chi-squared statistic
equal to 42, with df = 84. A chi-squared distribution with df = 84 has mean 84 and standard
deviation (2 x 84)!/2 = 13.0, and the right-tailed probability above 42 is P = 0.99996. In
other words, the chi-squared statistic was so small that the fit seemed oo good.

Fisher commented: “The general level of agreement between Mendel’s expectations
and his reported results shows that it is closer than would be expected in the best of
several thousand repetitions . . .. I have no doubt that Mendel was deceived by a gardening
assistant, who knew only too well what his principal expected from each trial made.” In a
letter written at the time, he stated: “Now, when data have been faked, I know very well
how generally people underestimate the frequency of wide chance deviations, so that the
tendency is always to make them agree too well with expectations” (Box 1978, p. 297). In
summary, goodness-of-fit tests can reveal not only when a fit is inadequate, but also when it
is better than random fluctuations would have us expect. [Fisher’s daughter, Joan Fisher Box
(1978, pp. 295-300), discussed Fisher’s analysis of Mendel’s data and the accompanying
controversy. See also Pires and Branco (2010). Despite possible difficulties with Mendel’s
data, subsequent work led to general acceptance of his theories.]

1.5.5 Testing with Estimated Expected Frequencies

The chi-squared statistics (1.16) and (1.17) compare a sample distribution to a hypothetical
one {7 o}. In some applications, {7 jo = 7 ;0(8)} are functions of a smaller set of unknown
parameters 6. ML estimates 6 of 8 determine ML estimates {7 jo(é)} of {m o} and hence
ML estimates {ft; = nnjo(é)} of expected frequencies.

Replacing {u;} by estimates {/,} affects the distribution of X? and G?. When dim(f) =
p, the true df = (¢ — 1) — p (Section 16.3.3). Pearson (1917) realized this but did not
always take it into account (Section 17.2).

1.5.6 Example: Pneumonia Infections in Calves

We now show a goodness-to-fit test with estimated expected frequencies. A sample of 156
dairy calves born in Okeechobee County, Florida, were classified according to whether they
caught pneumonia within 60 days of birth. Calves that got a pneumonia infection were also
classified according to whether they got a secondary infection within 2 weeks after the first
infection cleared up. Table 1.1 shows the data. Calves that did not get a primary infection

Table 1.1 Primary and Secondary Pneumonia
Infections in Calves

Secondary Infection’

Primary Infection Yes No
Yes 30 (38.1) 63 (39.0)
No 0(—) 63 (78.9)

“Values in parentheses are estimated expected frequencies.
Source: Data courtesy of Thang Tran and G. A. Donovan,
College of Veterinary Medicine, University of Florida.
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Table 1.2 Probability Structure for Hypothesis

Secondary Infection

Primary Infection Yes No Total
Yes 7?2 n(l —m) bie
No — 1—m 1—m

could not get a secondary infection, so no observations can fall in the category for “no”
primary infection and “yes” secondary infection. That combination is called a structural
zero.

A goal of this study was to test whether the probability of primary infection was the same
as the conditional probability of secondary infection, given that the calf got the primary
infection. In other words, if 7,5 denotes the probability that a calf is classified in row a and
column b of this table, the null hypothesis is

Hy:my + i =m0 /(rn + m12)

ormy = (my, + m2)?. Let m = my; + 7, denote the probability of primary infection. The
null hypothesis states that the probabilities satisfy the structure that Table 1.2 shows;
that is, probabilities in a trinomial for the categories (yes-yes, yes—no, no—no) for
primary—secondary infection equal [72, 7(1 — 7), 1 — 7].

Let n,4p denote the number of observations in row @ and column & of Table 1.1. The ML
estimate of 7 is the value maximizing the kernel of the multinomial likelihood

(7.[2)'111(7.[ _ 7.[2)"12(1 — )2,
The log likelihood is
L(m)=n) log T+ ny2 log(mw — 712) + nyplog(l — ).

Differentiation with respect to 7 gives the likelihood equation

2ny | n ni2 ny
_+.
T T l—m l—m

The solution is
A = Q2ny +ni2)/2ny 4 2n + n2).

For Table 1.1, # = 0.494. Since n = 156, the estimated expected frequencies are i, =
nf? =38.1, 12 = n(# — #2) = 39.0,and fiay = n(l — #) = 78.9. Table 1.1 shows them.
Pearson’s statistic is X = 19.7. Since the ¢ = 3 possible responses have p = 1 parameter
(1) determining the expected frequencies, df = (3 — 1) — 1 = 1. There is strong evidence
against Hy (P = 0.00001). Inspection of Table 1.1 reveals that many more calves got a
primary infection but not a secondary infection than H, predicts. The researchers con-
cluded that the primary infection had an immunizing effect that reduced the likelihood of
a secondary infection.
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1.5.7 Chi-Squared Theoretical Justification

We now outline why Pearson’s statistic for a specified multinomial has a limiting chi-
squared distribution. Derivations for the likelihood-ratio statistic and cases with estimated
expected frequencies are given in Section 16.3.

For a multinomial sample (n,, ..., n.) of size n, the marginal distribution of n; is the
bin(n, ;) distribution. For large n, by the normal approximation to the binomial, n; (and
#; = nj/n) have approximate normal distributions. More generally, by the central limit
theorem, the sample proportions # = (n,/n, ..., n._;/n)T have an approximate multivari-
ate normal distribution (Section 16.1.4). Let X denote the null covariance matrix of /n #,
and let Ty = (710, ...,n(._l_o)r. Under Hy, since /n(# — mo) converges to a N(0, Xo)
distribution, the quadratic form

n(t — mo) L5 (7t — mo) (1.18)

has distribution converging to chi-squared with df = ¢ — 1.
In Section 16.1.4 we show that the covariance matrix of /n# has elements

i = —T Tk ifj;ﬁk
k mi(l—m)) ifj=k

The matrix ):5] has (j, k)th element 1/7.o when j # k and (1/m;0 + 1/m) when j =
k. (You can verify this by showing that X ):5' equals the identity matrix.) With this
substitution, direct calculation with appropriate combining of terms yields that (1.18)
simplifies to X2. In Section 16.3 we provide a formal proof in a more general setting.

This argument is similar to Pearson’s in 1900. R. A. Fisher (1922) gave a simpler
Justification, the gist of which follows: Suppose that (n, ..., n.) are independent Poisson
random variables with means (i1, ..., pt.). For large {1}, the standardized values {z; =
(nj — wu;)//i;} have approximate standard normal distributions. Thus, Zj z? = X? has
an approximate chi-squared distribution with ¢ degrees of freedom. Adding the single linear
constraint Zj(nj — ;) = 0, thus converting the Poisson distributions to a multinomial,
we lose a degree of freedom.

1.6 BAYESIAN INFERENCE FOR BINOMIAL AND
MULTINOMIAL PARAMETERS

This book mainly uses the traditional, so-called frequentist, approach to statistical inference.
We regard parameter values as fixed and apply probability statements to possible values for
the data, given the parameter values. Recent years have seen increasing popularity of the
Bayesian approach, which has probability distributions for parameters as well as for data.
This yields inferences in the form of probability statements about possible values for the
parameters, given the data.

1.6.1 The Bayesian Approach to Statistical Inference

The Bayesian approach assumes a prior distribution for the parameters. This probability
distribution may reflect subjective prior beliefs. Or, it may reflect information about the
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parameter values from other studies. Or, it may be relatively uninformative, so that infer-
ential results are based almost entirely on the current data. The prior distribution combines
with the information that the data provide to generate a posterior distribution for the pa-
rameters. Different choices for the prior distribution can result in quite different posterior
inferences, especially for small sample sizes, so the choice should be given careful thought.

By Bayes’ theorem, the posterior probability density function 4 of a parameter @, given
the data y, relates to the probability mass function f for y, given @, and the prior density
function g for 8, by

fiyl 0)g(0).

h@ |y = )

The denominator f(y) on the right-hand side is the marginal probability mass function of
the data, that is, fg f(y]0)g(6)dh. This is a constant with respect to @, so irrelevant for
inference about . When we plug in the observed data, f(y | @) is the likelihood function
when viewed as a function of 6. So, the prior density function for # multiplied by the
likelihood function determines the posterior density for 6.

Except in specialized cases such as presented in Sections 1.6.2 and 1.6.3, there is not
a closed-form expression for the posterior distribution. The difficulty is in finding the
denominator integral that determines f(y). The key part of the Bayes equation is the
numerator, because of the proportionality in terms of @,

h@ | y)ox f(yl0)g@).

Simulation methods are used to approximate the posterior distribution. The primary method
for doing this is Markov chain Monte Carlo (MCMC). It is beyond our scope to discuss the
technical details of how an MCMC algorithm works. In a nutshell, a stochastic process of
Markov chain form is designed so that its long-run stationary distribution is the posterior
distribution. One or more such Markov chains provide a very large number of simulated
values from the posterior distribution, and the distribution of the simulated values approx-
imates the posterior distribution. Enough observations are taken after a burn-in period so
that the Monte Carlo error is small in approximating the posterior distribution and summary
measures of interest for that distribution, such as the mean and standard deviation, certain
percentiles, and intervals formed using those percentiles.

For an arbitrary parameter g, such as a coefficient in a regression-type model, Bayesian
methods of inference using the posterior distribution parallel those for frequentist inference.
For example, in lieu of P-values, posterior tail probabilities are useful. Information about
the direction of an effect is contained in the posterior probabilities P(8 > 0| y) and
P(B < 0| y). With a flat prior distribution, P(8 < 0| y) corresponds to the frequentist
P-value for the one-sided test with H,: 8 > 0.

Analogous to the frequentist confidence interval is an interval that contains most of the
posterior distribution. Such an interval is referred to as a posterior interval or credible
interval. A common approach for constructing a posterior interval uses percentiles of
the posterior distribution, with equal probabilities in the two tails. For example, the 95%
equal-tail posterior interval for 8 is the region between the 2.5 and 97.5 percentiles of
the posterior distribution for 8. For unimodal posteriors, an alternative Bayesian highest
posterior density (HPD) interval has higher posterior density for every value inside the
interval than for every value outside it, subject to the posterior probability over the interval
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equaling the desired confidence level. This method produces the shortest possible interval
with the given level.

We next summarize the Bayesian approach for binomial and multinomial parameters.
Then, in the rest of the book, we’ll occasionally present Bayesian alternatives to frequentist
model-based inference.

1.6.2 Binomial Estimation: Beta and Logit-Normal Prior Distributions

The simplest Bayesian inference for a binomial parameter 7 uses a member of the beta
distribution as the prior distribution. The beta(«, or2) probability density function for 7 is
proportional to

n,otl—l(l - 71,)(!2~1.

The parameters «; > 0 and a» > 0 of the prior are often referred to as hyperparameters,
to distinguish them from the parameter that is the object of inference (in this case, ). The
beta distribution has

E@my=o/(¢; +a2) and var(w) = ajoy/[(¢ +a2)2((x| +ap + D).

The family of beta probability density functions has a wide variety of shapes over the
interval (0, 1), including uniform when «; = &> = 1, unimodal symmetric (@} = ap > 1),
unimodal skewed left (&) > a» > 1), unimodal skewed right (@, > «; > 1), and bimodal
U-shaped (a; < 1,02 < 1).

Often prior knowledge about 7 can be expressed in terms of a mean and standard devi-
ation for a prior for 7. Then, the one-to-one correspondence between those moments and
(o), o) based on the above moment expressions determines a beta prior. By contrast, lack
of prior knowledge about 7 might suggest using a uniform prior distribution. The posterior
distribution then has the same shape as the binomial likelihood function. Alternatively, a
popular prior distribution with Bayesians is the Jeffreys prior, which is proportional to
the square root of the determinant of the Fisher information matrix for the parameters of
interest. With this approach, prior distributions for different scales of measurement for the
parameters (e.g., for  or for ¢ = log[m /(1 — 7)]) are equivalent. For a binomial parameter,
the Jeffreys prior is the beta distribution with o} =z = 0.5.

The beta distribution is the conjugate prior distribution for inference about a binomial
parameter. This means that it is the family of probability distributions such that, when
combined with the likelihood function, the posterior distribution falls in the same family.
When we combine a beta(w;, ;) prior distribution with a binomial likelihood function, the
posterior distribution is a beta(y + ¢, n — y + «) distribution, for which the mean is

y+ o _< n >ﬁ+< o) + oy ) oy
n+o +a n+oa+a n+o +ar)a o
This is a weighted average of the sample proportion # = y/n and the prior mean, with
more weight given the sample proportion as » increases. Conjugate priors were the pri-
mary method of conducting Bayesian analysis before the development of computationally

intensive methods, such as Markov chain Monte Carlo, for evaluating the integral that
determines the posterior distribution.
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An alternative prior distribution assumes a normal distribution for the logit parameter,
log[r /(1 — m)]. This parameter, which is relevant for many analyses presented in this book,
takes values over the entire real line. With a N (0, o2) prior distribution for log[r /(1 — )],
on the 7 scale the shape of this logit-normal (also called logistic-normal) density is sym-
metric®, being unimodal when ¢ < 2 and bimodal when o > 2, but always tapering off
toward 0 as 7 approaches O or 1. Specifically, it is mound-shaped for small o, roughly
uniform except near the boundaries when ¢ =~ 1.5, and with more pronounced peaks for
the modes when ¢ is about 2 or larger. The peaks for the modes get closer to 0 and 1 as
o increases further, and the curve has appearance that is essentially U-shaped when o =3
and similar to that of a beta(0.5, 0.5) prior. For o = (1, 2, 3), the standard deviations on the
7 scale of these priors are (0.21, 0.31, 0.37), similar to the values (0.22, 0.29, 0.35) for the
beta priors with o) = a; = (2.0, 1.0, 0.5). The logit-normal prior with ¢ = 2.67 matches
the Jeffreys prior in the first two moments (on the probability scale), and the logit-normal
prior with o = 1.69 matches the uniform prior in the first two moments. With a N (i, o)
prior distribution for the logit, the density for m is skewed left when p > 0 and skewed
right when u < 0.

Yet another possibility, hierarchical in nature, uses beta or logit-normal priors but as-
sumes a distribution for their hyperparameters instead of assigning fixing values. That
second-stage distribution may have its own hyperparameters. See Section 3.6.7, Albert
(2010), Good (1965), and Leonard (1972).

1.6.3 Multinomial Estimation: Dirichlet Prior Distributions

For ¢ > 2 categories, the beta distribution generalizes to the Dirichlet distribution. It is
defined over the simplex of nonnegative values & = (7|, ..., 7.) that sum to 1. Expressed
in terms of gamma functions and ¢ hyperparameters {c; > 0}, the Dirichlet probability
density function is

= alof ;< lalli, ;= 1.
g(m) = []_I F(a, l_[ orQ < m; < 1alli Xi:n 1

i=l|

The case {o; = 1} is the uniform density over the possible probability values. The case
{a,» = %} is the Jeffreys prior for multinomial parameters. Let K = ), o;. The Dirichlet
distribution has E(7;) = «; /K and var(;) = o;(K — «;)/[K*(K + 1)]. For particular rel-
ative sizes of {«;}, such as identical values, the distribution is more tightly concentrated
around the means as K increases.

Letn = (ny,...,n.) denote cell counts from n = >, n; independent observations with
cell probabilities m. Formula (1.2) showed the multinomial probability mass function for
n. Multiplying this by the Dirichlet prior density function g(x) contributes to a posterior
density function A(x | r) for & that is also Dirichlet, but with the hyperparameters {«;}
replaced by {; = n; + «;}. The mean of the posterior distribution of 7; is

E(mi|ni,....n) = (ni +a;)/(n+ K).

3See logitnorm.r-forge.r-project.org and the “Logit-normal distribution” entry in
wikipedia . org for figures illustrating the shapes described below.
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Let y; = E(r;) = «;/K . This Bayesian estimator equals the weighted average

( " ) Ky, 1.19
n+ K p'+<n+—K>yl (1.19)

of the sample proportion p; = n;/n and the mean y; of the prior distribution for 7;. This
posterior mean takes the form of a sample proportion when the prior information corre-
sponds to K additional observations of which ¢; were outcomes of type i. (We’ll consider
a formal way of setting such data augmentation priors in Section 7.2.4.) With identical
{c;}, the Bayes estimate shrinks each sample proportion toward the equi-probability value
y; = 1/c. Greater shrinkage occurs as K increases, for fixed 7.

Bayesian estimators of multinomial parameters, unlike the sample proportions, are
slightly biased for finite n. Usually, though, they have smaller total mean squared error
(MSE) than the sample proportions. They are not uniformly better for all possible parameter
values, however. For instance, if a particular z; = 0, then p; = 0 with probability one, so
the sample proportion is then better than any other estimator. We do not expect 7; = 0 in
practice, and the parameter space is often defined under the restriction that all 7; > 0, but
this limiting behavior explains why the ML estimator can have smaller MSE than the Bayes
estimator when 7; is very near 0.

1.6.4 Example: Estimating Vegetarianism Revisited

In Section 1.4.3 we estimated the population proportion of vegetarians with a sample
of size n = 25 for which y = 0. The ML estimate of 7 is # = 0.0, and the 95% score
confidence interval is (0.0, 0.133). How does this compare to Bayesian point and interval
estimates?

First, we use a uniform prior distribution for i, reflecting prior ignorance. For this beta(1,
1) prior with y = 0 and n = 25, the posterior distribution is beta(1, 26). The posterior mean
is 1/27 =0.037. The posterior 95% equal-tail interval is (0.001, 0.132), the endpoints being
the 2.5 and 97.5 percentiles of the beta posterior density. This interval is similar to the
frequentist 95% score interval, but the prior information has the impact of moving the left
boundary slightly away from 0.0. By contrast, since the posterior density is proportional
to (1 — 7)*® and hence monotone decreasing, the 95% highest posterior density (HPD)
interval has lower limit of O and upper limit that is the 95th percentile of the beta(l, 26)
density, which is 0.109.

For contrast, let’s use a much more informative beta prior. Suppose we used a subjective
approach and were quite sure a priori that  falls between about 0 and 0.16. We might
summarize this by a prior mean of 0.08 and standard deviation of 0.04. These moments
correspond to beta hyperparameters of ¢; = 3.6 and «; = 41.4, for which 0.16 is the 96th
percentile. Then, the posterior is the beta(3.6, 66.4), which has mean = 0.051 and 95%
posterior equal-tail interval of (0.013, 0.114) and HPD interval of (0.008, 0.103). Stronger
prior beliefs result in greater shrinkage of the Bayes estimate toward the prior mean and a
narrower posterior equal-tail interval.

1.6.5 Binomial and Multinomial Estimation: Improper Priors

For multinomial data, the sample proportion p; is the ML estimate of x;. It results as the
special case of the Bayesian estimate (1.19) when each ¢; = 0. But when any «; = 0, the
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Dirichlet formula is not a legitimate probability density function, as it integrates to oo
instead of 1. It is then an example of an improper prior distribution. Bayesian inference
sometimes uses such improper prior distributions, as long as the posterior distribution is
proper (e.g., Lindley 1964). The Dirichlet posterior is proper as long as n; > 0 for each i
having o; = 0.

For parameters that can take value over the entire real line, a common improper distribu-
tion is uniform over all real numbers. For a binomial parameter 7, the improper beta(0,0)
prior for 7 corresponds to an improper uniform distribution for logit(;r ). Haldane (1948)
suggested that this prior is often sensible in genetics applications, such as for mutation rates
for which log(r) might be approximately uniform for 7 close to 0.

NOTES

Section 1.1: Categorical Response Data

1.1 Measurement scales: Stevens (1951) defined (nominal, ordinal, interval) scales of measure-
ment. Other scales result from mixtures of these types. For instance, partially ordered scales
occur when subjects respond to questions having categories that are ordered except for don’t
know or undecided categories.

Section 1.3: Statistical Inference for Categorical Data

1.2 Chi-squared: Greenwood and Nikulin (1996), Kendall and Stuart (1979), and Lancaster (1969)
presented in-depth overviews of the chi-squared distribution. Cochran (1952) presented a
historical survey of chi-squared tests of fit. See also Cressie and Read (1989), Koch and Bhapkar
(1982), Koehler (2005), Moore (1986b), Read and Cressie (1988), and Watson (1959).

1.3 Wald/LR/score: Disadvantages of the Wald method compared with the score and likelihood-
ratio methods is that it does not apply when 8 is on the boundary of the parameter space (such
as a sample proportion # = 0) and its results depend on the parameterization; inference based
on f and its SE is not equivalent to inference based on a nonlinear function of it, such as log(B)
and its SE. See Section 5.2.6. “Higher-order asymptotics” improve on simple normal and chi-
squared approximations for distributions of these statistics (Brazzale et al. 2007, Davison et al.
2006).

Section 1.4: Statistical Inference for Binomial Parameters

1.4 Score CI: The superiority of the score interval to the Wald interval for # was shown by, among
others, Agresti and Coull (1998), Blyth and Still (1983), Brown et al. (2001), Ghosh (1979),
Newcombe (1998a), and Schader and Schmid (1990).

1.5 Continuity correction: Using continuity corrections with large-sample methods provides ap-
proximations to exact small-sample methods. We do not present them, since if you prefer an
exact method, with modern computational power you can usually implement it directly rather
than approximate it. However, we’ll see in Sections 3.5.5, 3.5.7, 7.3.7, 16.6.1, and 16.6.4 that
exact methods have the disadvantage that they behave conservatively.

1.6 Discreteness: Suppose a statistic 7 has discrete distribution with cdf F(t). Then, F(T) is
stochastically larger than uniform over [0, 1], its cdf being everywhere no greater than that
of the uniform (Casella and Berger 2001, pp. 77, 434). Likewise, a P-value based on T has
null distribution stochastically larger than uniform. In theory, we can eliminate issues with
discreteness in tests by performing a supplementary randomization on the boundary of a
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critical region (see Exercise 1.12). In rejecting Hy at the boundary with a certain probability,
we can obtain type I error probability = « even when « is not an achievable P-value. For such
randomization, the P-value is

randomized P-value = U x P(T =t,)+ P(T > t,),
where U denotes a uniform (0, 1) random variable (Stevens 1950). In practice, this is not done,

as it is absurd to let a random number determine a decision. The mid P-value replaces the
arbitrary uniform multiple U x P(T =1t,) by its expected value 0.50 x P(T =1t,).

Section 1.5: Statistical Inference for Multinomial Parameters

1.7

Multinomials: Other references on testing a specified multinomial include Good et al. (1970)
and Baglivo et al. (1992). For simultaneous confidence intervals for multinomial parameters
and their differences, see Exercise 1.36, Chafai (2009), Fitzpatrick and Scott (1987), Goodman
(1965), and Sison and Glaz (1995).

Section 1.6: Bayesian Inference for Binomial and Multinomial Parameters

1.8

1.9

Beta/Dirichlet priors: Agresti and Hitchcock (2005) surveyed Bayesian methods for cate-
gorical data. Lindley (1964) and Good (1965) were influential early articles about Bayesian
estimation of multinomial parameters using a Dirichlet prior. Brown et al. (2001) showed that
the Jeffreys beta prior yields posterior intervals for the binomial parameter that perform well,
having actual coverage probability close to the nominal level. Good (1967) gave a Bayesian
goodness-of-fit test that multinomial probabilities are identical, using a hierarchical approach
with a symmetric Dirichlet prior that has a log Cauchy distribution for its hyperparameter.

Loss functions: In decision-theoretic terms, the Bayes estimator minimizes the posterior ex-
pected value of a loss function that measures the distance between an estimator 7(y) and
a parameter 6. It is the posterior mean for squared error loss and posterior median for abso-
lute error loss. For loss function w (@XT — 8)?, itis E[0w ()] y]/ E[w(6)|y]. With loss function
(T — 7)*/[x (1 — m)] and uniform prior, the Bayes estimator of 7 is the ML estimator p = y/n.
Its risk function (the expected loss, treated as a function of ) is constant. Bayes estimators
with constant risk are minimax, the maximum risk being no greater than the maximum risk for
any other estimator. Johnson (1971) showed that p is an admissible estimator, for standard loss
functions. For other cases, see DasGupta and Zhang (2004). Blyth (1980) noted that for large
n, E\f —n|~ 2n(1 — m)/m.n, where m. = 3.14 .. . is the mathematical constant.

EXERCISES

Applications

1.1

Identify each variable as nominal, ordinal, or interval.

a. UK political party preference (Labour, Liberal Democrat, Conservative)
b. Anxiety rating (none, mild, moderate, severe, very severe)

¢. Patient survival (in number of months)

d. Clinic location (London, Boston, Madison, Rochester, Montreal)

¢. Response of tumor to chemotherapy (complete elimination, partial reduction,
stable, growth progression)

f. Favorite grocery store for UK residents (Sainsbury, Tesco, Waitrose, other)
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1.2

1.3

1.4

1.5

1.6

1.7

Each of 100 multiple-choice questions on an exam has four possible answers, one
of which is correct. For each question, a student guesses by selecting an answer
randomly.

a. Specify the distribution of the number of correct answers.

b. Find the mean and standard deviation of that distribution. Would it be surprising
if the student made at least 50 correct responses? Why?

c. Specify the distribution of (ny, ny, n3, h4), where n; is the number of times the
student picked choice j.

d. Find E(n;) and var(n;). Show that cov(n;, n;) = —6.25 and corr(n;, n;) =
—0.333.

An experiment studies the number of insects that survive a certain dose of an
insecticide, using several batches of insects of size n each. The insects are sensitive
to factors that vary among batches during the experiment but were not measured,
such as temperature level. Explain why the distribution of the number of insects per
batch surviving the experiment might show overdispersion relative to a bin(n, )
distribution.

In his autobiography A Sort of Life, British author Graham Greene described a period
of severe mental depression during which he played Russian roulette. This “game”
consists of putting a bullet in one of the six chambers of a pistol, spinning the
chambers to select one at random, and then firing the pistol once at one’s head.

a. Greene played this game six times and was lucky that none of them resulted in a
bullet firing. Find the probability of this outcome.

b. Suppose that he had kept playing this game until the bullet fired. Let ¥ denote the
number of the game on which it fires. Explain why the probability mass function
for Y is the geometric, p(y) = (5/6)*~(1/6), y =1,2,3, ....

When the 2010 General Social Survey asked, ‘“Please tell me whether or not you
think it should be possible for a pregnant woman to obtain a legal abortion if
she is married and does not want any more children,” 587 replied “yes” and 636
replied “no.” Let  denote the population proportion who would reply “yes.” Find the
P-value for testing Hy: m = 0.50 using the score test, and construct a 95% confidence
interval for 7. Interpret the results.

Refer to the vegetarianism example in Section 1.4.3. For testing Hy: 7 = 0.50
against H,: m # 0.50, show that:

a. The likelihood-ratio statistic equals 2[25log(25/12.5)] = 34.7.

b. The chi-squared form of the score statistic equals 25.0.

¢. The Wald z or chi-squared statistic is infinite.

In a crossover trial comparing a new drug to a standard, = denotes the probability
that the new one is judged better. It is desired to estimate 7 and test Hy: m = 0.50
against H,: = # 0.50. In 20 independent observations, the new drug is better each
time.
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1.8

1.9

1.10

1.11

1.12
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a. Find and sketch the likelihood function. Is it close to the quadratic shape that
large-sample normal approximations utilize?

b. Give the ML estimate of m. Conduct a Wald test and construct a 95% Wald
confidence interval for 7. Are these sensible?

¢. Conduct a score test, reporting the P-value. Construct a 95% score confidence
interval. Interpret.

d. Conduct a likelihood-ratio test and construct a likelihood-based 95% confidence
interval. Interpret.

e. Construct an exact binomial test. Interpret.

Refer to the previous exercise. Suppose you wanted a large enough sample to estimate
the probability of preferring the new drug to within 0.05, with confidence 0.95. If
the true probability is 0.80, about how large a sample is needed?

In an experiment on chlorophyll inheritance in maize, for 1103 seedlings of self-
fertilized heterozygous green plants, 854 seedlings were green and 249 were yellow.
Theory predicts the ratio of green to yellow is 3:1. Test the hypothesis that 3:1 is the
true ratio. Report the P-value, and interpret.

Table 1.3 contains Ladislaus von Bortkiewicz’s data on deaths of soldiers in the
Prussian army from kicks by army mules (Fisher 1934, Quine and Seneta 1987).
The data refer to 10 army corps, each observed for 20 years. In 109 corps-years
of exposure, there were no deaths, in 65 corps-years there was one death, and so
on. Estimate the mean and test whether probabilities of occurrences in these five
categories follow a Poisson distribution (truncated for 4 and above).

A binomial experiment tests Hy: 7 = 0.50 against H,: w # 0.50 using significance
level 0.05. Only n = 5 observations are available. Show that the true null probability
of rejecting Hy is 0.00 for an exact binomial test and % using the large-sample score
test.

A researcher routinely tests using a nominal P (type I error) = 0.05, rejecting Hy if
the P-value < 0.05. An exact test using test statistic 7 has null distribution P(T =
0) =0.30, P(T =1)=0.62, and P(T =2)=0.08, where a higher T provides
more evidence against the null.

Table 1.3 Data on Deaths by Mule Kicks, for
Exercise 1.10

Number of Deaths Number of Corps-Years
0 109
1 65
2 22
3 3
4 1
>5 0
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1.13

1.14

1.15

a. With the usual P-value, show that the actual P(type I error) = 0.

b. With the mid P-value, show that the actual P(type I error) = 0.08.

¢. Find P(type I error) in parts (a) and (b) when P(T =0)=0.30, P(T =1) =
0.66, P(T = 2) = 0.04. Note that the test with mid P-value can be conservative
or liberal. The exact test with ordinary P-value cannot be liberal.

d. In part (a), a randomized-decision test generates a uniform random variable
U from [0, 1] and rejects Hy if both T =2 and U < %. Show the actual
P (type L error) = 0.05. Is this a sensible test?

The 2006 General Social Survey asked respondents how much government should
spend on culture and the arts, with categories (much more, more, the same, less,
much less). For 18-21 year-old females, the counts in these categories were (0,
8, 10, 9, 1). Find the Bayes estimates of the population proportions based on a
Dirichlet prior distribution with {o; = K /5} for values of K = 1,2.5, 5. For each
case, compare the estimate for the “much more” category to the ML estimate.

Refer to Example 1.6.4 on estimating the proportion of vegetarians. For the Jeffreys
prior, find the posterior mean, the posterior 95% equal-tail interval, and the 95%
highest posterior density interval.

You plan to use Bayesian methods to estimate binomial parameters in two cases,
using n observations. In case (1) you want to estimate the probability that a new
treatment for skin cancer is effective. In case (2) you want to estimate the probability
of a head when you repeatedly flip a particular coin. Select prior distributions that
you think would be sensible for each case. If they differ, explain why.

Theory and Methods

1.16

1.17

1.18

It is easier to get a precise estimate of the binomial parameter when 7 is near O or 1
than when it is near % Explain why.

Suppose that P(Y; =1)=1—- P¥;, =0)=mn,i =1,...,n, where {Y;} are inde-
pendent. LetY =}, Y.
a. What is the distribution of Y? What are E(Y) and var(Y)?

b. When {Y;} instead have pairwise correlation p > 0, show that var(Y) > nw(1 —
1), overdispersion relative to the binomial. [Altham (1978) and Ochi and Prentice
(1984) discussed generalizations of the binomial that allow correlated trials.]

¢. Suppose that heterogeneity exists: P(Y; = 1|m) = m for all 7, but 7 is a random
variable with density function g(-) on [0, 1] having mean p and positive variance.
Show that var(Y) > n p(1 — p). (When 7 has a beta distribution, Y has the beta-
binomial distribution of Section 14.3.)

For a sequence of independent Bernoulli trials, let Y be the number of successes
before the kth failure. Explain why its probability mass function is the negative
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1.20

1.21

1.22

1.23

1.24
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binomial,

(y+k=D! | ‘
=———— (1 -n)f, y=012,....
p(y) y!(k_l)!n( )y, y=0

[For it, E(Y) =kn/(1 — ) and var(Y) = kn /(1 — 1), so var(Y) > E(Y); the
Poisson is the limit as k — oo and 7 — 0 with kn = u fixed.]

For the multinomial distribution, show that

corr(nj, ng) = =7/ /7 (1 — 7w )mp(l = 7).

When ¢ = 2, show that this simplifies to corr(n|, n,) = —1, and explain why this
makes intuitive sense.

Show that the moment generating function (mgf) is (a) m(¢t) = (1 — & + we')" for
the binomial distribution, (b) m(t) = exp{u[exp(t) — 1]} for the Poisson distribution.
For each distribution, use them to obtain the first two moments and to show a
reproductive property.

A likelihood-ratio statistic equals t,. At the ML estimates, show that the data are
exp(t,/2) times more likely under H, than under Hy.

Suppose that y|, y,, ..., y, are independent from a Poisson distribution.
a. Obtain the likelihood function. Show that the ML estimator & = §.

b. Construct a large-sample test statistic for Hy: i = p¢ using (i) the Wald method,
(ii) the score method, and (iii) the likelihood-ratio method.

c. Explain how to construct a large-sample confidence interval for y using (i) the
Wald method, (ii) the score method, and (iii) the likelihood-ratio method.

Inference for Poisson parameters can often be based on connections with binomial
and multinomial distributions. Show how to test Hy: ; = u, for two populations
based on independent Poisson counts (y;, y2), using a corresponding binomial test.
[Hint: Condition on n = y; + y, and identify m = /(x| 4+ p»).] How can you
construct a confidence interval for |/, based on one for 7?7

Since the Wald confidence interval for a binomial parameter 7 is degenerate when
& =0 or 1, argue that the probability that the interval covers m cannot exceed
[1 — 7" — (1 — 7)"]; hence, the infimum of the coverage probability over0 < 7 < 1
equals O, regardless of ».

We noted in Section 1.4.2 that the midpoint 7 of the score confidence interval (1.14)
for  is the sample proportion after adding zi /> observations to the sample, half of
each type. This motivates a simple confidence interval,

£ zopy/A( —7)/n*, wheren* =n+ Zi/z-
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1.26

1.27

1.28

1.29

1.30

1.31

Show that the variance 7 (1 — 7)/n* at the weighted average is at least as large
as the weighted average of the variances that appears under the square root sign
in the score interval. [Hint: Use Jensen’s inequality.] Thus, this interval, which is
sometimes referred to as the Agresti—-Coull confidence interval, contains the score
interval. [Agresti and Coull (1998) and Brown et al. (2001) showed that it performs
much better than the Wald interval. It does not have the score interval’s disadvantage
(Exercise 16.32) of poor coverage near 0 and 1. With 95% confidence, this motivates
a simple method that uses the Wald method after adding 2 observations of each type
(Agresti and Coull 1998, Agresti and Caffo 2000); this is sometimes called the plus
four confidence interval.}

A binomial sample of size n has y = 0 successes.

a. Show that the confidence interval for mw based on the likelihood function is
[0.0,1 — exp(—z§/2/2n)]. For o = 0.05, use the expansion of an exponential
function to show that this is approximately [0, 1.92/n].

b. For the score method, show that the confidence interval is [0, zi P /(n + 22 /2)],
or [0, 3.84/(n + 3.84)] when o = 0.05. (See Exercise 16.30 for small-sample
intervals when y = 0.)

Suppose that P(T =t¢;))=m;, j=1,... . Show that E(mid P-value) = 0.50.
[Hint: Show that Y., (/2 + iy +--) = (X, 7;)°/21]

For a statistic T with cdf F(¢) and p(¢t) = P(T =t), the mid distribution func-
tion i1s Fpig(t) = F(t) — 0.50p(¢) (Parzen 1997). Given T = t,, show that the mid
P-value equals 1 — F(¢,). (It also satisfies E[Fpg(T)] = 0.50 and var[Fp,i4(T)] =
(1/12){1 — E[p*(T)]}.)

Genotypes AA, Aa, and aa occur with probabilities [62,20(1 — 6), (1 —6)3].

A multinomial sample of size n has frequencies (n|, ny, n;) of these three

genotypes.

a. Form the log likelihood. Show that 6 = 2ny + n2)/2ny + 2ny + 2n3).

b. Show that —32L(#)/96% = [(2n, + n2)/6%] + [(n2 + 2n3)/(1 — 6)*] and that iEs
expectation is 2n/0(1 — 6). Use this to obtain an asymptotic standard error of 6.

c. Explain how to test whether the probabilities truly have this pattern.

Refer to Section 1.5.6 and the model for pneumonia infections in calves. Using the
likelihood function to obtain the information, show that the approximate standard
error of # is /(1 — m)/n(1 + 7).

Refer to Section 1.5.6. Let a denote the number of calves that got a primary, sec-
ondary, and tertiary infection, b the number that received a primary and secondary
but not a tertiary infection, ¢ the number that received a primary but not a secondary
infection, and d the number that did not receive a primary infection. Let w be the
probability of a primary infection. Consider the hypothesis that the probability of
infection at time ¢, given infection attimes 1, ..., ¢ — 1,1salsow, forr = 2, 3. Show
that # = (3a 4+ 2b +¢)/(Ba + 3b + 2c + d).
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Refer to quadratic form (1.18) that leads to the Pearson chi-squared.

a. Verify that the matrix quoted in the text for X !is the inverse of Xy
b. Show that (1.18) simplifies to Pearson’s statistic (1.16).

¢. For the z; statistic (1.11), show that z§ = X% forc =2.

For testing Ho: m; = mjo, j = 1, ..., ¢, using sample multinomial proportions {#;},
the likelihood-ratio statistic (1.17) is

G*=—2nY)_ #;log(mjo/#)).
J

Show that G? > 0, with equality if and only if #; = 7o for all j. [Hint: Apply
Jensen’s inequality to E(—2nlog X), where X equals 7o/7; with probability 7;.]

For counts {n;}, the power divergence statistic for testing goodness of fit (Cressie
and Read 1984, Read and Cressie 1988) is

_c T I8 3
A(A+I)an[(nz/uz) 1] for —0o0 < A < 00.

a. For A = 1, show that this equals X?.

b. As A — 0, show that it converges to G2. [Hint: log t = lim,_o(t" — 1)/ h.]

¢. As A — —1, show that it converges to 2 Y _ ; log({; /n;), the minimum discrim-
ination information statistic (Gokhale and Kullback 1978).

d. For A = =2, show that it equals ) (n; — ()% /n;, the Neyman modified chi-
squared statistic (Neyman 1949).

e. ForA = —%, show that it equals 4 Y (,/n; — V/1;)?, the Freeman-Tukey statistic
(Freeman and Tukey 1950).

[Under regularity conditions, their asymptotic distributions are identical (Drost et al.

1989). The chi-squared null approximation works best for A near %.]

The chi-squared mgf with df = v is m(t) = (1 — 2r)™"/2,for |t| < 3. Use it to prove

the reproductive property of the chi-squared distribution.

For the multinomial (#, {r;}) distribution with ¢ > 2, a possible set of score-type
simultaneous confidence limits for ; are the solutions of

#; — )1 = 7)) /nl = (Zapp)’s j=1,...,c

a. Using the Bonferroni inequality, argue that for large » these ¢ intervals simulta-
neously contain all {z;} with probability at least 1 — .

b. Show that the standard deviation of #; — 7 is [7; + mp — (7; — 7))/ n. Let
a = c(c — 1)/2. For large n, explain why the probability is at least | — « that the
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1.37

1.38

1.39

1.40

1.41

Wald confidence intervals
(R — ) & zappal{l#) + i — (R — 7)1/}
simultaneously contain the @ differences {m; — m;} (Goodman 1965).

Consider the Bayesian equal-tail posterior interval for a binomial parameter 7, using
a beta or logit-normal prior. When y = 0, explain why the lower limit for 7 can never
be 0, unlike the frequentist approach based on inverting a score or likelihood-ratio
test.

Consider estimating the ratio m; /7; of two multinomial parameters. Should the

estimate depend at all on the counts in other categories?

a. With a frequentist approach, explain why the ML estimate of 7; /7; is n; /n ;.

b. For a Dirichlet prior, show that using the Bayes estimates of ; and 7 ; to estimate
m; /7 ; uses also the counts in other categories. (However, the posterior distribution
of y =m;/(m; + ;) is the same as its posterior distribution ignoring the other
counts and treating y; as binomial with sample size (y; + y;) and parameter y.)

Given i, Y has a bin(n, 7) distribution, and 7 has a uniform prior distribution. Show
that the marginal distribution of Y is uniform over 0, 1, ..., n.

Consider the Bayes estimator of the binomial parameter 7 using a beta prior distri-
bution.

a. Show that the ML estimator is a limit of Bayes estimators, for a certain sequence
of beta prior parameter values.

b. Find an improper prior density such that the Bayes estimator coincides with the
ML estimator. (In this sense, the ML estimator is a generalized Bayes estimator.)

For the Dirichlet prior for multinomial probabilities, show the posterior expected
value of n; is formula (1.19). Derive the expression for this Bayes estimator as a
weighted average of p; and E (7;).






CHAPTER 2

Describing Contingency Tables

In this chapter we introduce parameters that summarize tables displaying relationships
between categorical variables. After introducing basic terminology and notation in Section
2.1, in Section 2.2 we introduce measures for comparing two groups on a categorical
response. The odds ratio has special importance, appearing as a parameter in models
discussed later. In Section 2.3 we extend the scope by controlling for a third variable.
The association can change dramatically under a control. The chapter’s primary focus
is binary variables, but in Section 2.4 we present parameters for nominal and ordinal
variables.

2.1 PROBABILITY STRUCTURE FOR CONTINGENCY TABLES

Let X and Y denote two categorical variables, X with / categories and Y with J categories.
Classifications of subjects on both variables have IJ possible combinations. When both
variables are response variables, we focus on their joint distribution, which also determines
the marginal and conditional distributions. When Y is a response variable and X is an
explanatory variable, we focus on the conditional distribution of Y and how it changes as
the category of X changes.

2.1.1 Contingency Tables

A rectangular table having I rows for categories of X and J columns for categories of Y
displays the 1J possible combinations of outcomes. The cells of the table represent the 1J
possible outcomes. When the cells contain frequency counts of outcomes for a sample, the
table is called a contingency table, a term introduced by Karl Pearson (1904). Another
name is cross-classification table. A contingency table with / rows and J columns is called
an /-by-J (denoted by I x J) table.

Table 2.1, a 2 x 3 contingency table, is from a report on the relationship between
aspirin use and heart attacks by the Physicians’ Health Study Research Group at Harvard
Medical School. The Physicians’ Health Study was a 5-year randomized study of whether
regular aspirin intake reduces mortality from cardiovascular disease. Every other day,

Categorical Data Analysis, Third Edition. Alan Agresti.
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Table 2.1 Cross-Classification of Aspirin Use and
Myocardial Infarction

Myocardial Infarction

Fatal Attack Nonfatal Attack No Attack

Placebo 18 171 10,845
Aspirin 5 99 10,933

Source: Preliminary report: Findings from the aspirin component of
the ongoing Physicians’ Health Study. N. Engl.J. Med. 318: 262-264,
1988.

physicians participating in the study took either one aspirin tablet or a placebo. The study
was blind—those in the study did not know whether they were taking aspirin or a placebo.
Of the 11,034 physicians taking a placebo, 18 suffered fatal heart attacks over the course
of the study, whereas of the 11,037 taking aspirin, 5 had fatal heart attacks.

2.1.2 Joint/Marginal/Conditional Distributions for Contingency Tables

In some applications, both X and Y are response variables. Suppose subjects are randomly
chosen from a particular population, such as in a sample survey employing simple random
sampling. Then, the responses (X, Y) of a randomly chosen subject have a probability
distribution. Let 77;; denote the probability that (X, Y) occurs in the cell in row i and column
J. The probability distribution {m;;} is the joint distribution of X and Y. The marginal
distributions are the row and column totals that result from summing the joint probabilities.
We denote these by {m;} for the row variable and {7, ;} for the column variable, where
the subscript “+” denotes the sum over that index; that is,

71,-+=E 7;; and 7T+j:E T}
j i

7

These satisfy 3, wi = 3 ;74 = 3_; >, m;; = 1.0. The marginal distributions provide
single-variable information.

In most contingency tables, Table 2.1 being an example, one variable—say, Y— is a
response variable and the other (X)) is an explanatory variable. When X is fixed rather than
random, the notion of a joint distribution for X and Y is no longer meaningful. However,
for a fixed category of X, Y has a probability distribution. It is germane to study how this
distribution changes as the category of X changes. Given that a subject is classified in row §
of X, we use m;; to denote the probability of classification in column jof ¥, j =1,...,J.
Then, Z/- m;; = |. The probabilities {my);, ..., m;;} form the conditional distribution of Y
at category i of X. A principal aim of many studies is to compare conditional distributions
of Y at various levels of explanatory variables.

When both variables are response variables, descriptions of the association can use their
joint distribution, the conditional distribution of ¥ given X, or the conditional distribution
of X given Y. The conditional distribution of ¥ given X relates to the joint distribution by

;i =m;/mig foralliand j.
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Table 2.2 Notation for Joint, Conditional, and
Marginal Probabilities

Column
Row 1 2 Total
1 b7 T2 T4
(i) (1) (1.0)
2 721 22 T4
(mp) (17212) (1.0)
Total Ty T2 1.0

Table 2.2 displays notation for joint, conditional, and marginal distributions forthe 2 x 2
case. Sample distributions use similar notation, with p or 7 in place of . For instance,
{pi;} denotes the sample joint distribution. The cell frequencies are denoted by {»;;}, and
n =3 > ;nijis the total sample size. Thus,

pij = nij/n.

The sample proportion of times that subjects in row / made response j is p;; = pij/pi+ =
nij/ni, where njy = npiy =3, nyj.

2.1.3 Example: Sensitivity and Specificity for Medical Diagnoses

Diagnostic tests are used to help detect certain medical conditions. These include the PSA
blood test for prostate cancer and imaging devices such as the mammogram for diagnosing
breast cancer and X-rays and the MRI body scan. A diagnostic test for a condition is said to
be positive if it states that the condition is present and negative if it states that the condition
is absent.

Breast cancer is the most common form of cancer in women, affecting about 10% at
some time in their lives. For the mammogram diagnostic test, the chance of a correct test
result varies according to the breast density and the radiologist’s level of experience. Let
X = true disease status (i.e., whether a woman truly has breast cancer) and let Y = diagnosis
(positive, negative). Table 2.3 shows typically reported values for conditional probabilities
of Y given X.

With a diagnostic test, the two correct diagnoses are a positive outcome when the person
has the disease and a negative outcome when a person does not have it. Given that the person
has the disease, the conditional probability that the test is positive is called the sensitivity.

Table 2.3 Estimated Conditional Distributions for
Breast Cancer Mammograms

Diagnosis of Test

Breast Cancer Positive Negative Total

Yes 0.86 0.14 1.0
No 0.12 0.88 1.0
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Given that the person does not have the disease, the conditional probability that the test is
negative is called the specificity (Yerushalmy 1947). Ideally, these are both very high.

For a2 x 2 table with the format of Table 2.3, sensitivity is y;; and specificity is 722. In
Table 2.3, the estimated sensitivity of mammography is 0.86. Of women with breast cancer,
86% are diagnosed correctly. The estimated specificity is 0.88. Of women not having breast
cancer, 88% are diagnosed correctly.

2.1.4 Independence of Categorical Variables

Two categorical response variables are defined to be independent if all joint probabilities
equal the product of their marginal probabilities,

mij =miyny; for i=1,...,1 and j=1,...,J. 2.1
When X and Y are independent,
i =7[,’j/7[,'+ = (7[,'+7[+j)/7[,‘+ =Ty fori = l, R

Each conditional distribution of Y is identical to the marginal distribution of Y.

Thus, two variables are independent when {7 ;;; = --- =m;;, for j =1,..., J};thatis,
the probability of any given column response is the same in each row. When Y is a response
and X is an explanatory variable, this is a more natural way to define independence than
(2.1). Independence is then often referred to as homogeneity of the conditional distributions.

2.1.5 Poisson, Binomial, and Multinomial Sampling

The probability distributions introduced in Section 1.2 extend to cell counts in contingency
tables. For instance, a Poisson sampling model treats cell counts {Y;;} as independent
Poisson random variables with parameters {i;;}. The joint probability mass function for
potential outcomes {n;,} is then the product of the Poisson probabilities P(Y;; = n,;) for
the 1J cells, or

Poisson sampling: l—[ l—[ eXP(—Mij)li,r'lj"i/”ij L

! J

When the total sample size # is fixed but the row and column totals are not, a multinomial
sampling model applies. The I/ cells are the possible outcomes. The probability mass
function of the cell counts has the multinomial form

multinomial sampling: [n!/(ny,!---np D] l—[ l—[ n;}ij.
[

When observations on a response Y occur separately at each setting of an explanatory
variable X, it is natural to treat row totals as fixed. For simplicity, we then use the notation
n; = n;;. Suppose that the n; observations on Y at setting { of X are independent, each
with probability distribution {my;, ..., 7). The counts {n;;, j =1,..., J} satisfying
> ;nij = n; then have multinomial form. When samples at different settings of X are
independent, the joint probability function for the entire data set is the product of the
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multinomial functions from the various settings. This sampling scheme is independent
multinomial sampling,

N _
independent multinomial sampling: l_[ [% l_[ JT;I'{:|, (2.2)
OTE

i

also called product multinomial sampling. The special case J = 2 is independent binomial
sampling.

Independent multinomial sampling also results under the following conditions: Suppose
that {n;; } result from either independent Poisson sampling with means {u;;} or multinomial
sampling over the IJ cells with probabilities {7r;; = ;;/n}. When X is an explanatory vari-
able, it is sensible to perform statistical inference conditional on the totals {n,- =3 ;i j}
even when their values are not fixed by the sampling design. Conditional on {r;}, the cell
counts {n;;, j =1, ..., J} have the multinomial distribution (2.2) with response probabil-
ities {m;; = wi;/misv, j =1, ..., J}, and cell counts from different rows are independent.
With this conditioning, we treat the row totals as fixed and analyze the data as if they formed
separate independent samples.

Sometimes both row and column margins are naturally fixed. The appropriate sampling
distribution is then usually the hypergeometric. This case, considered in Section 3.5.1, is
less common.

2.1.6 Example: Seat Belts and Auto Accident Injuries

Researchers in the Massachusetts Department of Transportation (MassDOT) plan to study
the effects of cell-phone use and seat-belt use on incidence and severity of traffic accidents.
For the relationship between seat-belt use (yes, no) and outcome of an automobile accident
(fatality, nonfatality) for drivers involved in accidents on the Massachusetts Turnpike, they
will summarize results in the format shown in Table 2.4. They plan to catalog all accidents
on the turnpike for the next year, classifying each according to these variables. The total
sample size is then a random variable. They might treat the numbers of observations at the
four combinations of seat-belt use and outcome of crash as independent Poisson random
variables with unknown means {it,,, 412, o), 122}

Suppose, instead, that the researchers randomly sample 200 police records of accidents
on the turnpike in the past year and classify each according to seat-belt use and outcome
of the accident. For this study, the total sample size n is fixed. They might then treat the
four cell counts as a multinomial random variable with n = 200 trials and unknown joint
probabilities {m |y, )2, 72}, 722}

Table 2.4 Seat-Belt Use and Results of Automobile

Accidents

Result of Accident
Seat-Belt Use Fatality Nonfatality
Yes

No
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Suppose, instead, that police records for accidents involving fatalities were filed sep-
arately from the others. The researchers might instead randomly sample 100 records of
accidents with a fatality and randomly sample 100 records of accidents with no fatality.
This approach fixes the column totals in Table 2.4 at 100. They might then regard each col-
umn of Table 2.4 as an independent binomial sample. Yet another approach, the traditional
experimental design, takes 200 subjects and randomly assigns 100 of them to wear seat
belts and the other 100 not to wear them; then the 200 all are forced to have an accident. The
recorded results would then be independent binomial samples in each row, with fixed row
totals of 100 each. (Obviously, traditional designs common in some experimental science
may not be ethical for humans, especially in some medical research.)

2.1.7 Example: Case—Control Study of Cancer and Smoking

Table 2.5 comes from one of the first studies of the link between lung cancer and smoking.
Richard Doll and Austin Bradford Hill investigated this with data from 20 hospitals
in London, England, at a time when many medical scientists thought that the increasing
rates of lung cancer in London mainly reflected increasing air pollution, largely from the
burning of coal (and thus, the frequent “London fog”) before the Clean Air Act of 1956.
In their study, patients admitted with lung cancer in the preceding year were queried about
their smoking behavior. For each of the 709 patients admitted, they recorded the smoking
behavior of a noncancer patient at the same hospital of the same gender and within the same
S5-year grouping on age. The 709 cases in the first column of Table 2.5 are those having
lung cancer and the 709 controls in the second column are those not having it. A smoker
was defined as a person who had smoked at least one cigarette a day for at least a year.

Normally, whether lung cancer occurs is a response variable and smoking behavior is
an explanatory variable. In this study, however, the marginal distribution of lung cancer is
fixed by the sampling design, and the outcome measured is whether the subject ever was
a smoker. The study, which uses a retrospective design to “look into the past,” is called a
case—control study. Such studies are common in health-related applications. Often, the two
samples are matched, as in this study. Sometimes the samples of cases and controls are
independent rather than matched. For instance, another early case-control study on lung
cancer and smoking sampled subjects by sending letters to the estates of physicians who
had died of some type of cancer in 1950 or 1951, and observations were cross-classified on
type of cancer and the subject’s smoking behavior (Cornfield 1956).

We might want to compare smokers with nonsmokers in terms of the proportion who
suffered lung cancer. These proportions refer to the conditional distribution of lung cancer,

Table 2.5 Cross-Classification of Smoking by
Lung Cancer

Lung Cancer

Smoker Cases Controls
Yes 688 650
No 21 59
Total 709 709

Source: Based on data reported in Table 1V, R. Doll and
A.B_Hill, Br. Med. J., 739-748, Sept. 30, 1950.
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given smoking behavior. Instead, case-control studies provide proportions in the reverse
direction, for the conditional distribution of smoking behavior, given lung cancer status. For
those in Table 2.5 with lung cancer, the proportion who were smokers was 688 /709 = 0.970,
while it was 650/709 = 0.917 for the controls.

When we know the proportion of the population having lung cancer, we can use Bayes’
theorem to compute sample conditional distributions in the direction of main interest
(Exercise 2.25). Otherwise, using a retrospective sample, we cannot estimate the probability
of lung cancer at each category of smoking behavior. For Table 2.5 we do not know the
population prevalence of lung cancer, and the patients suffering it were probably sampled
at a rate far in excess of their occurrence in the general population.

2.1.8 Types of Studies: Observational Versus Experimental

By contrast to the case—control study just described, imagine a study that samples subjects
from the population of teenagers and then 60 years later measures the rates of lung cancer
for the smokers and nonsmokers. Such a sampling design is prospective. There are two types
of prospective studies. Clinical trials randomly allocate subjects to the groups who will be
smokers and nonsmokers. In cohort studies, subjects make their own choice about whether
to smoke, and the study observes in future time who develops lung cancer. Yet another
approach, a cross-sectional design, samples subjects and classifies them simultaneously on
both variables.

Prospective studies usually condition on the totals {n,— = Zj n,-_,-} for categories of X
and regard each row of J counts as an independent multinomial sample on Y. Retrospective
studies treat the totals {ny;} for Y as fixed and regard each column of I counts as a
multinomial sample on X. In cross-sectional studies, the total sample size is fixed but not
the row or column totals, and the IJ cell counts are a multinomial sample.

A clinical trial is an experimental study, the investigator having the advantage of experi-
mental control over which subjects receive each treatment. Such studies can use the power
of randomization to make the groups balance (apart from sampling error) on other variables
that may be associated with the response. This lowers the chance that an association may
be due to some unobserved variable. By contrast, case—control, cohort, and cross-sectional
studies are observational studies. They merely observe who chooses each group and who
has the outcome of interest. Observational studies have more potential for biases of various
types, and it is dangerous to conclude that an association reflects a causal connection.

For example, suppose an observational study finds that people who are unmarried are
more likely to be a member of Facebook than those who are married. Many variables are
associated both with marital status and with whether a person is a member of Facebook.
Such variables could account for the association. One such variable could be a person’s age.
Perhaps younger people are both more likely to be a member of Facebook and more likely
to be unmarried. If the study failed to measure age or control for it adequately, it might
misleadingly predict a causal relation between marital status and Facebook membership.

2.2 COMPARING TWO PROPORTIONS

Many studies are designed to compare groups on a binary response variable. Then Y has
only two categories, such as (success, failure) for outcome of a medical treatment. With
two groups, a 2 x 2 contingency table displays the results. The rows are the groups and
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the columns are the categories of Y. This section presents parameters for comparing the
groups.

2.2.1 Difference of Proportions

For subjects in row /, my); is the probability that the response has outcome in category
1 (“success”™). With only two possible outcomes, wy; = 1 — 7y);, and we use the simpler
notation m; for 7y;. The difference of proportions of successes, m; — 1, is a basic com-
parison of the two rows. Comparison on failures is equivalent to comparison on successes,
since

(I-—m)—(—m) =m — .

The difference of proportions falls between —1.0 and +1.0. It equals zero when the rows
have identical conditional distributions. The response Y is independent of the row classifi-
cation when ) — 7y = 0.

When both variables are responses, conditional distributions apply in either direction.
We can also compare the two columns, such as by the difference between the proportions
in row 1. This usually is not equal to the difference 7, — w2 comparing the rows, unless
Ty — Ty = 0.

2.2.2 Relative Risk

A value | — m, of fixed size may have greater importance when both 7; are close to O or 1
than when they are not. For a study comparing two treatments on the proportion of subjects
who die, the difference between 0.010 and 0.001 is more noteworthy than the difference
between 0.410 and 0.401, even though both are 0.009. In such cases, the ratio of proportions
is also informative.

The relative risk is defined to be the ratio of probabilities,

relative risk = | /m,. 2.3)

It can be any nonnegative real number. A relative risk of 1.0 corresponds to independence.
For the proportions just given, the relative risks are 0.010/0.001 = 10.0and 0.410/0.401 =
1.02. Comparing the rows on the second response category gives a different relative risk,

(I —m)/(1 — 7).

2.2.3 Odds Ratio

For a probability 7 of success, the odds are defined to be
odds Q =m/(1 — 7).

The odds are nonnegative, with Q@ > 1.0 when a success is more likely than a failure. When
7 = 0.75, for instance, then © = 0.75/0.25 = 3.0; a success is three times as likely as a
failure, and we expect about three successes for every one failure. When Q2 = % a failure
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is three times as likely as a success. Inversely,
T =Q/(Q+ 1.

For instance, when the odds 2 = %, then the probability 7 = 0.25.
Refer again to a 2 x 2 table. Within row i, the odds of success instead of failure are
Q; = m; /(1 — 7;). The ratio of the odds £2| and €2, in the two rows,

_Q_ m/Ad—m)

0_ - +
Qz 7[2/(1—77.’2)

2.4)

is called the odds ratio.
For joint distributions with cell probabilities {m;;}, the equivalent definition for the odds
inrow i is Q; = m;1 /72, i = 1, 2. Then the odds ratio is

_ /T mann
/T Wipma

(2.5)

An alternative name for 6 is the cross-product ratio, because it equals the ratio of the
products 772, and w7, of probabilities from diagonally opposite cells (Yule 1900,
1912).

2.2.4 Properties of the Odds Ratio

The odds ratio can equal any nonnegative number. The condition Q; = €2, and hence (when
all cell probabilities are positive) & = 1 corresponds to independence of X and Y. When
1 < 6 < o0, subjects in row 1 are more likely to have a success than are subjects in row 2;
that is, 7; > m,. For instance, when 8 = 4, the odds of success in row 1 are four times the
odds in row 2. This does not mean that the probability m| = 4m,; that is the interpretation
of a relative risk of 4.0. When 0 < 6§ < 1, then 7| < 7.

Values of @ farther from 1.0 in a given direction represent stronger association. Two
values represent the same association, but in opposite directions, when one is the reciprocal
of the other. For instance, when § = 0.25, the odds of success in row 1 are 0.25 times the
odds in row 2, or equivalently, the odds of success in row 2 are 1/0.25 = 4.0 times the odds
in row 1. When the order of the rows is reversed or the order of the columns is reversed,
the new value for 6 is the reciprocal of the original value.

For inference, we shall see it is sometimes convenient to use log8. Independence
corresponds to log® = 0. The log odds ratio is symmetric about this value—reversal of
rows or of columns results in a change in its sign. Two values for log & that are the same
except for sign, such as log4 = 1.39 and log 0.25 = —1.39, represent the same strength of
association.

The odds ratio does not change value when the orientation of the table reverses so that
the rows become the columns and the columns become the rows. This is clear from the
symmetric form of (2.5). It is unnecessary to identify one classification as the response
variable in order to use 6. In fact, although (2.4) defined the odds ratio in terms of odds
using ; = P(Y = 1|X =), we could just as well define it using reverse conditional
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probabilities. With a joint distribution, conditional distributions exist in each direction, and

_apmp  PY =1X=1/PY =2|X=1)
mama P(Y = 1|X =2)/P(Y =2|X =2)
PX=1Y =1)/P(X =2|Y = 1)

S PX =¥ =2/P(X=2]Y =2)’ 2.6)

Because of this, the odds ratio is equally valid for prospective, retrospective, or cross-
sectional sampling designs. The sample odds ratio estimates the same parameter in each
case.

For cell counts {#;;}, the sample odds ratio is

6 = (ny1ny)/(n1ana1).

This does not change when both cell counts within any row are multiplied by a nonzero
constant or when both cell counts within any column are multiplied by a nonzero constant.
An implication is that the sample odds ratio estimates the same characteristic (6) even when
the sample is disproportionately large or small from marginal categories of a variable. For a
case—control study of the association between vaccination and catching the flu, the sample
odds ratio estimates the same characteristic with a random sample of (1) 100 people who
got the flu and 100 people who did not, or (2) 40 people who got the flu and 160 people
who did not. The sample versions of the difference of proportions and relative risk (2.3)
are invariant to multiplication of counts within rows by a constant, but they change with
multiplication within columns or with row—column interchange.

2.2.5 Example: Association Between Heart Attacks and Aspirin Use

We illustrate the three association measures with Table 2.1 on aspirin use and heart attacks.
The table differentiates between fatal and nonfatal heart attacks, but we combine these
outcomes for now.

Of the 11,034 physicians taking placebo, 189 suffered heart attacks, a proportion of
189/11,034 = 0.0171. Of the 11,037 taking aspirin, 104 had heart attacks, a proportion of
0.0094. The sample difference of proportions is 0.0171 — 0.0094 = 0.0077. The sample
relative risk is 0.0171/0.0094 = 1.82. The proportion suffering heart attacks of those taking
placebo was 1.82 times the proportion suffering heart attacks of those taking aspirin. The
sample odds ratio is (189 x 10,933)/(10,845 x 104) = 1.83. The odds of heart attack for
those taking placebo was 1.83 times the odds for those taking aspirin.

2.2.6 Case-Control Studies and the Odds Ratio

With retrospective sampling designs, such as case—control studies, it is possible to estimate
conditional probabilities of form P(X = i{|Y = j). Itis usually not possible to estimate the
probability P(Y = j|{X = i) of an outcome of interest or the difference of proportions or
relative risk for that outcome. It is possible to estimate the odds ratio, however, since by
(2.6) it is determined by conditional probabilities in either direction.

To illustrate, we revisit Table 2.5 on X = smoking behavior and ¥ = lung cancer. The
data were two binomial samples on X at fixed levels of Y. Thus, we can estimate the
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probability a subject was a smoker, given the outcome on whether the subject had lung
cancer; this was 688/709 for the cases and 650/709 for the controls. We cannot estimate
the probability of lung cancer, given whether one smoked, which is more relevant. Thus,
we cannot estimate differences or ratios of probabilities of lung cancer. The difference
of proportions and relative risk are limited to comparisons of the probabilities of being a
smoker. However, we can compute the odds ratio using the sample analog of (2.6),

(688/709)/(21/709) 688 x 59

(650/709)/(59/709) ~ 650 x 21 3.0.

Moreover, by (2.6), interpretations can use the direction of interest, even though the study
was retrospective: The estimated odds of lung cancer for smokers were 3.0 times the
estimated odds for nonsmokers.

2.2.7 Relationship Between Odds Ratio and Relative Risk
From definitions (2.3) and (2.4),

. L 1 —m
odds ratio = relative risk ( - ) .
Their magnitudes are similar whenever the probability 7; of the outcome of interest is close
to zero for both groups. We saw this similarity in Section 2.2.5 for the aspirin study, where
the heart attack proportion was less than 0.02 for each group. The relative risk was 1.82
and the odds ratio was 1.83.

Because of this similarity, when each n; is small, the odds ratio provides a rough
indication of the relative risk when it is not directly estimable, such as in case—control
studies (Cornfield 1951). For instance, for Table 2.5, if the probability of lung cancer is
small regardless of smoking behavior, 3.0 is also a rough estimate of the relative risk; that
is, for the way smoking was defined in that study, smokers had about 3.0 times the chance
of lung cancer as nonsmokers.

2.3 CONDITIONAL ASSOCIATION IN STRATIFIED 2 x 2 TABLES

An important part of any observational study is the choice of control variables. In studying
the effect of X on Y, we should attempt to adjust or “control” any covariate that can
influence that relationship. This involves using some mechanism to hold the covariate
constant. Otherwise, an observed effect of X on Y may actually reflect effects of that
covariate on both X and Y. The relationship between X and Y then shows confounding.
Experimental studies can remove effects of confounding covariates by randomly assigning
subjects to different levels of X, but this is not possible with observational studies.
Suppose that a study considers effects of passive smoking, the effects on a nonsmoker of
living with a smoker. To analyze whether passive smoking is associated with lung cancer, a
cross-sectional study might compare lung cancer rates between nonsmokers whose spouses
smoke and nonsmokers whose spouses do not smoke. The study should attempt to control
for age, socioeconomic status, and other variables that might relate both to spouse smoking
and to developing lung cancer. Otherwise, results will have limited usefulness. Spouses of
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nonsmokers may tend to be younger than spouses of smokers, and younger people are less
likely to have lung cancer. Then a lower proportion of lung cancer cases among spouses of
nonsmokers may merely reflect their lower average age.

In this section we discuss the analysis of the association between categorical variables X
and Y while controlling for a possibly confounding variable Z. For simplicity, the examples
refer to a single control variable. In later chapters we treat more general cases and use
models to perform statistical control.

2.3.1 Partial Tables

A three-way contingency table cross-classifies X, Y, and Z. We control for Z by studying
the XY relationship at fixed levels of Z. Two-way cross-sectional slices of the three-way
table cross-classify X and Y at separate categories of Z. These cross sections are called
partial tables. They display the XY relationship while removing the effect of Z by holding
its value constant.

The two-way contingency table obtained by combining the partial tables is called the
XY marginal table. Each cell count in the marginal table is a sum of counts from the same
location in the partial tables. The marginal table, rather than controlling Z, ignores it. The
marginal table contains no information about Z. It is simply a two-way table relating X and
Y but may reflect the effects of Zon X and Y.

The associations in partial tables are called conditional associations, because they refer
to the association between X and Y conditional on fixing Z at some level. Conditional
associations in partial tables can be quite different from associations in marginal tables. In
fact, it can be misleading to analyze only marginal tables of a multiway contingency table.
The following example illustrates.

2.3.2 Example: Racial Characteristics and the Death Penalty

Table 2.6 isa2 x 2 x 2 contingency table—two rows, two columns, and two layers—from
an article that studied effects of racial characteristics on whether persons convicted of
homicide received the death penalty. The 674 subjects classified in Table 2.6 were the
defendants in indictments involving cases with multiple murders in Florida between 1976
and 1987. The variables in Table 2.6 are Y = death penalty verdict, having the categories
(yes, no), X = race of defendant, and Z = race of victims, each having the categories

Table 2.6 Death Penalty Verdict by Defendant’s Race and Victims’ Race

Death Penalty

Victims’ Race Defendant’s Race Yes No Percent Yes
White White 53 414 11.3
Black 11 37 229
Black White 0 16 0.0
Black 4 139 2.8
Total White 53 430 11.0
Black 15 176 7.9

Source: M. L. Radelet and G. L. Pierce, Florida Law Rev. 43: 1-34, 1991. Reprinted with
permission from the Florida Law Review.
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Figure 2.1 Percentage receiving death penalty, by defendant’s race and victims’ race.

(white, black). We study the effect of defendant’s race on the death penalty verdict, treating
victims’ race as a control variable. Table 2.6 has a 2 x 2 partial table relating defendant’s
race and the death penalty verdict at each category of victims’ race.

For each combination of defendant’s race and victims’ race, Table 2.6 lists and
Figure 2.1 displays the percentage of defendants who received the death penalty. These
describe the conditional associations. When the victims were white, the death penalty was
imposed 22.9% — 11.3% = 11.6% more often for black defendants than for white defen-
dants. When the victims were black, the death penalty was imposed 2.8% more often for
black defendants than for white defendants. Controlling for victims’ race by keeping it fixed,
the death penalty was imposed more often on black defendants than on white defendants.

The bottom portion of Table 2.6 displays the marginal table. It results from summing
the cell counts in Table 2.6 over the two categories of victims’ race, thus combining the
two partial tables (e.g., 11 +4 = 15). Overall, 11.0% of white defendants and 7.9% of
black defendants received the death penalty. Ignoring victims’ race, the death penalty was
imposed less often on black defendants than on white defendants. The association reverses
direction compared with the partial tables.

Why does the association change so much when we ignore versus control victims’ race?
This relates to the nature of the association between victims’ race and each of the other
variables. First, the association between victims’ race and defendant’s race is extremely
strong. The marginal table relating these variables has odds ratio (467 x 143)/(48 x 16) =
87.0. Second, Table 2.6 shows that, regardless of defendant’s race, the death penalty was
much more likely when the victims were white than when the victims were black. So
whites are tending to kill whites, and killing whites is more likely to result in the death
penalty. This suggests that the marginal association should show a greater tendency than
the conditional associations for white defendants to receive the death penalty. In fact,
Table 2.6 has this pattern.

Figure 2.2 illustrates why the marginal association differs so from the conditional as-
sociations. For each defendant’s race, the figure plots the proportion receiving the death
penalty at each category of victims’ race. Each proportion is labeled by a letter symbol
giving the category of victims’ race. Surrounding each observation is a circle having area
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Figure 2.2 Proportion receiving death penalty by defendant’s race, controlling and ignoring victims’ race.

proportional to the number of observations at that combination of defendant’s race and
victims’ race. For instance, the W in the largest circle represents a proportion of 0.113
receiving the death penalty for cases with white defendants and white victims. That circle
is largest because the number of cases at that combination (53 + 414 = 467) is largest. The
next-largest circle relates to cases in which blacks kill blacks.

We control for victims’ race by comparing circles having the same victims’ race letter
at their centers. The line connecting the two W circles has a positive slope, as does the line
connecting the two B circles. Controlling for victims’ race, this reflects the death penalty
being more likely for black defendants than for white defendants. When we add results
across victims’ race to get a summary result for the marginal effect of defendant’s race on
the death penalty verdict, the larger circles, having the greater number of cases, have greater
influence. Thus, the summary proportions for each defendant’s race, marked on the figure
by periods, fall closer to the center of the larger circles than to the center of the smaller
circles. A line connecting the summary marginal proportions has negative slope, indicating
that overall the death penalty was more likely for white than for black defendants.

The result that a marginal association can have a different direction from each conditional
association is called Simpson’s paradox (Simpson 1951), although it was noted as early
as in Yule (1903). It applies to quantitative as well as categorical variables. Statisticians
commonly use it to caution against imputing causal effects from an association of X with
Y. For instance, when doctors started to observe association between smoking and lung
cancer, statisticians such as R. A. Fisher warned that some variable (e.g., a genetic factor)
could exist such that the association would disappear under the relevant control. However,
others (e.g., J. Cornfield in 1954, as summarized by Greenhouse 2009) showed that at least
as strong an association must exist between a confounding variable Z and both X and Y in
order for the effect of X on Y to disappear or change under the control. See Breslow and
Day (1980, Sec. 3.4) and Bross (1967) for related comments.

2.3.3 Conditional and Marginal Odds Ratios

Odds ratios can describe marginal and conditional associations. We illustrate for2 x 2 x K
tables, where K denotes the number of categories of a control variable, Z. Let {u; 1} denote
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cell expected frequencies for some sampling model, such as binomial, multinomial, or
Poisson sampling.
Within a fixed category k of Z, the odds ratio

Mk M2k
M2k M21k

Oxy) = 2.7

describes conditional XY association in partial table k. The conditional odds ratios for the
K partial tables can be quite different from the marginal odds ratio. The XY marginal table
has expected frequencies {//,i i+ =D Mijk } The XY marginal odds ratio is

_ M+ Moy

Qxy .
Mo+ K21+

Sample values of Oy and Oxy use similar formulas with cell counts substituted for
expected frequencies. We illustrate for the association between defendant’s race and the
death penalty in Table 2.6. In the first partial table, victims’ race is white and

A 53 x 37
Oxyy = TR 0.43.

The sample odds for white defendants receiving the death penalty were 43% of the sample
odds for black defendants. In the second partial table, victims’ race is black and the
estimated odds ratio equals éxy(z) = (0 x 139)/(16 x 4) = 0.0, since the death penalty
was never given to white defendants with black victims.

Estimation of the marginal odds ratio uses the 2 x 2 marginal table within Table 2.6,
collapsing over victims’ race, or (53 x 176)/(430 x 15) = 1.45. The sample odds of the
death penalty were 45% higher for white defendants than for black defendants. Yet within
each victims’ race category, those odds were smaller for white defendants. This reversal in
the association after controlling for victims’ race illustrates Simpson’s paradox.

2.3.4 Marginal Independence Versus Conditional Independence

More generally, when X and Y may have multiple categories, an/ x J x K table describes
the relationship between X and Y, controlling for Z. If X and Y are independent in partial
table &, then X and Y are said to be conditionally independent at level k of Z. When Y is a
response, this means that

PY =jIX=i,Z=k =P =j|Z=k), foralli, ;. (2.8)

More generally, X and Y are said to be conditionally independent given Z when they are
conditionally independent at every level of Z, that is, when (2.8) holds for all k. Then, given
Z, Y does not depend on X.

Suppose that a single multinomial applies to the entire three-way table, with joint
probabilities {7;;y = P(X =i,Y = j, Z =k)}. Then

mipn=PX=i,Z=k PY =jIX=iZ=k).
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Under conditional independence of X and Y, given Z, this equals
niwPY = jJIZ=k)=nmuPY = j,Z=k/P(Z=k).
Thus, conditional independence is then equivalent to
Tijk = Tisk Ty ji/Tyyx  foralli, j, and k. 2.9)

Conditional independence does not imply marginal independence (Yule 1903). For
instance, summing (2.9) over k on both sides yields

Tij+ = Z(ﬂi+k Tk Ttk)-
x

All three terms in the summation involve k, and this does not simplify to 7;;4+ = w44 7454,
which is marginal independence.

For 2 x 2 x K tables, X and Y are conditionally independent when the odds ratio
between X and Y equals 1.0 at each category of Z. The expected frequencies {u;;x} in
Table 2.7 illustrate this relation for ¥ = response (success, failure), X = drug treatment
(A, B), and Z = clinic (1, 2). From (2.7), the conditional XY odds ratios are

18 x 8 2><32_

v = o5y =10 Grre =g =10

Given the clinic, response and treatment are conditionally independent. The marginal table
combines the tables for the two clinics. Its odds ratio is Oxy = (20 x 40)/(20 x 20) = 2.0,
so the variables are not marginally independent.

Ignoring the clinic, why are the odds of a success for treatment A twice those for
treatment B? The conditional XZ and YZ odds ratios give a clue. The odds ratio between Z
and either X or Y, at each fixed category of the other variable, equals 6.0. For instance, the
XZ odds ratio at the first category of ¥ equals (18 x 8)/(12 x 2) = 6.0. The conditional
odds (given response) of receiving treatment A at clinic 1 are six times those at clinic 2, and
the conditional odds (given treatment) of success at clinic | are six times those at clinic 2.
Clinic 1 tends to use treatment A more often, and clinic | also tends to have more successes.

Table 2.7 Expected Frequencies Showing that Conditional
Independence Does Not Imply Marginal Independence

Response

Clinic Treatment Success Failure
1 A 18 12

B 12 8
2 A 2 8

B 8 32
Total A 20 20

B 20 40
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For instance, if patients at clinic 1 tended to be younger and in better health than those at
clinic 2, perhaps they had a better success rate regardless of the treatment received.

Itis misleading to study only the marginal table, concluding that successes are more likely
with treatment A. Subjects within a particular clinic are likely to be more homogeneous
than the overall sample, and response is independent of treatment in each clinic.

2.3.5 Homogeneous Association

A 2 x 2 x K table has homogeneous XY association when

Oxyy =Oxve) = -+ = Oxvxy.-

Then the effect of X on Y is the same at each category of Z. Conditional independence of
X and Y is the special case in which each Oxy 4y, = 1.0.

Under homogeneous XY association, homogeneity also holds for the other associations.
For instance, the conditional odds ratio between two categories of X and two categories
of Z is identical at each category of Y. For the odds ratio, homogeneous association is
a symmetric property. It applies to any pair of variables viewed across the categories of
the third. When it occurs, there is said to be no interaction between two variables in their
effects on the other variable.

When interaction exists, the conditional odds ratio for any pair of variables changes
across categories of the third. For X = smoking (yes, no), ¥ = lung cancer (yes, no), and
Z = age (<43, 45-65, >65), suppose that Oxy) = 1.2, Oxy2) = 3.9, and 6xy3) = 8.8.
Then smoking has a weak effect on lung cancer for young people, but the effect strengthens
considerably with age. Age is called an effect modifier; the effect of smoking is modified
depending on the value of age.

For the death penalty data (Table 2.6), 9Xy(|) =0.43 and éxy(z) = 0.0. The values are
not close, but the second estimate is imprecise because of the zero cell count. Because
of the ordinary variation that occurs from sampling variability, these partial tables do not
necessarily contradict homogeneous association in a population.

Some analyses of categorical data assume homogeneous association, and we’ll also
see how to test such an assumption. For example, when each 2 x 2 table results from a
particular study, the statistical analysis may combine information from the various studies to
summarize the overall evidence against conditional independence and to assess whether the
effect was the same in each study. Such an analysis is called a meta-analysis. In Section 6.4
we show how to analyze whether sample data are consistent with homogeneous association
or conditional independence.

2.3.6 Collapsibility: Identical Conditional and Marginal Associations

Even when conditional associations are identical, we’ve seen that they may differ from a
marginal association. When do they not differ? We’ll study this in some detail in Section
10.1, but for now we’ll state two basic results, for2 x 2 x K tables stratifying by categories
of Z:

Collapsibility of Odds Ratios. When Oxy ) is identical atevery level £ of Z, that value equals
the marginal odds ratio 8y if either Z and X are conditionally independent or if Z and ¥ are
conditionally independent.
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Collapsibility of Difference of Proportions (or Relative Risk). When 7, — 5 (or 7y /m3) is
the same at every level of Z, that value equals the corresponding marginal measure if Z is
independent of X in the marginal XZ table or if Z is conditionally independent of ¥ given X.

The conditions for odds ratio collapsibility state that the variable treated as the control
(Z) is conditionally independent of X or Y, or both. For example, the conditional odds ratio
between defendant’s race and the death penalty verdict is collapsible over victim’s race if
(1) for each death penalty outcome, victim’s race and defendant’s race are independent,
or (2) for each defendant’s race, the chance of the death penalty is the same when the
victim was white as when the victim was black. The first condition for collapsibility of the
difference of proportions or relative risk is satisfied, for example, for factorial designs with
the same number of observations at each combination of levels of X and Z. For details and
extensions, see the references in Note 2.3.

2.4 MEASURING ASSOCIATION IN I x J TABLES

For 2 x 2 tables, a single number such as the odds ratio can summarize the association.
For I x J tables, it is usually not possible to summarize association by a single number
without some loss of information. However, a set of odds ratios or another summary index
can describe certain features of the association.

2.4.1 Odds Ratios in I x J Tables

QOdds ratios can use each of the (g) pairs of rows in combination with each of the (é)

pairs of columns. For rows a and b and columns ¢ and d, the odds ratio (7, 7pq)/ (e Taa)
uses four cells in a rectangular pattern. There are (é) (é) odds ratios of this type. This set
of odds ratios contains much redundant information.

Consider the subset of (I — 1)(J — 1) local odds ratios

Tij it j+1

6, = i=1,...0-1, j=1..J-1 (2.10)

,
i j+1T0i41,

Figure 2.3 shows that local odds ratios use cells in adjacent rows and adjacent columns.
These (I — 1)(J — 1) odds ratios determine all odds ratios formed from pairs of rows and
pairs of columns. To illustrate, in Table 2.1, the sample local odds ratio is 2.08 for the first
two columns and 1.74 for the second and third columns. In each case, the more serious
outcome was more prevalent for the placebo group. The product of these two odds ratios is
3.63, which is the odds ratio for the first and third columns.

Construction (2.10) for a minimal set of odds ratios is not unique. Another basic set is

==L =T, =10 -1 @2.11)

This uses the rectangular pattern of cells determined by the cell in row / and column j and
the cell in the last row and last column. Figure 2.3 illustrates.

Given the marginal distributions {m;;} and {m;}, when {m;; > 0}, conversion of the
probabilities into the set of odds ratios (2.10) or (2.11) does not discard information.
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j it

Figure 2.3 Odds ratios for / x J tables.

The cell probabilities determine the odds ratios, and given the marginals, the odds ratios
determine the cell probabilities. In this sense, (I — 1)(J — 1) parameters can describe any
association in an / x J table. Independence is equivalent to all (/ — 1)(J — 1) odds ratios
equaling 1.0.

For three-way I x J x K tables, sets of odds ratios in the partial tables describe the
conditional association. Homogeneous XY association means that a conditional odds ratio
formed using any particular two categories of X and any particular two categories of Y is
the same at each category of Z.

2.4.2 Association Factors

An alternative type of association summary focuses on individual cells and whether a cell
has more or fewer subjects than we’d expect if the variables are independent. One way to
do this uses the IJ association factors (Good 1956),

7ij [ (i 74 ).
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An association factor is the ratio of the cell probability to the probability correspond-
ing to independence for the particular marginal distributions. It falls between O and
min(1/7m;, 1/m,;), with the baseline value of 1 corresponding to independence.

It can be informative to investigate which cells have probabilities substantially different
from independence. For instance, we could regard the departure from independence in a
cell as being noteworthy when the association factor is larger than 2 or smaller than %

2.4.3 Summary Measures of Association

Another way to describe association uses a single summary index. We discuss this first for
nominal variables and then ordinal variables. The most interpretable indices for nominal
variables have the same structure as R-squared for interval variables. It and the more general
intraclass correlation coefficient and correlation ratio (Kendall and Stuart 1979) describe
the proportional reduction in variance from the marginal distribution of the response Y to
the conditional distributions of ¥ given an explanatory variable X.

Let V(Y) denote a measure of variation for the marginal distribution {7 ;} of Y, and let
V(Y |i) denote this measure computed for the conditional distribution {m;, ..., m;} of ¥
at the ith setting of X. A proportional reduction in variation measure has the form

V(YY) - E[V(Y|X)]

a0 , 2.12)

where E[V (Y |X)] is the expectation of the conditional variation taken with respect to the
distribution of X. For the marginal distribution {7;} of X, E[V (Y |X)] = 3_, mix V(Y |i).

For a nominal response, Theil (1970) proposed an index using the variation mea-
sure V(Y) =Y j7+jlog myj, called the entropy. For contingency tables, the proportional
reduction in entropy equals

_Zi Z] 7'[,’]' lOg(?T,'j/T[H_ 7T+j)

U=
> jmyjlogmy;

(2.13)

called the uncertainty coefficient. It takes value between 0 and 1: U = 0 is equivalent to
independence of X and Y; U =1 is equivalent to a lack of conditional variation, in the
sense that for each i, w;; = 1 for some j.

Various measures of form (2.12) describe associationin / x J tables (see Exercises 2.39
and 2.40). A difficulty with them is developing intuition for how large a value constitutes
a strong association. How do we interpret, say, a 30% reduction in entropy? Summary
measures seem easier to interpret and more useful when both classifications are ordinal, as
discussed next.

2.44 Ordinal Trends: Concordant and Discordant Pairs

Table 2.8 cross-classifies job satisfaction with age for a recent General Social Survey
(GSS). The GSS is a probability sample of Americans conducted every other year. Both
classifications are ordinal as measured, with the job satisfaction categories being 1 = not
satisfied, 2 = fairly satisfied, 3 = very or completely satisfied.

When X and Y are ordinal, a monotone trend association is common. For instance,
perhaps job satisfaction tends to increase as age does. Measures that describe the degree
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Table 2.8 Cross-Classification of Job Satisfaction

by Age of Respondent

Job Satisfaction
Age I 2 3
<30 34 53 88
30-50 80 174 304
>50 29 75 172

Source: 2006 General Social Survey, National Opinion Re-
search Center.

to which a relationship is monotone can be based on classifying each pair of subjects as
concordant or discordant. A pair is concordant if the subject ranked higher on X also ranks
higher on Y. The pair is discordant if the subject ranking higher on X ranks loweron Y.

For Table 2.8, consider a pair of subjects, one in the cell (<30, 1) and the other in the
cell (30-50, 2). This pair is concordant, since the second subject ranks higher than the
first both on age and on job satisfaction. All 34 subjects in cell (<30, 1) form concordant
pairs when matched with each of the 174 subjects classified (30-50, 2), so these two cells
provide 34 x 174 = 5916 concordant pairs. Each subject in the cell (<30, 1) is also part of a
concordant pair when matched with each of the other(304+75 +172)subjects ranked higher
on both variables. Similarly, the 53 subjects in the (< 30, 2) cell are part of concordant
pairs when matched with the (304 + 172)subjects ranked higher on both variables. The total
number of concordant pairs, denoted by C, equals

C =34(174 + 304 + 75 + 172)
+ 53(304 + 172) 4+ 80(75 4+ 172) 4+ 174(172) = 99,566.

The total number of discordant pairs of observations is
D = 88(80 + 174 + 29 + 75) 4+ 53(80 + 29) + 304(29 + 75) + 174(29) = 73,943.

In this example, C > D, suggesting a tendency for higher age to be associated with higher
job satisfaction.

Consider two independent observations from a joint probability distribution {m;;}. For
that pair, the probabilities of concordance and discordance are

=22 S (T X m) 2T Tm(EEm)

h>i k>j h>i k<j

Here i and j are fixed in the inner summations, and the factor of 2 occurs because the first
observation could be in cell (i, ) and the second in cell (4, k), or vice versa.

2.4.5 Ordinal Measure of Association: Gamma

Given that a pair is untied on both variables, [, / (]_[( +11 d) 1s the probability of concor-
dance and [T, /([T. +1,) is the probability of discordance. The difference between these
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probabilities,
y = 1l 1 (2.14)
l_[c + l_[d
is called gamma (Goodman and Kruskal 1954). The sample version is y = (C — D)/
(C + D).

For Table 2.8, C = 99,566 and D = 73,943. Hence,
P = (99,566 — 73,943)/(99,566 4+ 73,943) = 0.148.

Only a weak tendency exists for job satisfaction to increase as age increases. Of the untied
pairs, the proportion of concordant pairs is 0.148 higher than the proportion of discordant
pairs.

Like the correlation, gamma treats the variables symmetrically and it has range —1 <
y < 1. A reversal in the category orderings of one variable causes a change in the sign
of y. Whereas the absolute value of the correlation is 1 when the relationship between X
and Y is perfectly linear, only monotonicity is required for |y| = 1, withy = 1if [[, =0
and y = —1if [[, = 0. Independence implies that y = 0, but the converse is not true. For
instance, a U-shaped joint distribution can have [, = [], and hence y = 0.

For continuous variables, samples can be fully ranked; that is, no ties occur. Then,
C + D = (})and p =(C — D)/ (). This is Kendall’s tau.

2.4.6 Probabilistic Comparisons of Two Ordinal Distributions

Now consider the special case of a 2 x J table, for comparing two groups on an ordinal
response variable Y. Let Y| and Y, denote the column numbers of the response variable for
subjects selected at random from rows 1 and 2, independently of each other. A measure
that summarizes their relative size is

A=P, >Y)—P(Ys>Y)). (2.15)

Related useful measures are P(Y; > Y») + (%)P(Yl = Y,)(Exercise 2.41)and P(Y; > Y3)/
P(Y, > Y)) (Agresti 2010, Sec. 2.1.4).

If Y, and Y, are identically distributed, then A = 0. When A > 0 (< 0), then outcomes
of Y| tend to be larger (smaller) than outcomes of Y,. Let F;;; = 7; + - -- + ;. When
Fju < Fjpfor j=1,...,J, the conditional distribution in row 1 is stochastically higher
than the one in row 2. This condition implies that A > 0.0.

With sample data in the form of two independent multinomials, we can estimate A by

A= Z ZlelPkIZ - ZZPJHPMZ-

J>k J<k

If we artificially identify row 1 as the higher level of the group variable, then this relates to
the numbers of concordant and discordant pairs by

A = (C - D)/(niny).

With J = 2 the measure simplifies to the difference of proportions.
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Table 2.9 Shoulder Tip Pain Scores After
Laparoscopic Surgery

Pain Scores

Treatments 1 2 3 4 5 Total
Active 19 2 1 0 0 22
Control 7 3 4 3 2 19

Source: T. Lumley, Biometrics 52: 354-361, 1996.

2.4.7 Example: Comparing Pain Ratings After Surgery

Table 2.9 is from a study to compare an active treatment with a control treatment for
patients having shoulder tip pain after laparoscopic surgery. The two treatments were
randomly assigned to 41 patients. The patients rated their pain level on a scale from 1 (low)
to 5 (high) on the fifth day after the surgery.

The sample conditional distributions on shoulder tip pain are:

Active: (0.86, 0.09, 0.05, 0.00, 0.00)
Control: (0.37,0.16,0.21, 0.16, 0.11).

The groups are stochastically ordered, with active treatment patients tending to be lower in
their pain rating. For these data,

A _ 10 +3)+20) - (193 +4z;iT92) H26@+3+9)+18+2D] _ (545

estimates the difference between the probability that the pain rating is higher for active than
control treatments and the probability that the pain rating is higher for control than active
treatments.

2.4.8 Correlation for Underlying Normality

For ordinal variables, another approach to measuring association uses the correlation. In
simplest form, you merely assign fixed scores or midrank scores to the rows and to the
columns and use the ordinary Pearson correlation formula.

An alternative approach, advocated by Karl Pearson, estimates the correlation for a
bivariate normal distribution assumed to underlie the contingency table. Pearson (1904)
applied this approach for 2 x 2 tables, where his tetrachoric correlation is the ML estimate
of the correlation for the bivariate normal. This is the correlation value in the bivariate
normal density that produces cell probabilities equal to the sample cell proportions when
that density is collapsed to a 2 x 2 table having the same marginal proportions as the
observed table. This approach was later generalized to a polychoric correlation for I x J
tables (Tallis 1962).

As Section 17.1 discusses, a strong disagreement arose between Pearson and others about
when it was sensible to assume underlying normality for inherently categorical variables.
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Pearson considered approximating underlying normal correlations in various ways. For
example, his contingency coefficient (Pearson 1904, Exercise 3.32) is a function of a
chi-squared statistic for / x J tables, and his biserial correlation (Pearson 1909) applies
to 2 x ¢ tables with ordered columns.

NOTES

Section 2.2: Comparing Two Proportions

2.1 Odds ratio invariance: Breslow (1996) reviewed the development of methods for case~control
studies. For 2 x 2 tables, Edwards {1963) showed that functions of the odds ratio are the only
statistics that are invariant both to row~column interchange and to multiplication within rows
or within columns by a constant. For I x J tables, Altham (1970) gave related results. Yule
(1912, p. 587) had argued that multiplicative invariance is a desirable property for measures of
association, especially when proportions sampled in various marginal categories are arbitrary.
Goodman (2000) showed five ways of viewing association in a 2 x 2 table and proposed a
general measure that includes all five.

Section 2.3: Conditional Association in Stratified 2 x 2 Tables

2.2 Simpson’s paradox: Paik (1985) proposed circle diagrams of type Figure 2.2 to summarize
three-way tables. For more on Simpson’s paradox and when it can happen, see Blyth (1972),
Davis (1989), Dong (2005), Greenland et al. (1999), Pavlides and Perlman (2009), Samuels
(1993), and Simpson(1951). Good and Mittal (1987) extended it to an amalgamation paradox,
whereby a marginal measure is greater than the maximum or less than the minimum of the
partial table measures.

2.3 Collapsibility: For I x J x 2 tables, the odds ratio collapsibility conditions in Section 2.3.6
are necessary as well as sufficient (Simpson 1951, Whittemore 1978). For / x J x K tables,
Ducharme and Lepage (1986) showed the conditions are necessary and sufficient for the odds
ratios to remain the same no matter how the levels of Z are pooled (i.e.. no matter how Z is
partially collapsed). For collapsibility for the difference of proportions and relative risk, see
Geng (1992), Shapiro (1982), and Wermuth (1987).

Section 2.4: Measuring Association in I x J Tables

2.4 Surveys: Goodman and Kruskal (1954, 1959) surveyed the historical development of measures
of association and introduced new measures. Agresti (2010, Chaps. 2 and 7) and Kruskal (1958)
surveyed ordinal measures of association.

EXERCISES

Applications

2.1 According to the FBI website (www . £bi .gov), in 2008, of female murder victims,
1710 were slain by males and 200 by females, whereas of male murder victims, 4351
were slain by males and 455 by females. Let ¥ denote sex of victim and X denote
sex of offender. Report the sample (a) joint distribution of X and Y, (b) conditional
distribution of ¥ given X, and (¢) conditional distribution of X given Y.
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2.2

2.3

24

2.5

According to the FBI website, of all blacks slain in 2008, 92% were slain by blacks,
and of all whites slain in 2005, 85% were slain by whites. Let ¥ denote race of
victim and X denote race of offender.

a. Which conditional distribution do these statistics refer to, ¥ given X, or X given
Y?

b. Given that a murderer was white, what additional information would you need
to estimate the probability that the victim was white? [Hint: How could you use
Bayes’ theorem?]

¢. Consider the previous exercise. Which association is stronger—between sex of
victim and sex of offender, or between race of victim and race of offender? Justify
your answer.

An article in The New York Times (Feb. 17, 1999) about the PSA blood test for
detecting prostate cancer stated: “The test fails to detect prostate cancer in | in 4
men who have the disease (false-negative results), and as many as two-thirds of the
men tested receive false-positive results.” Let C (C) denote the event of having (not
having) prostate cancer, and let +(—) denote a positive (negative) test result. Which
is true: P(—|C) = j or P(C|—=) = }? P(C|+) = 3 or P(+|C) = %? Determine the
sensitivity and specificity.

Table 2.10 shows fatality results for drivers and passengers in auto accidents in

Florida in 2008, according to whether the person was wearing a seat belt.

a. Estimate the probability of fatality, conditional on seat-belt use in category (i) no
and (ii) yes.

b. Estimate the probability of wearing a seat belt, conditional on the injury being (i)
fatal and (ii) nonfatal.

¢. For the most natural choice of response variable, find and interpret the difference
of proportions, relative risk, and odds ratio. Why are the relative risk and odds
ratio approximately equal?

Table 2.10 Data for Exercise 2.4 on Auto Accidents

Injury
Seat-Belt Use Fatal Nonfatal
No 1085 55,623
Yes 703 441,239

Source: Florida Department of Highway Safety and Motor Vehicles,
www . £ Lhsmv .gov/hsmvdocs/CS2008 . pdf.

Consider the following two studies reported in The New York Times.

a. A British study reported (Dec. 3, 1998) that of smokers who get lung cancer,
“women were 1.7 times more vulnerable than men to get small-cell lung cancer.”
Is 1.7 the odds ratio or the relative risk?
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b. A National Cancer Institute study about tamoxifen and breast cancer reported
(Apr. 7, 1998) that the women taking the drug were 45% less likely to experience
invasive breast cancer than were women taking placebo. Find the relative risk
for (i) those taking the drug compared with those taking placebo, and (ii) those
taking placebo compared with those taking the drug.

According to a report by the United Nations Office on Drugs and Crime, the number
of homicides involving firearms per million people is about 62.4 in the United States,
6.0 in Canada, 5.6 in Australia, and 1.3 in the UK. Use the relative risk to compare
the United States with the other countries. For such data, explain why the relative
risk is more informative than the difference of proportions.

An article in The Economist (July 3, 2010) stated that the number of people in prison
is 154 per 100,000 in England and Wales, 96 per 100,000 in France, 87 per 100,000
in Germany, and 753 per 100,000 in the United States Explain how to use the relative
risk to compare the U.S. rate to the others.

At the start of the 2010 World Cup, the betting exchange Betfair stated that the odds
against being the winning team were 9/2 for Spain, 11/2 for Brazil, 6/1 for England,
and 90/1 for the United States. Find the corresponding prior probabilities of winning
for these four teams.

In a recent survey of people aged 50-71 in the United States summarized by N.
Freedman et al. (Lancet Oncol. 9: 649-656, 2008), during a follow-up period the
annual probability of lung cancer occurrence was about 0.00023 for people who had
never smoked and about 0.01284 for current smokers who smoked more than two
packs per day. Find and interpret the difference of proportions and the relative risk.
Which measure is more informative for these data? Why?

For adults who sailed on the Titanic on its fateful voyage, the odds ratio between
gender (female, male) and survival (yes, no) was 11.4. (For data, see R. J. M.
Dawson, J. Statist. Ed. 3, 1995.)

a. What is wrong with the interpretation, “The probability of survival for females
was 11.4 times that for males”? Give the correct interpretation. When would the
quoted interpretation be approximately correct?

b. The odds of survival for females equaled 2.9. For each gender, find the proportion
who survived.

A research study estimated that under a certain condition, the probability that a
subject would be referred for heart catheterization was 0.906 for whites and 0.847
for blacks.

a. A press release about the study stated that the odds of referral for cardiac catheter-
ization for blacks are 60% of the odds for whites. Explain how they obtained 60%
(more accurately, 57%).

b. An Associated Press story later described the study and said “Doctors were
only 60% as likely to order cardiac catheterization for blacks as for whites.”



EXERCISES 63

2.12

2.13

2.14

2.15

Explain what is wrong with this interpretation. Give the correct percentage for
this interpretation.

A 20-year cohort study of British male physicians (R. Doll and R. Peto, Br. Med. J.

2: 1525-1536, 1976) noted that the proportion per year who died from lung cancer

was 0.00140 for cigarette smokers and 0.00010 for nonsmokers. The proportion

who died from coronary heart disease was 0.00669 for smokers and 0.00413 for

nonsmokers.

a. Describe the association of smoking with each of lung cancer and heart disease,
using the difference of proportions, relative risk, and odds ratio. Interpret.

b. Which response is more strongly related to cigarette smoking, in terms of the
reduction in number of deaths that would occur with elimination of cigarettes?
Explain.

For the Women’s Health Study, heart attacks were reported for 198 of 19,934 taking
aspirin and for 193 of 19,942 taking placebo (J. Am. Med. Assoc. 295: 306-313,
2006). Construct the 2 x 2 table that cross-classifies the treatment with whether a
heart attack was reported. Estimate the odds ratio. Interpret. (As of 2006, results
suggested that, for women, aspirin was helpful for reducing risk of stroke but not
necessarily risk of heart attack.)

According to poll results released by the Pew Research Center (www.people-
press.org) in 2010, when adults in the United States were asked whether there
is solid evidence that the average temperature on earth has been getting warmer
over the past few decades, the estimated odds of a yes response for a Democrat
was 2.96 times higher than for an Independent, and it was 2.08 times higher for an
Independent than for a Republican. Find the estimated odds ratio between opinion
on global warming and whether one is a Democrat or a Republican. Interpret.

Table 2.11 refers to applicants to graduate school at the University of California at
Berkeley, for fall 1973. It presents admissions decisions by gender of applicant for

Table 2.11 Data for Exercise 2.15 on Graduate Admissions

Whether Admitted
Male Female

Department Yes No Yes No

A 512 313 89 19
B 353 207 17 8
C 120 205 202 391
D 138 279 131 244
E 53 138 94 299
F 22 351 24 317
Total 1198 1493 557 1278

Source: Data from P. Bickel et al., Science 187: 398-403, 1975.
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the six largest graduate departments. Denote the three variables by A = whether
admitted, G = gender, and D = department. Find the sample AG conditional odds
ratios and the marginal odds ratio. Interpret, and explain why they give such different
indications of the AG association.

State three “real-world” variables X, Y, and Z for which you expect a marginal
association between X and Y but conditional independence controlling for Z.

Based on murder rates in the United States, an Associated Press story reported that
the probability that a newborn child has of eventually being a murder victim is
0.0263 for nonwhite males, 0.0049 for white males, 0.0072 for nonwhite females,
and 0.0023 for white females.

a. Find the conditional odds ratios between race and whether a murder victim, given
gender. Interpret. Do these variables exhibit homogeneous association?

b. Half the newborns are of each gender, for each race. Find the marginal odds ratio
between race and whether a murder victim.

At each age level, the death rate is higher in South Carolina than in Maine, but
overall, the death rate is higher in Maine. Explain how this could be possible. [For
data, see H. Wainer, Chance 12(2): 44, 1999.]

A study of the death penalty for cases in Kentucky between 1976 and 1991 (T. Keil
and G. Vito, Am. J. Criminal Justice 20: 17-36, 1995) indicated that the defendant
received the death penalty in 8% of the 391 cases in which a white killed a white, in
2% of the 108 cases in which a black killed a black, in 12% of the 57 cases in which
a black killed a white, and in 0% of the 18 cases in which a white killed a black.
Form the three-way contingency table, obtain the conditional odds ratios between
the defendant’s race and the death penalty verdict, interpret those associations, study
whether Simpson’s paradox occurs, and explain why the marginal association is so
different from the conditional associations.

Table 2.12 is from an early study on the death penalty in Florida. Analyze these data
and show that Simpson’s paradox occurs.

Table 2.12 Data for Exercise 2.20 on the Death Penalty

Death Penalty
Victim’s Race Defendant’s Race Yes No
White White 19 132
Black 11 52
Black White 0 9
Black 6 97

Source: Reprinted with permission from M. L. Radelet, Am. Sociol. Rev. 46:
918-927, 1981.
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Table 2.13 Data for Exercise 2.22 on Sexual Attitudes

Homosexual Sex

Premarital Always Almost Always Wrong Only Not Wrong
Sex Wrong Wrong Sometimes At All
Always Wrong 300 4 4 17
Almost Always Wrong 78 15 3 14
Wrong Only Sometimes 107 16 46 54
Not Wrong At All 234 32 35 336

Source: General Social Survey, 2008.

2.21

2.22

223

2.24

Smith and Jones are baseball players. Smith has a higher batting average than Jones
in each of K years. Is is possible that for the combined data from the K years, Jones
has the higher batting average? Explain, creating some data with K = 2 to illustrate.

Table 2.13 summarizes responses from a General Social Survey about homosexual
sex and premarital sex. Find and interpret a measure of association.

For the data in Table 2.13, the two marginal distributions are dependent rather than
independent samples, but the measure A can still compare those distributions. Find
it, and interpret.

Table 2.14 cross-classifies job satisfaction by race. Determine whether the groups are
stochastically ordered, and estimate the difference between the probability that job
satisfaction is higher for blacks than whites and the probability that job satisfaction
is higher for whites than blacks.

Table 2.14 Cross-Classification of Job Satisfaction by Race of

Respondent
Job Satisfaction
Fairly Very or Completely
Race Dissatisfied ~ Neutral  Satisfied Satisfied
Black 19 13 42 59
White 47 40 215 430

Source: 2006 General Social Survey, National Opinion Research Center.

Theory and Methods

225

For a diagnostic test of a certain disease, let 7; denote the probability that the

diagnosis is positive given that a subject has the disease, and let 7, denote the

probability that the diagnosis is positive given that a subject does not have it. Let p

denote the probability that a subject has the disease.

a. More relevant to a patient who has received a positive diagnosis is the probability
that he or she truly has the disease. Given that a diagnosis is positive, show that
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the probability that a subject has the disease (called the positive predictive value)
is

7 p/lm o+ m(l — p)].

b. Suppose that a diagnostic test for HIV+ status has both sensitivity and specificity
equal to 0.95, and p = 0.005. Find the probability that a subject is truly HIV+,
given that the diagnostic test is positive.

¢. To better understand the answer in (b), using the probabilities given there either (1)
find the joint probabilities relating diagnosis to actual disease status and discuss
their relative sizes, or (ii) construct a tree diagram showing what you would expect
to happen for a typical sample of 1000 subjects (first branching from the root
according to whether a subject is truly HIV+ and then branching according to the
test result), showing that of the subjects with a positive diagnosis, the proportion
actually HIV+ agrees with the result in (b).

d. Discuss how the answer in (b) depends on the prevalence p. [llustrate by finding
the answer when p = 0.10 instead of 0.005.

Show that the odds ratio and relative risk need not be similar when 7; is close to 1.0
for both groups.

Let D denote having a certain disease and E denote having exposure to a certain risk
factor. The astributable risk (AR) is the proportion of disease cases attributable to
that exposure (see Benichou 2005).

a. Let P(E) = 1 — P(E). Explain why
AR = [P(D) — P(D|E))/P(D).
b. Show that AR relates to the relative risk RR by
AR =[P(E)RR — D]/{1 + P(E)RR - 1)].

In comparing new and standard treatments with success probabilities 7, and m,, the
number needed to treat (NNT) is the number of patients that would need to be treated
with the new treatment instead of the standard in order for one patient to benefit.
Explain why a natural estimate of this is 1/(&, — 72).

For a 2 x 2 table of counts {n;;}, show that the odds ratio is invariant to (a) inter-
changing rows with columns, and (b) multiplication of cell counts within rows or
within columns by ¢ # 0. Show that the difference of proportions and the relative
risk do not have these properties.

For given 7y and 7;, show that the relative risk cannot be farther than the odds ratio
from their independence value of 1.0.
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Let miju = P(X =1i,Y = j|Z = k). Explain why XY conditional independence is
Tijik = Wipk T4k foralli and j and k.

For a2 x 2 x 2 table, show that homogeneous association is a symmetric property,
by showing thatequal XY conditional odds ratios is equivalent to equal YZ conditional
odds ratios.

Fora?2 x 2 x 2table, suppose fxy(1), = Oxr@) = 6. For a possibly confounding vari-
able Z, let 6. denote the common value of O;)yz. Letm, = P(Z=1|X =1,Y =2)
andm, =P(Z=11X=2,Y =2).

a. Show (Breslow and Day 1980, p. 96) that

Oy + (1 —myp)
Oy + (1 —m2)’

Oxy =

b. Verify that either odds ratio collapsibility condition in Section 2.3.6 implies that
the confounding risk ratio 6xy /6 equals 1.0.

¢. Describe what needs to happen for 8xy /0 to be far from 1.0. Illustrate with
particular values of 8, > 1 and m| > m,. Describe a study in which such values
would be plausible.

When X and Y are conditionally dependent at each level of Z yet marginally inde-
pendent, Z is called a suppressor variable. Specify joint probabilities fora2 x 2 x 2
table to show that this can happen (a) when there is homogeneous association, and
(b) when the association has opposite direction in the partial tables.

Show that the {«;;} in (2.11) determine all odds ratios formed from pairs of rows
and pairs of columns.

For I x J contingency tables, explain why the variables are independent
when the (/ — 1)(J — 1) differences nr; —m;; =0,i=1,...,1 —1,j=1,...,
J—1

Suppose that {Y;;} are independent Poisson variates with means {x;;}. Show that
P(Y;; = n;;) for all i, j, conditional on {Y;; = n;}, satisfy independent multinomial
sampling [i.e., the product of (2.2) for all /] within the rows.

For 2 x 2 tables, Yule (1900, 1912) introduced

Ty T2 — M2 721

Ty T2 + T2 M2y

which he labeled Q in honor of the Belgian statistician Quetelet. It is now called
Yule’s Q.
a. Show that for 2 x 2 tables, Goodman and Kruskal’s y = Q.

b. Show that Q relates to the odds ratioby Q = (8 — 1)/(6 + 1), a monotone trans-
formation of 6 from the [0, co] scale onto the [—1, +1] scale.
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Goodman and Kruskal (1954) proposed an association measure (tau) for nominal
variables based on variation measure

VN =) myl—myp)=1-> 3,

a. Show that V(Y) is the probability that two independent observations on Y fall
in different categories. Show that V(Y) = 0 when ;. ; = 1 for some j and V(Y)
takes maximum value of (J — 1)/J when ;. ; = 1/J for all j. This index relates
to measures of concentration and diversity proposed for various applications,
such as by Corrado Gini (1914a), who was highly influential in the twentieth
century in the development of descriptive statistics in Italy, and by E. H. Simpson
(1949) who described species diversity (see Exercise 16.13).

b. For the proportional reduction in variation, show that E[V(Y|X)]=1—
Zi Zj n,-zj/er. [The resulting measure (2.12) is called the concentration co-
efficient. Like the uncertainty coefficient U, v = 0 is equivalent to indepen-
dence. Haberman (1982) presented generalized concentration and uncertainty
coefficients.]

The measure of association lambda for nominal variables (Goodman and Kruskal

1954) has V(Y) = | — max{z,;} and V(Y|i) = 1 — max;{x;;}. Interpret lambda

as a proportional reduction in error for predictions which select the response category

that is most likely. Show that independence implies A = 0 but that the converse is

not true.

Show that A in (2.15) relatestoa = P(Y; > Y,) + (%)P(Yl =Y,) by
a=(A+1)/2, A=2a-1,

with @ having range [0, 1] and null value %



CHAPTER 3

Inference for Two-Way
Contingency Tables

In this chapter we introduce inferential methods for contingency tables. Many of these meth-
ods also play a vital role in analyses, presented in later chapters, for which categorical data
need not have contingency table form—such as when some explanatory variables are con-
tinuous. The methods assume a standard sampling scheme for categorical data—Poisson,
multinomial, or independent multinomial (or binomial) sampling.

In Section 3.1 we present confidence intervals for measures of association, such as the
odds ratio and the difference and ratio of proportions. Section 3.2 introduces chi-squared
tests of the hypothesis of independence between two categorical variables and confidence
intervals obtained by inverting more general chi-squared tests. In Section 3.3 we show
how to follow-up chi-squared tests using residuals and the partitioning property of chi-
squared to extract components that describe the evidence about the association. For ordinal
variables, in Section 3.4 we present more powerful inference that utilizes the category
orderings. The methods of Sections 3.1 through 3.4 assume large samples. In Section 3.5 we
introduce small-sample methods. In Section 3.6 we present Bayesian methods of inference
for contingency tables.

3.1 CONFIDENCE INTERVALS FOR ASSOCIATION PARAMETERS

The precision of estimators of association parameters is characterized by standard errors of
their sampling distributions. In this section we present standard errors and simple confidence
intervals, focusing on parameters for 2 x 2 tables. We’ll present alternative intervals, based
on inverting score and likelihood-ratio tests, in Sections 3.2.5 and 3.2.6.

3.1.1 Interval Estimation of the Odds Ratio

The sample odds ratio fora 2 x 2 table is 6= (n111n22)/(n12n2)). For a multinomial sample,
the estimator 6 has an asymptotic normal distribution around 6. Unless n is very large,
however, its sampling distribution is highly skewed. When 6 = 1, for instance, ¢ cannot

Categorical Data Analysis, Third Edition. Alan Agresti.
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be much smaller than @ (since 6 > 0), but it could be much larger with nonnegligible
probability. The log transform, having an additive rather than multiplicative structure,
converges more rapidly to normality. An estimated standard error for log 6 is

o 1 1 1 1
G(log)y= | —+ — 4+ — + —. 3.1
nyy ni2 N2 na

We derive this formula in Section 3.1.7.
By the large-sample normality of log 0,

log 6 =+ 2,26 (log 6) (3.2)

is a Wald confidence interval for log 6 (Woolf 1955). Exponentiating (taking antilogs of) its
endpoints provides a confidence interval for 6. The actual coverage probability is usually a
bit higher than the nominal level.

If an n; =0, i equals 0 or oo and the Wald interval does not exist. Since such an
outcome has positive probability, the actual expected value and variance of 6 and log 6 do
not exist'. This is not problematic for confidence intervals formed by inverting the score
test or likelihood-ratio test for 8. For these intervals, when 6= 0, 0 is the lower limit and
when § = 00, 00 is the upper limit. This is sensible for a frequentist approach. This also
happens when we construct a small-sample confidence interval for the odds ratio to be
introduced in Section 16.6.4. Alternatively, but somewhat ad hoc, we can use the Wald
formula (3.2) following some adjustment, such as by replacing {n;} by {n; + 0.5} in the
estimator and standard error. In terms of bias and mean squared error, Gart and Zweifel
(1967) and Haldane (1956) showed that such amended estimators perform well (see also
Exercise 16.8).

3.1.2 Example: Seat-Belt Use and Traffic Deaths

We illustrate inference for the odds ratio with Table 3.1, which shows fatality results for
children under age 18 who were passengers in auto accidents in Florida in 2008, according
to whether the child was wearing a seat belt. The sample odds ratio 6 = 10.83, and the
standard error (3.1) of log 6 =2.383is &(log ) = 0.242. A 95% confidence interval for
log 6 in the population this sample represents is 2.383 + 1.96(0.242), or (1.908, 2.857).

Table 3.1 Injury OQutcome and Seat-Belt Use for Child
Passengers in Automobile Accidents in Florida in 2008

Injury Outcome

Seat-Belt Use Fatal Nonfatal Total
No 54 10,325 10,379
Yes 25 51,790 51,815

Source: Florida Department of Highway Safety and Motor Vehicles,
www. flhsmv.gov/hsmvdocs/CS2008 . pdf.

I'This is also true for ML estimators of model parameters presented in later chapters.
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The corresponding interval for 6 is [exp(1.908), exp(2.857)] or (6.74, 17.42). There is a
very strong association. Even though the overall sample size is extremely large, the estimate
of the true odds ratio is rather imprecise because of the relatively small number of fatalities
(Exercise 3.25).

3.1.3 Interval Estimation of Difference of Proportions and Relative Risk

The difference of proportions and the relative risk compare conditional distributions of a
response variable for two groups. For these measures, we treat the samples as independent
binomials. For group i, ¥; has a binomial distribution with sample size n; and a probability
7; of a “success” outcome.

The sample proportion 7; = y;/n; has expectation 7; and variance ; (1 — m;)/n;. Since
7, and 7, are independent, their difference has E(#; — #,) = m| — m; and standard error

o () —ﬁz)z\/”'(l —m) | mld o) (33)

ny nz
The estimate 6 (77, — ;) replaces m; by ;. Then
(71 — f2) £ 24126 () — R2) (3.4)

is a Wald confidence interval for m; — m,. Like the Wald interval (1.13) for a single
proportion, it usually has true coverage probability less than the nominal confidence level,
especially when 7| and 75 are near O or 1. Section 3.2.5, Note 3.1, and Exercise 3.27 present
other methods.

The sample relative risk is r = 7, /72 = [(y1/n1)/(y2/n2)]). Like the odds ratio, it con-
verges to normality faster on the log scale. An estimated standard error for log r is

6(log r) = (3.5)

The Wald interval exponentiates endpoints of log r = z,/, 6 (log r). It tends to be somewhat
conservative.

3.1.4 Example: Aspirin and Heart Attacks Revisited

We consider again Table 2.1 from the Harvard study on aspirin use and heart attacks.
The proportions having fatal heart attacks were 18/11,034 = 0.00163 for those taking
placebo and 5/11,037 = 0.00045 for those taking aspirin. The sample relative risk is
0.00163/0.00045 = 3.60. The 95% confidence interval for the log relative risk, using
6 (logr) = 0.505, is log(3.60) £ 1.96(0.505). This translates to (1.34, 9.70) for the relative
risk. We infer that the death rate for those taking placebo was between 1.34 and 9.70 times
that for those taking aspirin. Substantial public health benefits could result from taking
aspirin, but the estimated effect is imprecise despite the very large sample sizes because of
the very low rate of heart attack deaths over the study period, regardless of treatment.
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The Wald 95% confidence interval for my —m, is 0.0012 % 1.96(0.00043) or
(0.0003, 0.0020). The relative risk is more useful than m; — m, for these data, because
the rates of heart attack death were both very low but with ratio quite far from 1.0.

3.1.5 Deriving Standard Errors with the Delta Method

A simple and useful method exists of deriving standard errors. Let T,, denote a statistic
that 1s asymptotically normally distributed about a parameter 9, the subscript n expressing
its dependence on sample size. Suppose that an estimator is a function g(T,) of T,. Then,
under mild conditions, g(T,) itself has a large-sample normal distribution. The standard
error depends on the rate of change of g(¢) att = 6.

Specifically, for large n, suppose that T, is normally distributed about 8 with standard
error o/+/n. That is, as n — 00, the cdf of (T, — 6) converges to the cdf of a normal
random variable with mean 0 and variance o2. This limiting behavior is an example of
convergence in distribution, denoted by

(T, — )5 N©, o).

Let g be a function that is at least twice differentiable at 6. From the Taylor series expansion
for g(¢) in a neighborhood of t = 9,

Vnlg(T,) = @] = /n(T, - 6)g'(6)

for large n, where g'(9) = g/t evaluated att = 6. Recall if a variate ¥ ~ N(0, o'2), then
c¢Y ~ N(0, c?6%). Thus,

Jalg(T,) — g(®)] > N(O, [g'®)]Pc?). (3.6)

In other words, g(T,) is approximately normal around g(8) with variance [g'(9)]%c%/n.
Section 16.1.2 gives details.

Figure 3.1 portrays this result. Locally around 8, g(¢) is approximately linear, with slope
£'(8). Then g(T,,) is approximately normal, since linear transformations of normal random

.~ Distribution of g(T,)
9(Ty)
9O

k

Slope g’ ()

Distribution of T,

T T~

T, ¢

Figure 3.1 Depiction of delta method.



CONFIDENCE INTERVALS FOR ASSOCIATION PARAMETERS 73

variables are themselves normal. The dispersion of g(7,) values about g(8) is about |g’(8)|
times the dispersion of T, values about 8. For example, if the slope of g at 8 is %, then g
maps a region of T, values into a region of g(T,) values only about half as wide.

Result (3.6) is called the delta method. Since g'(9) and ¢ = ¢2(6) usually depend on
the unknown parameter 6, the asymptotic variance is unknown. Wald confidence intervals
substitute T, for 8 and use the result that /n[g(T,,) — g(8)1/|g’ (T,)|o (T,) is asymptotically
standard normal. Thus,

8(T,) £ 1.961¢'(T)lo (T,)//n

is a large-sample Wald 95% confidence interval for g(6).

3.1.6 Delta Method Applied to the Sample Logit

We illustrate the delta method for a function of the ML estimator T, = # = y/n of the
binomial parameter m, for y successes in n trials. Recall that E(#) = 7w and var(#) =
w(l —m)/n. Also, & has a large-sample normal distribution by the central limit theorem.
So do many functions of 7.

The log odds function of 7,

g(ft) = log[n /(1 — )],

is called the sample logit. Evaluated at &, its derivative equals 1 /7 (1 — 7). By the delta
method, the asymptotic variance of the sample logit is 7w (1 — 7)/n (which is the variance
of #) multiplied by the square of [1/7 (1 — 7)]. That is,

1 1
Jnllog = —tog =} & N[0, —— ).
1 -7 l—m w(l —m)

The asymptotic normality of & propagates to asymptotic normality of log[# /(1 — &)].

The asymptotic variance is the variance of the normal distribution that approximates
the true distribution, for large n. It is not an approximation for the variance of the true
distribution. For 0 < m < 1, the asymptotic variance [n7 (1 — 7)]~" of the sample logit
is finite. By contrast, the true variance does not exist: Since # = 0 or 1 with positive
probability, the logit can equal —co or co with positive probability. The probability of an
infinite logit converges to zero rapidly as n increases. For large n, the distribution of the
sample logit looks essentially normal with mean log[x /(1 — 7)] and standard deviation
[ (1 — 7)]~"/2. Thus, for the logit, the asymptotic variance actually has greater use than
the true variance. Incidentally, related to this, the ordinary bootstrap is not helpful for
approximating standard errors for many discrete measures, because it mimics the true
rather than the more relevant asymptotic standard error.

3.1.7 Delta Method for the Log Odds Ratio

Standard errors for the log odds ratio and the log relative risk result from a multiparameter
version of the delta method. Suppose that {n;,i =1, ..., ¢} have a multinomial (n, {m;})
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distribution. The sample proportion #; = »; /n has mean and variance
E(#;))=mn and var(®;) =m(1 —m)/n. 3.7
In Section 16.1.4 we show that fori # j, #; and 7; have covariance
cov(@;, ftj) = —mim;/n. , (3.8)

The sample proportions (%, 2, ..., f._) have a large-sample multivariate normal dis-
tribution. For functions of them, the delta method implies the following result, proved in
Section 16.1.4:

Let g(r) denote a differentiable function of {=;}, with sample value g(&) for a multino-
mial sample. Let

0
¢ = g(n)’ i=1,...,c.
371,‘

Then as n — 00, the distribution of \/n[{g(%) — g(x)]/o converges to standard normal,
where

ol = Zﬂifﬁ,-z - (Z ﬂi¢i)2- (3.9)

The asymptotic variance depends on {=;} and the partial derivatives of the measure with
respect to {7;}. In practice, replacing {m;} and {¢;} in (3.9) by their sample values yields an
ML estimate 62 of o2. Then & //n is an estimated standard error for g(#). A large-sample
Wald confidence interval for g(r) is

8(®) £ 2426 / /1.

With the substitution of & for ¢ in (3.9), the limiting distribution is still standard normal,
but convergence is slower. The equivalence in the large-sample distribution is justified
as follows: The sample proportions converge in probability to {z;}, by the weak law of
large numbers. Since & is a continuous function of the sample proportions, it converges in
probability to o, and o/ converges in probability to 1. Now

N 8(t) —g(m) _ Ja 8(#) — g(m) o
— .

g [od

The first term on the right-hand side converges in distribution to standard normal, by (3.9),
and the second term converges in probability to 1. Thus, their product also has a limiting
standard normal distribution.

We now apply the delta method to the log odds ratio, taking g(xz) = log 8 = log 7} +
log myy — log w3 — log m,;. Since

¢ = 9(log 8)/0my = V/myy
¢ = —1l/m, ¢y =~1/m2, ¢n=1/72,
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> 2 i = 0and o =3, > s =Y > ;(1/my). The standard error of log 8 for
a multinomial sample {n;} is

o(log §) = o//n = /Z Z t/(nmy).
i

Since n#t;; = nj, the estimated standard error is (3.1).

3.1.8 Simultaneous Confidence Intervals for Multiple Comparisons

Often, such as in many genetics applications, there are several groups to compare in
terms of some parameter. Multiple comparison methods apply the confidence level to the
simultaneous set of all comparisons, rather than to each individual one.

A simple multipurpose although somewhat conservative way to establish control over
a family of inferences is the Bonferroni method. For it, with g inferences we use an error
probability of ¢* = «/g for each one. For instance, to form g confidence intervals with
simultaneous coverage probability of at least 1 — «, we use a standard method but with
confidence level 1 — a/g for each. This implies an upper bound of « for the probability
of at least one error for the entire set of intervals. Exercise 1.36 applied the method
to simultaneous comparison of all pairs of multinomial parameters. Goodman (1964a)
presented simultaneous confidence intervals for all odds ratios in an / x J table. Note
3.2 cites an alternative method for comparing multiple binomial parameters. Section 7.5.2
further describes the Bonferroni method, and Section 7.5.3 presents a less conservative
approach to multiple comparisons in the context of significance testing.

3.2 TESTING INDEPENDENCE IN TWO-WAY CONTINGENCY TABLES

At first we assume multinomial sampling with joint probabilities {;} in an [ x J contin-
gency table. The null hypothesis of statistical independence is Hq: m; = m;4 7w ; for all i
and j.

3.2.1 Pearson and Likelihood-Ratio Chi-Squared Tests

In Section 1.5.2 we introduced the Pearson X 2 statistic (1.16) for tests about specified values
of multinomial probabilities. A test of Hy: independence uses X * with n;; in place of n; and
with p;; = nmiy w4 in place of w;. Here u;; = E(n;) under Hy. Usually, {rm;,} and {7, ;}
are unknown. Their ML estimates are the sample marginal proportions ;4 = n;4+/n and
fiy; = ng4j/n. So, the estimated expected frequencies are {{i; = nft; oy ; = n; o nyj/n}.
Then, the Pearson statistic is

' (njj — 1)
X2 = ZZ B (3.10)
i J -

Pearson (1900, 1904, 1922) claimed that replacing {u;;} by estimates {{;;} would not
affect the large-sample distribution of X?2. Since the contingency table has IJ categories,
he argued that X? is asymptotically chi-squared with df = /J — 1. On the contrary, since
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{{1;;} require estimating {m;} and {7}, by Section 1.5.6,
df=((UJ-DH—-U~-D~-UJ-DH=U-DH({J-=1.

The dimensions of {r;,} and {r;} reflect the constraints 3, 7;y = ), 7 = 1. R A
Fisher (1922) corrected Pearson’s error. Fisher’s article introduced the notion of degrees of
freedom. (Pearson had introduced an indexed family of chi-squared distributions but had
not dealt explicitly with “degrees of freedom.”)

The score test produces the X? statistic. The likelihood-ratio test produces a different
statistic. For multinomial sampling, the kernel of the likelihood is

1_[ 1_[7'[’:';’/’ where all 7;; > 0 and Z Z my=1.
i — -

Under Hy: independence, #; = f1j4 4 = 14 n+‘,»/nz. In the general case, #t; = ny;/n.
The ratio of the likelihoods equals

1_[,' Hj (ni+ Rij i

A= -
n" 1, ]_[j nZ—’/

The likelihood-ratio chi-squared statistic is —2log A. Denoted by G2, it equals

G* = -2log A =2) Y nylog(ny/ ;). (3.11)
— £

J

The larger the values of G2 and X2, the more evidence exists against independence. For
either statistic, the P-value is the right-tail probability above the observed value.

In the general case, the parameter space consists of {rr;;} subject to the linear restriction
2.i 2™ =1, so the dimension is /J — 1. Under Ho, {;} are determined by {m;}
and {m,;}, so the dimension is (/ — 1)+ (J — 1). The difference in these dimensions
equals (I — 1)(J — 1). For large samples, G* has a chi-squared null distribution with
df = (I — 1)(J — 1). So G? and X? have the same limiting null chi-squared distribution.
In fact, they are then asymptotically equivalent; X> — G converges in probability to zero
(Section 16.3.4),

When there are independent multinomial samples in the / rows, the row marginal counts
are fixed. Independence then corresponds to homogeneity of each outcome probability
among the rows. Roy and Mitra (1956) showed that the limiting chi-squared results for a
single multinomial sample also hold then (and for comparable statistics in three-way tables),
as well as when we condition further on the column marginal totals. As we’ll discuss in
Section 3.5, conditional on row and column marginal totals, a hypergeometric distribution
applies to the cell counts. In this case, {{i;} in tests of independence are exact (rather than
estimated) expected values. For 2 x 2 tables, for example,

Ry g e Ny N4 N2

and var(ny;) = 20— 1)

E(nn) =

For I x J tables, Haldane (1940) derived E(X?) = (I — I)(J — Dn/(n — 1). See Note 3.3
for other moments.
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Table 3.2 Attained Education (Highest Degree) and Belief in God

Belief in God

Highest Don’t No Wayto Some Higher  Believe Believe  Know God

Degree Believe Find Out Power Sometimes but Doubts  Exists  Total

Less than 9 8 27 8 47 236 335
high school (10.0)* (15.9) (34.2) (12.7) (55.3) (206.9)

(=04 (=2.2) (—1.4) (—1.5) (—1.3) (3.6)

High school 23 39 88 49 179 706 1084
or (32.5) (51.5) (110.6) (41.2) (178.9) (669.4)
junior college  (—2.5) (—2.6) (=3.3) (1.8) (0.0) 3.4)

Bachelor 28 48 89 19 104 293 581
or (17.4) (27.6) (59.3) (22.1) (95.9) (358.8)
graduate 3.1 4.7) 4.8) (—0.8) (L.1) (—6.7)

Total 60 95 204 76 330 1235 2000

“Estimated expected frequencies for testing independence.
bStandardized residuals.
Source: 2008 General Social Survey, National Opinion Research Center.

3.2.2 Example: Education and Belief in God

Table 3.2 uses General Social Survey data to cross-classify opinion about whether God
exists by highest education degree attained. The table also contains the estimated expected
frequencies for Hy: independence. For instance, 11 = n13 nyy/n = (335 x 60)/2000 =
10.0. The chi-squared statistics are X? = 76.1 and G> = 73.2, withdf = 3 — 1)}(6 — 1) =
10. The P-values are < 0.0001. These statistics provide extremely strong evidence of an
association.

3.2.3 Adequacy of Chi-Squared Approximations

The convergence of the actual sampling distribution of X? or G? to the chi-squared distribu-
tion applies as n grows, and hence {;; = nm;;} grow, for a fixed number of cells. As the cell
means grow, the multinomial distribution for {n;;} is better approximated by a multivariate
normal, and X> and G? have more nearly chi-squared distributions. The adequacy of the
approximation depends on both n and the number of cells. The size of n/IJ that produces
adequate approximations for X? tends to decrease as IJ increases (Koehler and Larntz
1980).

Contingency tables having small cell counts are said to be sparse. In analyzing the
chi-squared approximation for X? in sparse tables, Cochran (1954) suggested that when
df > 1, a minimum expected value u; ~ 1 is permissible as long as no more than about
20% of uj; < 5. Research has shown that X 2 performs adequately with smaller 7 and more
sparse tables than G2 (see Note 3.3). The distribution of G? is usually poorly approximated
by chi-squared when n/1J < 5. Depending on the sparseness, P-values based on referring
G? to a chi-squared distribution can be too large or too small. When most 4;; are smaller
than 0.50, treating G? as chi-squared gives a highly conservative test; when Hy is true,
reported P-values tend to be much larger than true ones. When most p;; are between 0.5
and 4, by contrast, the reported P-value tends to be too small.
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A caveat is that chi-squared approximations tend to be poor for tables containing both
very small and moderately large p;; (Haberman 1988). It is difficult to give a guideline
that covers all cases. Small-sample methods to be presented in Section 3.5 are available
whenever it is doubtful whether # is sufficiently large.

3.24 Chi-Squared and Comparing Proportions in 2 x 2 Tables

Often, a 2 x 2 table summarizes results for two independent binomial variates y; and y,
with ) and #n, trials. Independence is equivalent to the homogeneity condition, 7; = 3.
Under Hy: my = m,, the estimated common value of 7, = 73 is # = (y; + y2)/(n + n2).
The z score test statistic

= T~ (3.12)

N2
\/Jr(l ) (;l—l+’—1;)

has denominator that is the standard error of #; — 7, estimated under Hy. This statistic has
an asymptotic standard normal null distribution.

This statistic relates to the Pearson statistic for testing independence in the 2 x 2 table
by z2 = X2. Recall that if a statistic z has an approximate standard normal distribution,
then z2 has an approximate chi-squared distribution with df = 1, which is (/ — 1)(J — 1)
applied with I =J = 2.

A simple formula for X2 for 2 x 2 tables is

n(ny ny — nipny)?

Ny N2 R 02

X?=

For example, for the 2 x 2 table having entries (3, 0 / 0, 3), by row, used for an example in
Section 3.5.6 on small-sample inference,

X2 =[6(3x3—0x0)07]1/(3x3x3x3)=6.0.

Section 5.3.5 shows a generalized formula for comparing / proportions in / x 2 tables.
Mirkin (2001) showed alternative X2 formulas for / x J tables.

3.2.5 Score Confidence Intervals Comparing Proportions

The Wald confidence intervals for the difference of proportions, odds ratio, and relative
risk presented in Section 3.1 are simple but have disadvantages: They are dependent on the
scale of measurement [e.g., a Wald interval is not the same for 6 as when found for log(6)
and then exponentiated], they fail when an estimate falls at the boundary of the parameter
space [e.g., a cell count of 0 causing log(f) = +00 and & (log #) = o], and they can have
actual probability of covering the parameter quite far from the nominal level unless 7 is
quite large. Alternative intervals that result from inverting score tests or likelihood-ratio
tests do not have these disadvantages. These tests use extensions of the X? or G? statistics
that apply to nonnull values of the parameters. Although computationally more complex
than the Wald method, this should not be an impediment to their use in this modern era of
computing, as the principle behind them is straightforward.
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We illustrate the score method for forming an interval for the difference of proportions.
Consider testing Hy: my — mp = Ay, where Ag need not be 0. Let 771 (Ap) and #2(Ag) denote
the ML estimates of 77, and m; subject to the constraint 7y — 72 = Ag. That is, 7;(A¢) and
2(Ay) are the values of 7| and 7, satisfying 7; — m, = Ay that maximize the product of
the two binomial probability mass functions. The score test statistic is

(71 — ) — Ag
\/ﬁ'l(AO)[l - 71(Ag)] + 2D = 7(Ag)]
ni np

z(Ag) =

The score confidence interval is the set of Ag such that [z(Ag)| < z4/2 (Mee 1984). For
given Ay, each #;(Ag) and hence z(Ap) can be found explicitly, but finding the endpoints
of the interval requires iteration (Nurminen 1986).

For Ag = 0, the test statistic z(Ag) simplifies to the pooled statistic (3.12) for comparing
two proportions. Then, [z(Ag)]? is the Pearson X2 statistic. For Ay # 0 this square is a
nonnull type of Pearson statistic. Unlike the Wald interval, the score interval is coherent
with the result of the Pearson chi-squared test of independence; for instance, the P-value for
that test falling below 0.05 is equivalent to the 95% score confidence interval for 7 — 73
not containing 0. For Table 2.1 on aspirin use and heart attacks, the 95% score interval for
T — m, is (0.0004, 0.0022).

Score-test-based confidence intervals have also been proposed for the odds ratio (Corn-
field 1956) and for the relative risk (Koopman 1984). We illustrate for the odds ratio for a
multinomial sample over the cells of the 2 x 2 table. Recall that the joint distribution {7;;}
can equivalently be expressed in terms of {#, 7|, 74} (Section 2.4.1). For a given nonnull
odds ratio value 6y, let {{1,/(6)} be the unique expected frequency estimates that have the
same row and column margins as {n;} and satisfy

f11(6p)f122(6) — 6,
fi12(60)f121(6p)

The set of 6, satisfying
X2(00) = ) _(ni — f1(00))*/ fiB0) < x7(e)

form a 100(1 — a)% score-test-based confidence interval. This interval is also coherent
with the result of the Pearson chi-squared test, for Hy: 8 = 1. This 95% score interval for
the odds ratio for Table 3.1 on seat-belt use and traffic accidents is (6.76, 17.35).

3.2.6 Profile Likelihood Confidence Intervals

Likewise, we can construct confidence intervals by inverting likelihood-ratio tests for
nonnull parameter values. We illustrate with the odds ratio. For {{;;(6p)} as just defined,
the set of 9y satisfying

GX60) =2 nyloglng/fuy(60)] < x7(e)

J
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form a 100(1 — «)% likelihood-ratio test-based confidence interval. The 95% interval for
the odds ratio for Table 3.1 on seat-belt use and traffic accidents is (6.82, 17.70).

More generally, in later chapters we’ll often construct a confidence interval for a model
parameter S, regarding the other parameters in the model as nuisance parameters. Denote
those nuisance parameters, such as the marginal probabilities in a 2 x 2 table when we are
estimating an odds ratio, by . In inverting a likelihood-ratio test of Hy: 8 = By to check
whether By belongs in the confidence interval, the ML estimate 1/}(,80) that maximizes
the likelihood under the null varies as By does. The profile log-likelihood function is
L(Bo, ¥r(Bo)), viewed as a function of By. For each By this function gives the maximum of
the ordinary log likelihood subject to the constraint 8 = fy. Evaluated at §y = B, this is
the maximized log likelihood L(B , 1/}), which occurs at the unrestricted ML estimates. The
profile likelihood confidence interval for B is the set of By for which

—2[L(Bo, ¥(Bo)) — L(B, ¥)1— < xi(a).

The interval contains all 8¢ not rejected in likelihood-ratio tests of nominal size «.

Score intervals currently are available only in specialized software, such as R functions
given in this book’s computing appendix.? The profile likelihood approach is more generally
available, for example the confint() function in R, the LRCI option in PROC GENMOD
and the PLCL option in PROC LOGISTIC in SAS, and the pllf command in Stata.

3.3 FOLLOWING-UP CHI-SQUARED TESTS

Like any significance test, chi-squared tests of independence have limited usefulness. A
small P-value indicates strong evidence of association but provides little information about
the nature or strength of the association. Statisticians have long warned about dangers
of relying solely on results of chi-squared tests rather than studying the nature of the
association (e.g., Berkson 1938, Cochran 1954). In this section we discuss ways to follow
up the tests to learn more about the association.

3.3.1 Pearson Residuals and Standardized Residuals

A cell-by-cell comparison of observed and estimated expected frequencies helps show the
nature of the dependence. Under Hy, larger differences (n; — fi;;) tend to occur in cells
with larger p;;. Thus, this raw difference is insufficient. The Pearson residual, defined for
a cell by

o = i My
i = = ,
vV M

attempts to adjust for this. The name “Pearson” results from {e;;} relating to the Pearson
statistic by X> = 3", >_ ep.

Under Hy, {e;;} are asymptotically normal with mean 0. However, their asymptotic
variances are less than 1.0, averaging [(/ — 1)(J — 1)]/1J. A standardized residual that

(3.13)

25ee www.stat .ufl.edu/~aa/cda/cda.html.
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is asymptotically standard normal results from dividing (n;; — fi;;) by its standard error
(Haberman 1973a, Sec. 16.3.2). For Hy: independence, this is

ry = ———d 1 . (3.14)
Vil = pi)(d — pij)
In2 x 2tables,df =1 and ry; = —ri = —ry; = ro; and any ré = X2 By contrast, all four

Pearson residuals can take different values, which is unappealing.

A standardized residual that exceeds about 2 or 3 in absolute value indicates lack of fit
of Hy in that cell. Larger values are more relevant when df is larger, as it becomes more
likely that at least one such residual is large simply by chance.

3.3.2 Example: Education and Belief in God Revisited

Table 3.2 also shows standardized residuals for testing independence. For instance, n3s =
293 and fi3¢ = 358.8. The relevant marginal proportions equal p3, = 581/2000 = 0.2905
and p,¢ = 1235/2000 = 0.6175. The standardized residual (3.14) for this cell equals

rys = (293 — 358.8)/,/358.8(1 — 0.2905)(1 — 0.6175) = —6.7.

We can infer that, in the population in 2008, fewer people at the highest level of education
would have responded “know God exists” than if the variables were truly independent.

For the “know God exists” category, Table 3.2 shows large positive residuals for subjects
with a junior college education or less. We can infer that more subjects at these education
levels had this opinion than if Hy: independence were true. Other large positive residuals
occur in the first three categories of belief in God for those with at least a bachelor degree,
suggesting those cells are also more common than we’d expect under independence.

Figure 3.2 is a mosaic plot for Table 3.2. Mosaic plots portray the counts by tiles
(rectangles) whose size is proportional to the cell count. Under independence, the vertical
lines would match up at the same spot in each row. Color and depth of shading of the tiles
can represent the sign and magnitude of standardized residuals (Friendly 1994). The scale
on the right of the figure shows the magnitude of the standardized residuals.

3.3.3 Partitioning Chi-Squared

Another supplement to a chi-squared test uses the reproductive property of chi-squared
(Section 1.2.6) to partition the test statistic so that the components represent certain aspects
of the effects. A partitioning may show that an association reflects primarily differences
between certain categories or groupings of categories.

We begin with a partitioning for the test of independence in 2 x J tables. We partition
G?, which has df = (J — 1), into J — 1 components. The jth component is G* fora 2 x 2
table where the first column combines columns 1 through j of the full table and the second
column is column j + 1. That is, G? for testing independence in a 2 x J table equals a
statistic that compares the first two columns, plus a statistic that combines the first two
columns and compares them to the third column, and so on, up to a statistic that combines



82 INFERENCE FOR TWO-WAY CONTINGENCY TABLES

Belief

12 3 4

I

i

Figure 3.2 Mosaic plot for data in Table 3.2. Figure 3.2, when produced with a mosaic( ) function in R, has
blue tiles (labeled b here) for positive residuals and red (labeled r here) for negative, with dark color when the
standardized value exceeds 4.

48
4.0

-4.0

College

6.7

the first J/ — 1 columns and compares them to the last column.? Each component statistic
has df = 1.

It might seem more natural to compute G for the (J — 1) separate 2 x 2 tables that pair
each column with a particular one, say, the last. Such an analysis can be informative, but
these component statistics are not independent and do not sum to G2 for the full table. This
is beyond our scope at this stage but relates to the contrasts of log probabilities that form
the log odds ratios for the two tables not being orthogonal.

Foran I x J table, independent chi-squared components result from comparing columns
1 and 2 and then combining them and comparing them to column 3, and so on. Each of the
J — 1 statistics has df = I — 1. More refined partitions contain (7 — 1)(J — 1) statistics,
each having df = 1. One such partition (Lancaster 1949a) applies to the (] — 1)(J — 1)
separate 2 x 2 tables

2 2 Mab| 2 Maj
a<i b=j a<i
(3.15)
R; Mii

3In Section 10.2.4 we explain why this partitioning works.
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Table 3.3 Most Influential School of Psychiatric Thought and Ascribed
Origin of Schizophrenia

Origin of Schizophrenia
School of Psychiatric
Thought Biogenic Environmental Combination
Eclectic 90 12 8
Medical 13 1 6
Psychoanalytic 19 13 50

Source: Reprinted with permission, based on data from B, J. Gallagher III, B. J. Jones,
and L. P. Barakat, J. Clin. Psychol. 43: 438-443, 1987.

fori =2,...,1and j = 2,..., J. For others, see Gilula and Haberman (2005) and Good-
man (1969, 1971b).

3.3.4 Example: Origin of Schizophrenia

Table 3.3 classifies a sample of psychiatrists by their school of psychiatric thought and by
their opinion on the origin of schizophrenia. Here G? = 23.04 with df = 4. To understand
this association better, we partition G? into four independent components.

The partitioning (3.15) applies to the subtables shown in Table 3.4. The first subtable
compares the eclectic and medical schools of psychiatric thought on whether the origin of
schizophrenia is biogenic or environmental given that the classification was in one of these
two categories. For this subtable, G? = 0.29, with df = 1. The second subtable compares
these two schools on the proportion of times the origin was ascribed to be a combination,
rather than biogenic or environmental. This subtable has G? = 1.36, with df = 1. The sum
of these two components equals G2 for testing independence with the first two rows of
Table 3.3. There is little evidence of a difference between the eclectic and medical schools
of thought on the ascribed origin of schizophrenia.

Next, we combine the eclectic and medical schools and compare them to the psychoana-
lytic school. The third subtable in Table 3.4 compares them for the (biogenic, environmental)
classification, giving G? = 12.95 with df = 1. The fourth subtable compares them for the
(biogenic or environmental, combination) split, giving G? = 8.43 with df = 1.

The psychoanalytic school seems more likely than the other schools to ascribe the
origins of schizophrenia as being a combination. Of those who chose either the biogenic or
environmental origin, members of the psychoanalytic school were somewhat more likely
than the other schools to choose the environmental origin. The sum of these four G2
components equals the value of 23.04 for testing independence in the full 3 x 3 table.

Table 3.4 Subtables Used in Partitioning Chi-Squared for Table 3.3¢

Bio + Bio +
Bio Env Env  Com Bio Env Env  Com

Ecl 90 12 |Ec 102 78 |Ecl+Med 103 13 | Ecl+Med 116 84
Med 13 1 |Med 14 6 | Psy 19 13 | Psy 32 50

“Bio, biogenic; Com, combination; Ecl, eclectic; Env, environmental; Psy, psychoanalytic.
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3.3.5 Rules for Partitioning

Goodman (1968, 1969, 1971b) and Lancaster (1949a, 1969) gave rules for determining
independent components of chi-squared. For forming subtables, among the necessary con-
ditions are the following:

1. The df for the subtables must sum to the df for the full table.
2. Each cell count in the full table must be a cell count in one and only one subtable.

3. Each marginal total of the full table must be a marginal total for one and only one
subtable.

For a certain partitioning, when the subtable df values sum properly but the G? values do
not, the components are not independent.

For the G2 statistic, exact partitionings occur. The Pearson X2 need not equal the sum of
the X? values for the subtables. It is valid to use the X? statistics for the separate subtables;
they simply do not provide an exact algebraic partitioning of X? for the full table. When
the null hypotheses all hold, X2 does have an asymptotic equivalence with G2, however. In
addition, when the table has small counts and we rely on large-sample distributions, it is
safer to use X? than G to analyze the subtables.

3.3.6 Summarizing the Association

Residual analyses and partitioning of chi-squared are both inferential methods. They provide
information about whether there is an association and its nature, but in an inferential manner.
For example, as » increases and there truly is an association, standardized residuals tend to
be larger in magnitude, but they do not describe the strength of association.

To describe the strength of association, we can use measures introduced in the previous
chapter, such as the odds ratio, by applying them to either subtables or collapsings of
the table. We illustrate with Table 3.2 on education and belief in God. The 2 x 2 table
constructed by combining the first two rows and combining the first five columns has a
sample odds ratio of (477 x 293)/(942 x 288) = 0.52. For those with at least a bachelor’s
degree, the estimated odds of responding “know God exists” were 0.52 times the estimated
odds for those with less than a bachelor’s degree. Likewise, we can use measures such
as differences and ratios of proportions. For example, the sample proportion responding
“know God exists” was 0.704 for those with less then a high school education and 0.504
for those with a bachelor’s degree or higher, for a difference of 0.20 and a ratio of 1.40. We
can also construct confidence intervals for such parameters, as discussed in Sections 3.1,
3.2.5,and 3.2.6.

A useful summary of the degree to which cells depart from independence compares
cell counts with the independence fit by the estimates {a; = n;/fi; = pij/(pi+p+,)} of the
association factors (Section 2.4.2). For those with the highest degree who responded “know
God exists,” this is aze = 293/[(581)(1235)/2000] = 0.82; that is, the observed count was
82% of what independence predicts.

3.3.7 Limitations of Chi-Squared Tests

Chi-squared tests of independence merely indicate the degree of evidence of association.
They are rarely adequate for answering all questions about a data set. Rather than relying
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solely on results of these tests, investigate the nature of the association: Look at the
standardized residuals, decompose chi-squared into components, and estimate parameters
that describe the strength of association.

The chi-squared tests also have limitations in the types of data to which they apply. For
instance, they require large samples. Also, {/i; = n;4 n4;/n} used in X? and G? depend
on the marginal totals but not on the order of listing the rows and columns. Thus, X? and
G? do not change value with arbitrary reorderings of rows or of columns. This implies
that they treat both classifications as nominal. When at least one variable is ordinal, test
statistics that utilize the ordinality are usually more appropriate. We present such tests in
Section 3.4.

3.3.8 Why Consider Independence If It’s Unlikely to Be True?

Any idealized structure such as independence is unlikely to hold in many situations. With
large samples such as in Table 3.2, it is not surprising to obtain a small P-value. Given this
and the limitations just mentioned, why even bother to consider independence as a possible
representation for a joint distribution?

One reason refers to the benefits of parsimony, using fewer parameters to describe the
data. The estimates {7;; = n,-+n+j/n2} of the cell probabilities are based on estimating the
(I — 1)+ (J — 1) marginal probability parameters {;} and {m4 ;}. By contrast, the sample
proportions {p;; = n;;/n} are based on estimating the /J — 1 cell probability parameters
{m;}. When the independence hypothesis approximates the true probabilities well, unless
n is very large the independence-based ML estimates tend to be better than the sample
proportions. The independence estimates smooth the sample counts, somewhat damping
the random sampling fluctuations. This is the same reason that we use models to smooth
data in the rest of the text.

The mean squared error (MSE) formula

MSE = variance + (bias)?

explains why the independence estimators can have smaller MSE. Although they may be
biased, they have smaller variance because they are based on estimating fewer parame-
ters. Hence, MSE can be smaller unless » is so large that the bias term dominates the
variance.

We illustrate using Table 3.5, which has m; = miy 7y [1 4+ 8( — 2)(j — 2)] for miy =
T4y = % Here —1 < § < I, with § = 0 equivalent to independence. When § is close to
zero, independence approximates the relationship well. The total MSE values of the two
estimators are

MSE({p;)) = Z Z E(pj—my’ =YY var(py)
Loy

_Zzn,j(l n,,)/n_—< ZZ U)
MSE({# )—ZZE(WU mi)?.
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Table 3.5 Cell Probabilities for MSE
Comparison of Estimators

(1+5)/9 119 (1—5)/9
1/9 1/9 1/9
(1—28)/9 1/9 (1+5)/9

For Table 3.5,

1 /8 452
MSE({p;}) = - (5 - g)

and rather tedious calculations yield

MsE(r ) = L (4 2) 402,22
=0\ o 81 n n?: nd3/)’

Table 3.6 lists the total MSE values for various é and n. When § = 0, MSE({p;}) = 8/9n,
whereas MSE({7;;}) 22 4/9n for large n. The independence estimator is then much better.
When the table is close to independence (§ & 0) and # is not large, MSE is only about half
as large for the independence estimator. When § # 0, the inconsistency of {7;} is reflected
by MSE({#;}) — 482/81 [whereas MSE({p;}) — 0] as n — oc. When the table is close
to independence, however, the independence estimator has a lower total MSE even for
moderately large n (e.g., for n = 500 when § = 0.1).

3.4 TWO-WAY TABLES WITH ORDERED CLASSIFICATIONS

The X? and G? chi-squared tests ignore some information when used to test independence
between ordinal classifications. When rows and/or columns are ordered, other tests that
take the ordering into account are usually more powerful.

3.4.1 Linear Trend Alternative to Independence

When the row variable X and the column variable Y are ordinal, a positive or negative trend
in the association is common. One approach to inference, described later in this section, uses
an ordinal measure of monotone trend. An alternative analysis assigns scores to categories
and summarizes the linear trend component of the association.

Table 3.6 Comparison of Total MSE(x10,000) for Sample Proportion (p;;) and
Independence (;;) Estimators of the Cell Probabilities in Table 3.5

§=0 §=0.1 6=02 8§ =06 §=1.0
n p 7t p 7t p f p f P 7t
10 889 489 888 493 887 505 871 634 840 893
50 178 91 178 95 177 110 174 261 168 565
100 89 45 89 50 89 65 87 220 84 529
500 18 9 18 14 18 28 17 186 17 500

o0 0 0 0 5 0 20 0 178 0 494




TWO-WAY TABLES WITH ORDERED CLASSIFICATIONS 87

A test statistic that is sensitive to positive or negative linear trends utilizes correlation
information. Letu; < u, < --- < u; denote scores fortherows, andletv; < vy, < --. <y,
denote column scores. The scores have the same ordering as the categories. They assign
distances between categories and actually treat the measurement scale as interval, with
greater distances between categories that are farther apart.

The sum ), > juivjpij weights cross-products of scores by their relative frequency,
pij = nj/n. It relates to the covariation of X and Y. For the scores chosen, the correlation
r between X and Y equals the standardization of this sum to the —1 to +1 scale. (In fact, r
equals this sum when both sets of scores are linearly transformed for the n subjects to have
a mean of 0 and standard deviation of 1.) The larger r is in absolute value, the farther the
data fall from independence in this linear dimension.

A statistic for testing independence against the two-sided alternative of nonzero true
correlation is

M? = - Dri (3.16)

This statistic increases as |r| or n does. For large samples, it is approximately chi-squared
with df = 1 (Mantel 1963, Yates 1948). Large values contradict independence, so as with
X? and G?, the P-value is the right-tail probability above the value observed. A small
P-value does not imply that the association is linear, but merely that the linear component
of the association is significant. The test treats the variables symmetrically.

3.4.2 Example: Is Happiness Associated with Political Ideology?

Table 3.7 cross-classifies degree of happiness by political ideology for all subjects aged
over 65 in the 2008 GSS. The Pearson chi-squared statistics for testing independence is
X? = 7.07 with df = 4 (P-value = 0.13). This statistic shows little evidence of association,
but it ignores the ordering of rows and columns. With scores (1, 2, 3) for each variable,
the correlation is # = 0.135. The linear trend test statistic M2 = (321 — 1)(0.135)? = 5.85
with df = 1. This shows strong evidence of association (P = 0.016).

The nontrivial evidence of association may be surprising, since X2 has such an unim-
pressive value. When a positive or negative trend exists, analyses designed to detect that
trend have greater power and tend to provide smaller P-values than analyses that ignore it.

3.4.3 Monotone Trend Alternatives to Independence

Ordinal variables do not have a specified metric. The method of detecting a linear trend
alternative to independence requires assigning scores to X and Y, treating them as interval

Table 3.7 Happiness and Political Ideology

Political Happiness

Ideology Not too Happy Pretty Happy Very Happy
Liberal 13 29 15
Moderate 23 59 47
Conservative 14 67 54

Source: 2008 General Social Survey.
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variables. Alternatively, we can add more structure and perform inference about a correlation
for an assumed underlying continuous distribution, as the polychoric correlation does with
the normal distribution (Section 2.4.8). In the opposite direction, a strict ordinal analysis
with the weaker alternative of monotonicity uses an ordinal measure of association, such
as gamma (Section 2.4.5). Inference is available with each of these approaches.

For example, with large random samples, sample gamma has approximately a normal
sampling distribution. The standard error follows from the delta method (Goodman and
Kruskal 1963). Gamma is the basis of an ordinal test of independence using test statistic
z = p/SE. A confidence interval describes the strength of positive or negative monotone
association. It is also possible to use as test statistic the ratio of (C — D)/SE for a null
standard error obtained under the condition of independence (Agresti 2010, Sec. 7.3.3).

For Table 3.7 on happiness and political ideology, 7 = 0.185. The sample has a weak
tendency for happiness to increase as political conservatism increases. Software* reports
a standard error of 0.078 for gamma. There is considerable evidence that the population
value y > 0, since z = 0.185/0.078 = 2.37 (P = 0.018 for the two-sided alternative). An
approximate 95% confidence interval for y is 0.185 £ 1.96(0.078), or (0.032, 0.338). The
true association seems to be relatively weak and could be very weak.

3.4.4 Extra Power with Ordinal Tests

For testing independence, X? and G? refer to the most general alternative, whereby cell
probabilities exhibit any type of statistical dependence. Their df value of (/ — 1)(J — 1)
reflects an alternative hypothesis that has (/ — 1)(J — 1) more parameters than the null
hypothesis—the nonredundant odds ratios that describe the association [such as (2.10)].
These statistics are designed to detect any pattern for these parameters. In achieving this
generality, they sacrifice sensitivity for detecting particular patterns.

By contrast, the analyses for ordinal row and column variables describe association
using a single parameter. For instance, M? uses the correlation. When a chi-squared test
statistic refers to a single parameter [such as M? or (y /SE)? does], it has df = 1. When
the association truly has a positive or negative trend, an ordinal test has a power advantage
over the tests using X2 or G2. Since df equals the mean of the chi-squared distribution, a
relatively large M? value with df = 1 falls farther out in its right-hand tail than a comparable
value of X2 or G? withdf = (I — 1)(J — 1); falling farther out in the tail produces a smaller
P-value. The potential discrepancy in power increases as / and J increase.’

3.4.5 Sensitivity to Choice of Scores

Often, it is unclear how to assign scores to statistics that require them, such as M? in Section
3.4.1. Cochran (1954) noted that “any set of scores gives a valid test, provided that they are
constructed without consulting the results of the experiment. If the set of scores is poor, in
that it badly distorts a numerical scale that really does underlie the ordered classification,
the test will not be sensitive. The scores should therefore embody the best insight available
about the way in which the classification was constructed and used.” Ideally, the scale is
chosen by a consensus of experts, and subsequent interpretations use that same scale.

“For example, PROC FREQ in SAS.
3In Section 5.3.8 we present the theory behind such a power comparison.
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How sensitive are analyses to the choice of scores? There is no simple answer.® For most
data sets, different choices of monotone scores give similar results. Scores that are linear
transforms of each other, such as (1, 2, 3, 4) and (0, 2, 4, 6), have the same absolute corre-
lation and hence the same M?. Results may depend on the scores, however, when the data
are highly unbalanced, with some categories having many more observations than others.

3.4.6 Example: Infant Birth Defects by Maternal Alcohol Consumption

Graubard and Korn (1987) used Table 3.8 to illustrate the potential dependence. It refers to
a prospective study of maternal drinking and birth defects. After the first three months of
pregnancy, the women in the sample completed a questionnaire about alcohol consumption.
Following childbirth, observations were recorded on the presence or absence of congenital
sex organ malformations. When a variable is nominal but has only two categories, statistics
that treat it as ordinal are still valid. For instance, we can artificially regard malformation
as ordinal, treating “present” as “high” and “absent” as “low.” With only two rows, any set
of distinct row scores is a linear transformation of any other set and gives the same M?
value. Alcohol consumption, measured as the average number of drinks per day, is an ordinal
explanatory variable. This groups a naturally continuous variable, and we first use the scores
{vi=0,v, =0.5,v3 = 1.5, vq4 = 4.0, vs = 7.0}, the last score being somewhat arbitrary.
For this choice, M? = 6.57, for which the P-value is 0.010. By contrast, for the equally
spaced row scores (1,2, 3,4, 5), M? = 1.83, giving a much weaker conclusion (P = 0.18).

An alternative approach uses the data to form the scores automatically, with ranks as
the category scores. All subjects in a category receive the average of the ranks that would
apply for a complete ranking of the sample from 1 to n. These are called midranks. When
X and Y are both ordinal and M? uses midrank scores, the correlation on which M? is
based is called Spearman’s rho. For Table 3.8, the 17,114 subjects at level O for alcohol
consumption share ranks 1| through 17,114. Each receives the average of these ranks,
which is the midrank (1 + 17,114)/2 = 8557.5. Similarly, the midranks for the last four
categories are 24,365.5, 32,013, 32,473, and 32,555.5. These scores yield M? =0.35 and
a weaker conclusion yet (P = 0.55).

Why does this happen? Adjacent categories having relatively few observations neces-
sarily have similar midranks. The midranks are similar for the final three categories, since
those categories have few observations compared with the first two categories. This scor-
ing scheme treats alcohol consumption level 1-2 drinks (category 3) as much closer to
consumption level >6 drinks (category 5) than to consumption level O drinks (category 1).

Table 3.8 Data for Which Test Results Depend Greatly on Scores
for Alcohol Consumption

Alcohol Consumption
(average number of drinks per day)

Malformation 0 <1 -2 3-5 >6
Absent 17,066 14,464 788 126 37
Present 48 38 5 1 1

Source. Reprinted with permission from the Biometric Society (Graubard and
Korn 1987).

6See Note 5.7 for efficiency results when one variable is binary.
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This seems inappropriate. It is usually better to select scores that reflect perceived distances
between categories. When uncertain about this choice, a sensitivity analysis should be
performed, selecting two or three sensible choices and checking whether results are similar.
Equally spaced scores often provide a reasonable compromise when the category labels
do not suggest obvious choices, such as the categories (liberal, moderate, conservative) for
political philosophy.

3.4.7 Trend Tests for I x 2 and 2 x J Tables

When I or J equals 2, the tests based on linear or monotonic trend simplify to well-
established procedures. With binary X, 2 x J tables occur in comparisons of two groups,
such as when the rows represent two treatments. Using scores {u; = 0, uy = 1} for levels
of X, the covariation measure } ; 3, u;v; p;; in M? simplifies to 2 v;p2j. Divided by the
proportion of subjects in row 2, it gives the mean score for that row. In fact, M? is then
directed toward detecting differences between the two row means of the scoreson Y.

With midrank scores for Y, the test using M 2 for 2 x J tables is sensitive to differences
in mean ranks for the two rows. This test is called the Wilcoxon or Mann—-Whitney test.
The large-sample version of that test uses a standard normal z statistic that is equivalent
to z = (C — D)/SE, based on the difference between the numbers of concordant and
discordant pairs relative to the null SE. The square of the statistic is equivalent to M2,
using arbitrary row scores and midranks for the columns. For summarizing the difference
between the two groups, related measures suchas A = P(Y| > Y») — P(Y, > Y)) are also
relevant (Section 2.4.6). Ryu and Agresti (2008) proposed score-type confidence intervals
for such measures.

When Y has two levels, the table has size / x 2. The linear trend statistic then refers
to a linear trend in the probability of either response category, such as the probability of
malformation as a function of alcohol consumption. The test in that case, often called the
Cochran—Armitage trend test, is presented in Section 5.3.5.

3.4.8 Nominal-Ordinal Tables

Inference using measures such as the correlation and gamma is appropriate when both
classifications are ordinal. When one is nominal with more than two categories, other
statistics are needed. One is based on summarizing the variation among means on the
ordinal variable in the various categories of the nominal variable. We defer discussion of
this case to Note 3.7, Exercise 3.37, and Section 8.4.3.

3.5 SMALL-SAMPLE INFERENCE FOR CONTINGENCY TABLES

The inferential methods of the preceding four sections are large-sample methods. When »n
is small, alternative methods use exact small-sample distributions rather than large-sample
approximations. In this section we describe small-sample tests of independence, starting
with one that R. A. Fisher proposed for 2 x 2 tables.

3.5.1 Fisher’s Exact Test for 2 x 2 Tables

In Section 16.5.1 we show that, under Hy: independence, conditioning on the marginal totals
of the contingency table produces a null distribution for the cell counts that does not depend
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on unknown parameters. Usually both margins are not naturally fixed. For Poisson sampling
nothing is fixed, for multinomial sampling only # is fixed, and for independent binomial
row samples only the row marginal totals are fixed. In any of these cases, conditioning on
both sets of marginal totals in a 2 x 2 table yields the hypergeometric distribution

() Gis)
()

This formula expresses the distribution of {n;} in terms of only n;. Given the marginal
totals, ny; determines the other three cell counts. The range of possible values for n;; is
m_ <n; <my,wherem_ =max(0,n. +ny —n)andm, = min(n 4, nyy).

For 2 x 2 tables, independence is equivalent to the odds ratio & = 1. Totest Hy: 8 = 1,
the P-value is the sum of certain hypergeometric probabilities. To illustrate, consider
H,: 6 > 1. For the given marginal totals, tables having larger n;, have larger sample odds
ratios and hence stronger evidence in favor of H,. Thus, the P-value equals P(n;| > t,),
where ¢, denotes the observed value of n|;. This test for 2 x 2 tables is called Fisher’s exact
test.

pt)=P(n =1)= (3.17)

3.5.2 Example: Fisher’s Tea Drinker

R. A. Fisher (1935a) described the following experiment from his days working at Rotham-
sted Experimental Station, an agriculture research lab north of London. Dr. Muriel Bristol,
a colleague of Fisher’s, claimed that when drinking tea she could distinguish whether milk
or tea was added to the cup first (she preferred milk first). To test her claim, Fisher asked
her to taste eight cups of tea, four of which had milk added first and four of which had tea
added first. She knew there were four cups of each type and had to predict which four had
the milk added first. The order of presenting the cups to her was randomized.

Table 3.9 shows a possible result. Distinguishing the order of pouring better than with
pure guessing corresponds to 6 > 1, reflecting a positive association between order of
pouring and the prediction. We conduct Fisher’s exact test of Hy: 6 = 1 against H,: 6 > 1.

The experimental design fixed both marginal distributions, since Dr. Bristol had to
predict which four cups had milk added first. Thus, the hypergeometric applies naturally
for the null distribution of n;,. The P-value for Fisher’s exact test is the null probability
of Table 3.9 and of tables having even more evidence in favor of her claim. The observed

Table 3.9 Data for Fisher’s Tea-Tasting Experiment

Guess Poured First

Poured First Milk Tea Total
Milk 3 1 4
Tea - | 3 4
Total 4

Source: Based on experiment described by Fisher (1935a).
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table, t, = 3 correct choices of the cups having milk added first, has null probability

()()/(3) oo

The only table that is more extreme in the direction of H, has nj; = 4 correct. It has a
probability of 0.014. The P-value is P(n; > 3) = 0.243. This result does not establish an
association between the actual order of pouring and her predictions. According to Fisher’s
daughter (Box 1978, p. 134), in reality Dr. Bristol did convince Fisher of her ability.

3.5.3 Two-Sided P-Values for Fisher’s Exact Test

For the one-sided alternative, the same P-value results using tables ordered according to
larger ny,, larger odds ratio, or larger difference of proportions (Davis 1986a). For the
two-sided alternative, different criteria can have different P-values.

For a two-sided P-value, the most common approach (Irwin 1935) sums P(n)) = ¢) in
(3.17) for counts ¢ such that p(t) < p(t,); that is, the P-value is P[p(n;;) < p(t,)] for the
observed value #,. Another possibility sums p(¢) for tables that are farther from Hy; that is,

P-value = Pl|n|; — E(n))| = |t, — E(n)I],

where the hypergeometric E(ny() = n. ny,/n. This is identical to P(X? > X(z)) for ob-
served Pearson statistic X2. A third approach doubles the minimum one-sided P-value, that
is,2min[P(ny; > t,), P{n; < t,)], butthis canexceed 1. A fourth approach (Blaker 2000)
uses Q = min[P(ny >t,), P(n), <t,)] plus an attainable probability in the other tail that
is as close as possible to, but not greater than, that one-tailed probability. This P-value can
be expressed as P(Q < q,) for observed value g, of Q0.

Each approach has advantages and disadvantages (3.10). They can provide different
results because of the discreteness and potential skewness. The approach of ordering tables
by a distance measure from Hy, such as X2, extends naturally to I x J tables. Exact tests
for that more general case are deferred to Section 16.5.2.

In practice, two-sided tests are more common than one-sided. Partly this is so that
researchers can avoid charges of bias in giving evidence that supports their predicted
direction for an effect. To conduct a test of size 0.05 when you truly believe that the effect
has a particular direction, you can conduct the one-sided test at the 0.025 level to guard
against criticism. For instance, in the 1998 document Biostatistical Principles for Clinical
Trials, the International Conference on Harmonization (ICH E9) stated: “The approach of
setting type I errors for one-sided tests at half the conventional type I error used in two-
sided tests is preferable in regulatory settings. This promotes consistency with two-sided
confidence intervals that are generally appropriate for estimating the possible size of the
difference between two treatments.”

3.5.4 Confidence Intervals Based on Conditional Likelihood

Small-sample methods also apply to estimation. An approach discussed in Section 7.3 uses
a conditional likelihood function to eliminate nuisance parameters by conditioning on their
sufficient statistics. This is useful even with large-sample confidence intervals. In fact, the
intervals for the odds ratio in Sections 3.2.5 and 3.2.6 that utilize joint distributions with
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fixed column margins as well as row margins are actually conditional score and profile
likelihood confidence intervals.

Small-sample interval estimation entails other complicating issues resulting from dis-
creteness and evaluating performance over an entire parameter space. We defer discussion
of those methods to Sections 16.6.4 and 16.6.8.

3.5.5 Discreteness and Conservatism Issues

The hypergeometric distribution (3.17) is highly discrete for small samples, because 7
and hence the P-value can assume relatively few values. It is usually not possible to achieve
a fixed significance level (size) such as 0.05.

In the tea-tasting experiment, for instance, 7 can equal only 4, 3, 2, 1, 0. The one-sided
P-values are restricted to 0.014, 0.243, 0.757, 0.986, and 1.0. If we reject Hy when the
P-value < 0.05, then 0.05 is not the probability of type I error. Only the P-value of 0.014
does not exceed 0.05; thus, when Hj is true, the probability of falsely rejecting it is 0.014,
not 0.05. In this sense, the traditional approach to hypothesis testing is conservative: The
true probability of type I error is bounded above by the nominal level.

It is possible to achieve any fixed significance level by data-unrelated randomization on
the boundary of the critical region, in deciding whether to reject Hy. For the tea-tasting
experiment, suppose that we reject Hy when ny; = 4, we reject Hy with probability 0.157
when ny; = 3, and we do not reject Hy otherwise; that is, when n,; = 3, we generate
a uniform random variable U over [0, 1] and reject Hy if U < 0.157. For expectation
taken with respect to the null hypergeometric distribution of n;, the significance level then
equals

P (reject Hy) = E[P(reject Hy|n )]
1.0(0.014) + 0.157(0.229) + 0.0 x P(n,; < 2) = 0.05.

With the randomization extension, Tocher (1950) showed that Fisher’s test is uniformly
most powerful unbiased (UMPU) for the chosen size (here, 0.05). This property follows
from conditioning on a sufficient statistic that is complete and has distribution in the
exponential family (Lehmann and Romano 2005, Sec. 4.4-4.7).

In practice, randomization having nothing to do with the data is unacceptable, and
sensible tests for this hypothesis are biased (Exercise 3.43). We recommend simply reporting
the P-value. To reduce conservativeness, report the mid P-value (Section 1.4.4). The test is
no longer guaranteed to have true P(type I error) no greater than the nominal value, but in
practice it is rarely much greater. For the one-sided test with the tea-tasting data,

mid P-value = (3) P(ny; = 3) + P(n;; > 3) = 0.129.

For a two-sided test using a criterion such as X°, we would add half the probability of the
observed X? value to the probabilities for larger values, for tables with the given margins.

3.5.6 Small-Sample Unconditional Tests of Independence

A common sampling assumption for analyses comparing two groups on a binary response
is that the rows are independent binomial samples. Then, only {#;} are naturally fixed. For
Poisson and multinomial sampling schemes, neither marginal distribution is fixed. For such



94 INFERENCE FOR TWO-WAY CONTINGENCY TABLES

cases it may seem artificial to condition on both sets of marginal counts. An alternative
small-sample test, designed for independent binomial samples, conditions on only the row
totals.

Under binomial sampling with parameter 7r; in row i, consider testing Hy: 7 = m
using some test statistic T, such as the Pearson X2. For fixed {n;,}, T can take a discrete
set of values, one of which is the observed value ¢,. Given m; = m, = 7, the P-value is
P.(T = t,), calculated using the product of the two binomial probability mass functions.
This is the sum of the product binomial probabilities for those pairs of binomial samples
that have T > t,. Since 7 is unknown, the actual P-value is defined as

P = sup Pr(T =1,). (3.18)

O<m<l

This is an unconditional small-sample test of independence. Like Fisher’s exact test, the
true size is no greater than the nominal value [e.g., if we reject when P < 0.05, the actual
P(type I error) < 0.05].

We illustrate using test statistic X 2 for the 2 x 2 table having entries (3,0/0, 3), by row,
with fixed row totals (3, 3) as binomial sample sizes. The sample X? = 6.0. This X2 value
for the observed table and for table (0, 3 / 3, 0) is the maximum possible. For a given value
7 for | = m,, the probability of the first table is [73(1 — 7)°][7°(1 — 7)*] = 73(1 — =)
(3 successes and O failures in the first row and 0 successes and 3 failures in the second),
the product of two binomial probabilities. Similarly, the probability of the second table is
(1 — )33, Thus, the conditional P-value is P (X? > 6) = 273(1 — 7)?, the sum of the
product binomial probabilities for those two tables. The supremum of this over 0 < 7 <1
occurs at w = %, giving overall P-value equal to 2(0.5)3(0.5)° = 0.031. By contrast, the

two-sided Fisher’s exact test has P-value equal to 2 ((3)) (g) / (g’) = 0.100.

Barnard (1945, 1947) was the first to propose an unconditional test comparing binomial
parameters, although he later (1949) withdrew it in favor of Fisher’s exact test. His method
forms a critical region by adding points according to certain criteria until the supremum
over 7 of the probability of points in the region is as close to the desired size as possible.
Several authors have since proposed related tests. Suissa and Shuster (1985) used (3.18)
with T as the pooled or unpooled z statistic for comparing two proportions, which give
identical P-values when n14 = n,,. Haber (1986) also used the pooled statistic. Boschloo
(1970) suggested using an increased significance level for the conditional test considered
for all the possible response marginal distributions, such that the unconditional size at each
value of 7 under Hy (averaged over the possible marginal distributions) is no greater than
the nominal level, This essentially uses the P-value from Fisher’s exact test as a test statistic
(Mehrotra et al. 2003, Lin and Yang 2009). That is, the P-value for Boschloo’s test is the
supremum over 7 of the product binomial probability that the Fisher’s P-value is less than
or equal to the observed Fisher P-value. The Boschloo test is necessarily at least as powertul
as Fisher’s test since its rejection region contains that for Fisher’s test.

3.5.7 Conditional Versus Unconditional Tests

Since Barnard introduced the unconditional test, many statisticians have debated the proper
way to conduct small-sample analyses of 2 x 2 tables. Fisher criticized the uncondi-
tional approach, arguing that possible samples with quite different numbers of successes
than observed were not relevant. In Fisher’s (1945) view, “. .. the existence of these less
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informative possibilities should not affect our judgment of significance based on the series
actually observed . ... The fact that such an unhelpful outcome as these might occur . ..
is surely no reason for enhancing our judgment of significance in cases where it has not
occurred; . . . it is only the sampling distribution of samples of the same type that can supply
a rational test of significance.”

An adaptation of the unconditional approach by Berger and Boos (1994) addresses this
criticism somewhat. They took the supremum for the P-value over a confidence interval of
values for the nuisance parameter 77 rather than over all possible values. Their unconditional
P-value is

P = SUP;cc, P(T = t,)+ v,

where C, is a confidence interval for = with coverage probability at least (1 — y)%. Here,
y is taken to be very small (e.g., 0.001), and the test maintains the guaranteed upper bound
on size.

Other arguments in favor of conditioning on both sets of marginal totals are that the
conditional approach provides a simple way to eliminate nuisance parameters that general-
izes to many other contingency table problems, and the margins contain little information
about the association (see Note 3.9). In an informal sense, the margins can contain much
more information about the range of plausible values for the difference of proportions than
the odds ratio, as illustrated by a 2 x 2 comparison of two groups of size 50 each when the
total sample contains only 1 success. Arguments against conditioning partly concern the
increased discreteness that occurs. The few possible values for n;; make it difficult to
obtain a small P-value. In repeated use with a nominal significance level, the actual type I
error probability may be much smaller than the nominal value and the power may suffer.
Finally, for inference about nonnull values (e.g., confidence intervals), we will see (Section
16.6) that the conditional approach applies for the odds ratio but not for other association
measures.

The conservatism issue is partly unavoidable. Statistics having discrete distributions
are necessarily conservative in terms of achieving nominal significance levels. Because
an unconditional test fixes only one margin, however, it has many more tables in the
reference set for its sampling distribution. That distribution is less discrete, and a richer
array of possible P-values occurs than with Fisher’s exact test. An unconditional test tends
to be less conservative and more powerful than Fisher’s exact test. A disadvantage is that
computations are very intensive for more complex problems, such as tables larger in size
than 2 x 2.

If a table truly has two independent binomial samples, the unconditional approach
seems sensible. See Kempthorne (1979) for a cogent argument. The conditional approach
is useful for other cases, such as with convenience samples in experiments. In a randomized
clinical trial, a sample of n available subjects is randomly allocated to two treatments.
The samples are not binomials, as they are not random samples from two populations
of interest. We could focus on the sample alone and consider the probability of a result
at least as extreme as observed if there truly is no treatment effect. For instance, out of
all possible ways of choosing ny, of the n subjects for treatment 1, for what proportion
of samples would n(; be at least as large as observed? Under the null hypothesis of no
treatment effect, the same overall response distribution (74, 747) of successes and failures
occurs regardless of the allocation of subjects to treatments. Thus, the column margin is
also naturally fixed. This argument leads to hypergeometric null probabilities and Fisher’s
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exact test (Greenland 1991) or its mid-P adaptation. This randomization-based approach
does not extend, however, to nonnull effect values and hence to confidence intervals.

Sometimes both sets of marginal totals are naturally fixed, such as in Table 3.9. Then,
the high degree of discreteness is unavoidable and it is natural to use Fisher’s exact test and
its mid-P adaptation.

3.6 BAYESIAN INFERENCE FOR TWO-WAY CONTINGENCY TABLES

Bayesian methods are relatively straightforward for estimating cell probabilities or as-
sociation measures for contingency tables. When we distinguish between response and
explanatory variables, we treat the cell counts as realizations of independent multinomial
samples and formulate prior distributions (such as Dirichlet distributions) for the multino-
mial parameters. When both variables are response variables, we can treat the cell counts
as a single multinomial sample and formulate a prior distribution for the entire set of cell
probabilities.

3.6.1 Prior Distributions for Comparing Proportions in 2 x 2 Tables

We consider first the comparison of parameters for two independent binomial samples
summarized in a 2 x 2 contingency table. Let ¥; denote a binomial bin(n;, ;) variate,
i=1,2

The conjugate Bayesian approach uses independent beta(e; |, ¢;») prior densities for m;,
{ = 1, 2. This yields independent posterior beta(y; + o1, n — y; + «;2) densities for m;,
i=1,2

With independent continuous prior densities, the prior and posterior probability of
homogeneity, 7| = 7y, is zero. Toallow P (; = m2|yi, n1; y2, n2) > 0, we could use a prior
distribution that has a positive P (7r; = 7). For example, we could use a prior distribution
for which 7} and 7, have beta(a,, «;) distributions, such that 7| = 7, with probability y
and 7| is independent of 7, with probability 1 — y.

Even if we use a model having P (71, = ;) = 0, in practice, it is possible to treat 7y and
7, as dependent, a priori. For instance, if we knew that 7; = 0.02, then in many applications
conditionally this would induce the subjective belief that 7, is also close to 0. Howard
(1998) suggested a prior distribution for correlated (7}, 72). For odds ratio 6, he amended
the independent beta prior distributions by using prior density function proportional to

e—(1/202)[10g(9)]2n711'1(1 _ nl)alz—lngn—l(l _ Nz)azz_l.

The correlation decreases as ¢ increases, with independent beta densities resulting in the
limit as 6 — 0. For the amended Jeffreys prior distribution (¢;; = ¢; = 0.50), wheno =
(1, 2, 3) the correlations are (0.84, 0.59, 0.41) between 7, and 7, (Agresti and Min 2005a).

An alternative prior distribution that can incorporate correlation is a bivariate normal
distribution for [logit(sr;), logit(;)]. Taking marginal means of 0 and standard deviations
of about 3 is relatively uninformative. In that case, when corr[logit(sr}), logit(sr2)] = 0.50,
corr(mry, ) = 0.45. This case gives similar results as Howard’s prior with 0 = 3. An
alternative way of inducing dependence is to use a hierarchical prior, but that is beyond our
scope here.
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3.6.2 Posterior Probabilities Comparing Proportions

For the conjugate prior structure of independent beta densities, independent beta(y; +
a;1, n — y; + a;3) posterior densities determine inference about m;, i = 1, 2. We can eval-
uate through simulation or numerical integration relevant posterior probabilities such as
P(my < my|y1, n1;ya, np) and P(my > ma|yy, ny; y2, ny) and construct posterior intervals
for summary measures such as 7; — m; and the odds ratio.

In many applications, one group (say, group 1) receives a new treatment and group 2
receives some standard treatment or placebo, and the purpose of the study is to analyze
whether the response tends to be better with the new treatment. Then, in terms of “success”
probabilities, we could regard 7, < m, as a null condition and 7} > m, as an alternative.
Then, P(my < m3|yi, 115 y2, n2) is a sort of Bayesian P-value. Howard (1998) showed that
with use of Jeffreys priors with a;) = aj2 = 0.5, P(7r; < m3)y1, 115 2, n2) approximately
equals the one-sided P-value for the large-sample z test (3.12) (which is the signed square
root of the Pearson X statistic) for testing Hy : m| = m, against H, : my > m,.

For testing Hy : m < m, against | > m,, Altham (1969) showed how the posterior
P(my < malyy, ny; y2, ny) relates to the one-sided P-value for Fisher’s exact test. With
prior beta hyperparameters «;) = o2 =y, = 1,2, and 0 < y < 1, Altham showed that
P < mylyi1, ny; ya, ky) 1s smaller than the Fisher P-value by no more than the null prob-
ability of the observed data. They are identical when we use the improper prior densities
with (o)1, a12) = (1, 0) and (ay), @) = (0, 1). These priors favor Hy, in effect penaliz-
ing against concluding that 7; > m,. For example, for any data having the same sample
proportion of successes 0 < p < 1 for the two groups, P(m, < ma2lyi, ny; y2, nz) > 0.50.
So, Fisher’s one-sided exact P-value corresponds to a Bayesian inference with conservative
prior distributions.

3.6.3 Posterior Intervals for Association Parameters

We could also use the Bayesian approach to construct posterior intervals for the differ-
ence of proportions, relative risk, and odds ratio. Any particular prior distribution for
(71, m3) induces corresponding prior distributions for the measures themselves. For in-
stance, with independent uniform prior distributions for 77| and 7y, | — 75 has a triangular
density over (—1, +1), and the log odds ratio has the Laplace density (Nurminen and
Mutanen 1987).

Similarly, a posterior distribution for (|, ;) induces posterior distributions for the
measures. For the case of independent beta posterior distributions for 7r; and m,, we can
easily simulate the posterior distribution of a measure of association by simulating values
from the beta distributions. Thus, it is easy to simulate reasonable approximations for
posterior intervals, for instance, forming the 95% equal-tail interval using values between
the simulated 2.5 percentile and 97.5 percentile of the posterior distribution.

Finding more precise intervals requires better approximations. Let F,,(¢) denote the cdf
for the posterior distribution of a generic measure of association . In terms of independent
beta posterior densities f(m; | y;, n;) form;, i =1, 2,

Fo(t) = // fr )y, n) f(ra | y2, np)dmdms,
S,
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where §; = {(m;, m) 0 <t, 0 < my, my < 1}. The equal-tail 95% posterior interval’
(L, U) satisfies F,(L) =0.025 and F,(U) = 0.975. Hashemi et al. (1997) and Nurmi-
nen and Mutanen (1987) gave integral expressions for the posterior distributions of the
difference of proportions, relative risk, and odds ratio.

To obtain good frequentist performance in terms of maintaining coverage probability
close to the nominal level over the entire parameter space, itis best to use quite diffuse priors.
Even uniform priors are often too informative. Agresti and Min (2005a) recommended, in
agreement with Brown et al. (2001) in the single binomial case, using independent Jeffreys
priors for m; and .

3.6.4 Example: Urn Sampling Gives Highly Unbalanced Treatment Allocation

For small samples, results can depend strongly on the choice of prior distribution, as shown
by an example from a clinical trial discussed by Begg (1990). For an urn sampling method
to allocate patients to treatments, the 11 patients allocated to the experimental treatment
were all successes and the only patient allocated to the control treatment was a failure. That
is, the table has rows (11, 0) and (0, 1).

The 95% equal-tail posterior interval for the odds ratio is (1.2, 218.4) for independent
beta(2, 2) priors, (1.7, 4677) for uniform (beta(1, 1)) priors, and (3.3, 1.4 x10%) for
Jeffreys (beta(0.5, 0.5)) priors. By contrast, the frequentist 95% confidence interval based
on inverting the large-sample score test is (4.5, 00). Incorporating prior beliefs with a mean
of no effect causes the lower bound for the odds ratio to be pulled considerably toward the
no effect value of 1.0.

With uniform priors, the posterior densities are beta(12, 1) for 7y and beta(1, 2) for ;.
A simple way to estimate precisely the posterior P(7; > ma|y1, #1; Y2, ko) 1S to generate a
huge number of beta random variables from these two densities and observe the proportion
of cases for which m; > m,. We then find that P(;r; > m3|y1, ny; ¥2, n2) = 0.99. There is
strong evidence that the experimental treatment is better than control.

3.6.5 Highest Posterior Density Intervals

An alternative approach to constructing posterior intervals uses highest posterior density
(HPD) intervals. When applied to the odds ratio and relative risk, this method has a serious
disadvantage: It is not invariant under nonlinear parameter transformation. Specifically,
suppose (L, U) is a 95% HPD interval based on the posterior distribution of the odds ratio
6. Then, the 95% HPD interval based on the posterior distribution of 1/6, which is relevant
if we reverse the labeling of the two groups being compared, is not (1/U, 1/L). In fact, it
can be considerably different. This happens because the 95% region of highest density for
a random variable X is not the inverse mapping of the 95% region of highest density for
1/X.

To illustrate, consider uniform prior densities for 7r; and 7, when n; = n; = 10. When
y1 =1 and y, =5, § = 1/9 and the Bayes 95% HPD interval for 6 is (0.0006, 0.82); when
yi=5and y, = 1, § = 9 and the Bayes 95% HPD interval is (0.17, 38.23), which is
very different from (1/0.82, 1/0.0006). By contrast, the 95% equal-tail confidence intervals

7See www.stat .ufl.edu/~aa/cda/R/bayes/index.html for R functions to construct pos-
terior intervals for the odds ratio, relative risk, and difference of proportions.
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for the odds ratios with uniform priors are (0.017, 1.10) when y; = 1 and y, = 5 and
(0.91 = 1/1.10, 57.9 = 1/0.017) when y; = 5 and y, = 1. In another example, for tables
with § = 0, the HPD interval with diffuse priors is typically of the form (0, U), but when
rows are interchanged so that § = oo, the HPD interval has a finite upper bound (Agresti
and Min 2005a).

HPD invariance to group labeling does occur on the log scale for the odds ratio and
relative risk, because the relevant parameter is a difference (e.g., log odds ratio = difference
of log odds) and so is linearly rather than nonlinearly transformed by a relabeling of the
groups. However, users interpret the magnitude of the odds ratio on its original scale rather
than the log scale. So, the lack of invariance when constructing HPD intervals on the
original scale is to us a compelling reason not to use the HPD approach for the odds ratio
or relative risk.

An exception when the HPD interval seems sensible is when the posterior density is
monotone. Then, excluding both upper and lower tails of that distribution with the equal-
tail method seems inappropriate. For example, suppose the sample odds ratio is 0 and the
HPD interval has form (0, U), with the two binomials relabeled if necessary so this is the
case. The HPD interval then seems more relevant than the equal-tail interval. However,
then it seems sensible when groups or outcome categories are interchanged to use the
corresponding posterior interval (1/U, 00), which is not HPD.

Consider the difference of proportions. When 7, — 7, takes its boundary values of +1
or —1, the posterior density is monotone with the Jeffreys prior or more diffuse priors, and
close to monotone for priors that are more informative than the Jeffreys prior (Agresti and
Min 2005a). So, the HPD interval for m; — m; seems sensible. With the Jeffreys prior, the
HPD interval then has the form (L, 1) or (—1, U).

3.6.6 Testing Independence

For 2 x 2 tables, Bayesian inference about whether two binary variables are independent can
be based directly on posterior tail probabilities and intervals for association parameters, such
as we illustrated in Section 3.6.4. For I x J tables, such inference is not as straightforward,
because independence relates to (I — 1)(J — 1) parameters instead of a single parameter.

One approach for I x J tables forms a Bayes factor that is a ratio comparing the
probability of the data under (1) Hy: independence and (2) H,: association (see Note 3.11).
Converting this Bayes factor to the posterior probability that H is true requires choosing
a prior probability that H is true. Naturally, the posterior probability is highly dependent
on the choice of this prior probability. Gunel and Dickey (1974) considered independence
in two-way contingency tables under the usual sampling models. Conjugate gamma priors
for the Poisson model induce priors in each further conditioned model. They showed that
the Bayes factor for independence itself factors, highlighting the evidence residing in the
marginal totals.

Ultimately, it is more informative to focus on estimating parameters that describe the
association. With two ordinal response variables, we could summarize the evidence about
a positive or negative association as summarized by a measure such as the correlation or
gamma. For example, using the approach of Section 1.6.3 of combining a Dirichlet prior
distribution for cell probabilities with a multinomial likelihood function yields a Dirichlet
posterior distribution for the cell probabilities. This induces a posterior distribution for the
ordinal measure of interest, yielding a posterior interval and posterior probabilities of a
positive association and of a negative association.
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3.6.7 Empirical Bayes and Hierarchical Bayesian Approaches

Some methodologists find it appealing to treat parameters as random variables having
distributions but dislike the subjectivity inherent in the Bayesian approach from selecting a
prior distribution. An alternative way of implementing a Bayesian approach is to let the data
suggest hyperparameter values for use in the prior distribution. This is called the empirical
Bayes approach. Most commonly, this approach uses the prior hyperparameter values that
maximize the marginal probability of the observed data, integrating out the parameters
with respect to that prior (e.g., Efron and Morris 1975). A related approach estimates
the prior that has Bayes estimator with smallest total mean squared error (Exercise 3.46).
I.J. Good seems to have first used an empirical Bayesian approach with contingency tables,
estimating hyperparameters in gamma and log-normal priors for association factors. Good
(1965) used it to estimate the hyperparameter value for a symmetric Dirichlet prior for
multinomial parameters.

A disadvantage of the empirical Bayesian approach is not accounting for the source of
variability due to substituting estimates for prior hyperparameters. An alternative approach
not having this disadvantage is hierarchical Bayes, which lets the prior hyperparameters
themselves have a second-stage prior distribution. For multinomial data, for example, Good
(1965, 1976) noted that Dirichlet priors do not always provide sufficient flexibility. He pro-
posed a hierarchical approach of specifying distributions for the Dirichlet hyperparameters,
treating {c; } in the Dirichlet prior as unknown and specifying a second-stage prior for them.
This approach gains greater generality at the expense of giving up the simple conjugate
Dirichlet form for the posterior.

Most of the empirical Bayes and hierarchical Bayes literature refers to estimating mul-
tiple parameters, such as several binomial parameters {7;}. For instance, at stage 1, given
w and o, we might assume that {logit(r;)} are independent from a N(u, o) distribution,
and at stage 2 assume a highly disperse normal prior for p and an inverse chi-squared
prior distribution for o2. Leonard (1972) proposed an approach of this type, for which the
posterior mean estimate of logit(x;) is approximately a weighted average of logit(p;) and

{logit(p;), j #1i}.

3.7 EXTENSIONS FOR MULTIWAY TABLES AND
NONTABULATED RESPONSES

The methods of this chapter extend to multiway contingency tables. For instance, tests of
independence for two-way tables extend to tests of conditional independence in three-way
tables. In future chapters we present such methods with models that provide a basis for
defining relevant parameters and their statistical inferences.

3.7.1 Categorical Data Need Not Be Contingency Tables

Examples so far have presented categorical data in the format of contingency tables. How-
ever, this book has broader focus than contingency table analysis. Models for categorical
response variables can have continuous as well as discrete explanatory variables. Even
when all or most variables are categorical, source data files are not usually contingency
tables but have the form of a line of data for each subject. The first three lines in a data file
containing responses of a survey of subjects measuring gender, race, education (1 = less
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than high school, 2 = high school or some college, 3 = college graduate), and attitude
toward homosexuality (1 = tolerant, 2 = homophobic) might be:

Subject Gender Race Education Attitude

1 f w 2 1
2 m b 3 1
3 m w 1 2

Software can read data files of this type and then conduct analyses that may or may not
involve forming contingency tables.

In the next chapter we introduce the modeling framework used in the rest of the book.
All the methods that we’ve studied in this chapter result from inferences for parameters in
simple versions of these models.

NOTES

Section 3.1: Confidence Intervals for Association Parameters

3.1

3.2

Standard errors: Goodman and Kruskal (1963, 1972) provided standard errors for many
association measures and extended (3.9) for independent multinomial sampling. For adap-
tations of the Wald interval (3.2) for log 6 that better handle zero cell counts, see Agresti
(1999) and Gart (1971). Agresti and Caffo (2000) showed that as in the single-sample case
(Exercise 1.25), the Wald interval (3.4) for m; — 7, behaves much better after adding two
pseudo-observations of each type (one of each type in each sample). Fagerland et al. (2012)
compared various confidence interval methods for the difference of proportions, odds ratio,
and relative risk.

Multiple comparisons: Agresti et al. (2008) proposed a method for multiple comparisons
using effect measures for comparing proportions for g groups that is an analog of Tukey’s
method for normal means. It is based on applying the Studentized range distribution with
df = oo to a set of approximately standard normally distributed score statistics constructed for
the pairs of groups. Schaarschmidt et al. (2008) proposed simultaneous confidence intervals
for multiple contrasts of binomial proportions. For discrete small-sample distributions, Tarone
(1990) adjusted the Bonferroni method to reduce its conservatism.

Section 3.2: Testing Independence in Two-Way Contingency Tables

33

34

Chi-squared moments/approximations: For hypergeometric sampling for [ x J tables,
Haldane (1940) derived E(X?) and a complex formula for var(X?); Dawson (1954) provided
a simplified expression. Lewis et al. (1984) derived the third central moment. For 2 x 2
tables, Pearson (1947) and others since then (e.g., Campbell 2007) suggested using the
multiple (n — 1)/n of the chi-squared statistic. For discussion of the adequacy of chi-squared
approximations, see Cressie and Read (1989), Read and Cressie (1988) and references therein,
Koehler (1986), Koehler and Larntz (1980), Larntz (1978), and Maiste and Weir (2004).
Diaconis and Efron (1985) presented inference based on a uniform distribution over all
possible tables of the same /, J, and n; their volume test considers the proportion of such
tables having X% < X(z,, for observed value X(zr

Complex sampling: Social science applications often incorporate clustering and/or strat-

ification. For analyses of categorical data for complex sampling methods and correlated
observations, see Bedrick (1983), Cerioli (2002), Fay (1985), Gleser and Moore (1985), Holt
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et al. (1980), Koch et al. (1975), Koehler and Wilson (1986), LaVange et al. (2001), Rao
and Scott (1981, 1987), Rao and Thomas (1988), Scott and Wild (2001), Skinner and Vallet
(2010), Tavaré and Altham (1983), and methods of Chapter 13. For example, Gleser and
Moore (1985) showed that positive dependence causes null distributions of Pearson statistics
to stochastically increase.

Missing data: Watson (1956) was an early study of effects of missing data in contingency
tables. Lipsitz and Fitzmaurice (1996) derived score tests of independence and conditional
independence, assuming ignorable nonresponse, and showed that the test statistics have the
usual asymptotic chi-squared null distributions. Fleiss et al. (2003, Chap. 16), Little (2005),
and Little and Rubin (2002) surveyed ways of dealing with missing data.

Score and profile likelihood Cls: For other discussion of score test-based intervals, see
Agresti (2011) and references therein, Agresti and Ryu (2010), Brown and Li (2005), Gart
and Nam (1988), Koopman (1984), Lang (2008), Miettinen and Nurminen (1985), Nurminen
(1986), and Exercise 3.27. Cornfield’s (1956) interval for the odds ratio utilized a conti-
nuity correction. That interval approximates a small-sample interval presented in Section
16.6.4. The Miettinen and Nurminen (1985) score intervals used unbiased variance estima-
tors. For example, their nonnull chi-squared statistic for the difference of proportions has form
[(n — 1)/n][z(Ag)]?, so their interval is slightly wider. Cox and Snell (1989, pp. 51-52) pre-
sented the profile likelihood interval for the difference of proportions.

Section 3.4: Two-Way Tables with Ordered Classifications

3.7

Ordinality: Brown and Benedetti (1977) provided null standard errors of ordinal measures
appropriate for testing independence. Bhapkar (1968) and Yates (1948) proposed statistics
similar to M? and statistics for singly ordered tables. Graubard and Korn (1987) listed 14
tests for2 x J tables that utilize a correlation-type statistic. See also Nair (1987) and Williams
(1952). Cohen and Sackrowitz (1992) evaluated decision-theoretic aspects, such as admissi-
bility, of tests based on gamma and local log odds ratios.

Section 3.5: Small-Sample Inference for Contingency Tables

38

39

Continuity correction: For early discussion of Fisher’s exact test, see Fisher (1934, 1935a,c),
Irwin (1935), and Yates (1934). Yates indicated that Fisher suggested the hypergeometric
distribution to him for an exact test. He proposed a continuity-corrected version of X? for
2 x 2 tables,

X(z — Z Z (lnij - ,aij| - 05)2 ,
P

122 if

so that the chi-squared right-tail probability would better approximate the hypergeometric
two-sided P-value from Fisher’s exact test. Hitchcock (2009) surveyed arguments for and
against its use by Yates and other authors. Since software now makes Fisher’s exact test
feasible even with large samples, this correction is no longer needed.

Conditional/unconditional: For exact conditional methods, Diaconis and Sturmfels (1998)
and Rapallo (2003) proposed algebraic Markov chain algorithms for sampling from the
relevant conditional distributions. The controversy over conditioning includes Barnard (1945,
1947, 1949, 1979), Berkson (1978), Cheng et al. (2008), Fisher (1956), Howard (1998),
Kempthorne (1979), Little (1989), Lloyd (1988a), Pearson (1947), Rice (1988), Routledge
(1992), Suissa and Shuster (1984, 1985), and Yates (1934, 1984). Discussion of unconditional
methods includes Agresti and Min (2001), Berger and Boos (1994), Lin and Yang (2009).
Martin Andrés and Silva Mato (1994) summarized and compared various unconditional tests.
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3.10

They found that the method based on the pooled z statistic may not perform as well as
Barnard’s or Boschloo’s test when the sample sizes are very unbalanced. Chan (1998) and
Rohmel and Mansmann (1999) considered unconditional tests of equivalence. Zhu and Reid
(1994) noted that some information loss about the association occurs in conditioning on the
margins except when 6 = 1. Other articles on this topic include Berkson (1978), Crook and
Good (1980), Gunel and Dickey (1974), Haber (1989), Plackett (1977), and Yates (1984).
Agresti (1992, 2001) surveyed small-sample methods.

Two-sided P-value, mid P-value: For discussion of two-sided P-values for Fisher’s test, see
Blaker (2000), Davis (1986a), Dupont (1986), Lioyd (1988b), Mantel (1987b), and Yates and
discussants (1984). For inference using the mid P-value, see Agresti and Gottard (2007) and
references therein, Berry and Armitage (1995), Hirji (2005, Sec. 2.5, 2.8, and Sec. 2.11.1 for
many references), Hwang and Yang (2001), Routiedge (1994), Seneta and Phipps (2001),
Seneta et al. (1999), Wells (2010), and Yang et al. (2004). Similar benefits can accrue from
alternative proposed P-values. One approach, useful when several tables have the same value
for a test statistic, uses the table probability to create a more finely partitioned sample space; for
tables having the observed test statistic value, only those contribute to the P-value that are no
more likely than the observed table (Cohen and Sackrowitz 1992, Kim and Agresti 1995). This
depends on more than the sufficient statistic, and in some cases a Rao-Blackwellized version
is the mid P-value (Wells 2010). Ordinary P-values obtained with higher-order asymptotic
methods without continuity corrections for discreteness yield performance similar to that of
the mid P-value (Brazzale et al. 2007, Pierce and Peters 1999, Strawderman and Wells 1998).

Section 3.6: Bayesian Inference for Two-Way Contingency Tables

3.11

Bayes: Agresti and Hitchcock (2005) gave many other references for Bayesian inference in
2 x 2 tables. Bayes factors for testing independence were considered by Albert (1997), Casella
and Moreno (2009), Crook and Good (1980), Good (1976), and Quintana (1998). Altham
(1969) used a Bayesian analysis with two ordinal multinomial distributions that evaluates the
extent of evidence about stochastic ordering. For situations with no prior information and
even an unknown sample space, Walley (1996) proposed an “imprecise Dirichlet model” for
multinomial data for which inferences are expressed in terms of posterior upper and lower
probabilities that become more precise as the number of observations increases.

EXERCISES

Applications

3.1

3.2

A meta-analysis (Moore et al., Lancet 370: 319-328, 2007) of studies on the asso-
ciation between cannabis use (yes, no) and presence of psychosis (yes, no) reported
a pooled odds ratio estimate of 1.41, with 95% confidence interval of (1.20, 1.65).
Explain how to interpret this interval.

For 239 golf tournaments on the PGA tour between 2004 and 2009, the economists
D. Pope and M. Schweitzer evaluated risk aversion by comparing percentages of
putts made when putting for a par versus putting for a birdie (Am. Econ. Rev. 101:
129-157, 2011). For 2828 pairs of putts taken from within 1 inch of each other
(from an average distance of about 50 inches) in the same tournament, the sample
proportions made were 0.835 when putting for birdie and 0.880 when putting for
par (thus avoiding the loss of a bogey). Construct a 95% confidence interval for the
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3.5

3.6

3.7

3.8
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difference between the proportions in a corresponding conceptual population. State
assumptions, and indicate a key way they do not apply for this study. (Chapter 11
presents more refined methods.)

Table 3.10 uses the GSS to cross-classify a subject’s political party ID with their
opinion about whether homosexuals should have the right to marry, for subjects hav-
ing strong identification with a particular party and strong agreement or disagreement
with homosexual marriage. Show that (a) ]og(é) = 3.728, (b) its standard error is
0.746, and (c¢) the Wald 95% confidence interval for 6 is (9.6, 179.3). Name the main
factor that causes this interval estimate to be so imprecise.

Table 3.10 Opinion on Homosexual Marriage by Political Party,
for Exercise 3.3

Homosexuals Should Have Right to Marry

Political

Party Strongly Agree Strongly Disagree
Strong Democrat 60 44

Strong Republican 2 61

Source: 2010 General Social Survey.

For Table 2.10 on seat-belt use and results of auto accidents, find and interpret 95%
confidence intervals for the conceptual population (a) odds ratio, (b) difference of
proportions, and (c) relative risk.

Refer to Table 2.5 on lung cancer and smoking. Conduct an inferential analysis, and
interpret results.

A study considered the effect of prednisolone on severe hypercalcemia in women
with metastatic breast cancer (B. Kristensen et al., J. Intern. Med. 232: 237-245,
1992). Of 30 patients, 15 were randomly selected to receive prednisolone. The other
15 formed a control group. Normalization in their level of serum-ionized calcium
was achieved by 7 of the treated patients and none of the control group. Obtain a
95% confidence interval for the odds ratio using (a) the Wald interval and (b) the
profile likelihood. In each case, note the effect of the zero cell count.

In professional basketball games during 2009-2010, when Kobe Bryant of the Los
Angeles Lakers shot a pair of free throws, 8 times he missed both, 152 times
he made both, 33 times he made only the first, and 37 times he made only the
second. Is it plausible that the successive free throws are independent? (Source of
data: www.nba.com and appendix of article 224532 (vol. 6, 2011) by G. Yaari and
S. Eisenmann at www . plosone . org investigating the “hot hand” in sports.)

Refer to Exercise 3.3 and Table 3.10.
a, Find the z statistic (3.12) and explain how it relates to a chi-squared test.

b. Find a score or profile likelihood confidence interval for the odds ratio, and
compare it to the Wald interval.
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3.9

3.10

311

3.12

3.13

Goto sda.berkeley.edu/GSS and download a contingency table relating attained
education and the fundamentalism of one’s religious beliefs, for the most recent
survey. The GSS variable names are EDUCATION and FUND, and you can enter
the year in the Selection Filter, such as YEAR(2010). Using the GSS capabilities or
software, conduct the following analyses:

a. Report chi-squared statistics, df values, P-values, and interpret.

b. Conduct a residual analysis, and interpret. (The standardized residuals are gener-
ated by the GSS if you check “Show z statistic” on their menu.)

As in the previous exercise, download recent GSS data and perform analyses to
answer the questions asked.

a. Are people happier who believe in life after death? Analyze using the GSS
variables HAPPY and POSTLIFE.

b. Is belief in the existence of God associated with party ID? Analyze the 3 x 6
table resulting from using the GSS variables GOD and PARTYID, combining the
PARTYID categories 0 and 1 for Democrat, 2, 3, and 4 for Independent, and 5
and 6 for Republican.

Refer to Table 3.11, GSS data on party ID and race.

a. Using X2 and G?, test the hypothesis of independence between party identifica-
tion and race. Report the P-values and interpret.

b. Use standardized residuals to describe the evidence of association.

¢. Partition chi-squared into components regarding the choice between Democrat
and Independent and between these two combined and Republican. Interpret.

Table 3.11 Data for Exercise 3.11 on Party ID and Race

Party Identification

Race Democrat Independent Republican
Black 192 75 8
White 459 586 471

Source: 2008 General Social Survey, Nationa! Opinion Research Center.

Using the 2008 GSS, we cross-classified party ID with gender. Table 3.12 shows
some results. Explain how to interpret all the results on this printout. (Reschi denotes
the Pearson residual and StReschi denotes the standardized residual.)

A recent study (by R. Armenio et al., J. Am. Dent. Assoc. 139: 592-597, 2008) re-
ported results of a double-blind randomized clinical trial comparing tooth sensitivity
for 14 patients using a fluoride gel to 15 patients using placebo. Each patient had
weekly visits for responses, between 3 and 7 times. The authors reported a 2 x 2
table having counts (11, 57) for placebo and (21, 62) for fluoride gel for the (yes, no)
response on tooth sensitivity. They reported a P-value of 0.2 for a chi-squared test
comparing the two treatments. Discuss the suitability of this analysis. {Hint: Are the
observations independent?]
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Table 3.12 Results for Exercise 3.12 on Party ID and Gender

Expected
Frequency dem indep repub
female 422 381 273
393.41 407.05 275.55
male 299 365 232
327.59 338.95 229.45
Statistic DF Value Prob
Chi-Square 2 8.2943 0.0158

Likelihood Ratio Chi-Square 2 8.3090 0.0157

Observ Resraw Reschi StReschi Observ Resraw Reschi  StReschi

1 28.59 1.58 2.69 4 28.59 1.44 2.69
2 26.05 1.41 2.43 5 ~26.05 —1.29 —2.43
3 2.55 0.17 0.26 6 —2.55 —0.15 —0.26

3.14

3.15

3.16

Table 3.13 Data for Exercise 3.14 on Psychiatric Diagnoses

Diagnosis Drugs No Drugs
Schizophrenia 105 8
Affective disorder 12 2
Neurosis 18 19
Personality disorder 47 52
Special symptoms 0 13

Source: Reprinted with permission from E. Helmes and G. C. Fekken,
J. Clin. Psychol. 42: 569576, 1986.

Table 3.13 classifies a sample of psychiatric patients by their diagnosis and by
whether their treatment prescribed drugs. Partition chi-squared into three compo-
nents to describe differences and similarities among the diagnoses, by comparing
(i) the first two rows, (ii) the third and fourth rows, and (iii) the last row to the first
and second rows combined and the third and fourth rows combined.

A GSS that cross-classified income in thousands of dollars (<5, 5-15, 15-25, >25)
by job satisfaction (very dissatisfied, a little satisfied, moderately satisfied, very
satisfied) for black Americans produced a 4 x 4 table having counts, by row, (2, 4,
13,3,/2,6,22,4/0,1,15,8/0, 3, 13, 8). For this table, X> = 11.5 (P = 0.24),
whereas using scores (3, 10, 20, 35) for income and (1, 3, 4, 5) for job satisfaction,
M? =17.04 (P = 0.008). Explain why the results are so different.

A study on educational aspirations of high school students (S. Crysdale, Int. J.
Compar. Sociol. 16: 19-36, 1975) measured aspirations with the scale (some high
school, high school graduate, some college, college graduate). The student counts
in these categories were (9, 44, 13, 10) when family income was low, (11, 52,
23, 22) when family income was middle, and (9, 41, 12, 27) when family income
was high.
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a. Test independence of educational aspirations and family income using X2 or G2.
Explain the deficiency of this test for these data.

b. Find the standardized residuals. Do they suggest any association pattern?

c. Conduct an alternative test that may be more powerful. Interpret.

3.17 Refer to Table 2.13 on homosexual sex and premarital sex.
a. Construct and interpret a mosaic plot.
b. Obtain a 95% confidence interval for gamma. Interpret the association.

3.18 Table 3.14 shows the results of a retrospective study comparing radiation therapy
with surgery in treating cancer of the larynx. The response indicates whether the
cancer was controlled for at least two years following treatment. Table 3.15 shows
SAS output. Some R output looks like:

> fisher.test (matrix(c(21,2,15,3),ncol=2,byrow=TRUE),
alternative="two.sided") p-value = 0.6384

> fisher.test (matrix(c(21,2,15,3),ncol=2,byrow=TRUE),
alternative="greater") p-value = 0.3808

> fisher.test (matrix(c(21,2,15,3),ncol=2,byrow=TRUE),
alternative="less") p-value = 0.8947

a. Report and interpret the P-value for Fisher’s exact test with (i) H,: ¢ > | and
(i) H,: 6 # 1. Explain how the P-values are calculated.

b. Find and interpret the mid P-value for H,: 8 > 1. Summarize advantages and
disadvantages of this type of P-value.

Table 3.14 Data for Exercise 3.18 on Therapy for Cancer of Larynx

Cancer Controlled Cancer Not Controlled
Surgery 21 2
Radiation therapy 15 3

Source: Reprinted with permission from W. M. Mendenhall, R. R. Million, D. E.
Sharkey, and N. J. Cassisi, Inz. J. Radiat. Oncol. Biol. Phys. 10: 357-363, 1984,
© Pergamon Press.

Table 3.15 SAS Output for Exercise 3.18 on
Therapy for Cancer of Larynx

Fisher’s Exact Test

Cell (1,1) Frequency (F) 21
Left-sided Pr <=F 0.8947
Right-sided Pr >=F 0.3808
Table Probability (P) 0.2755
Two-sided Pr <=P 0.6384
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A study in the Department of Wildlife Ecology at the University of Florida sampled
wild common carp fish from a wetland in central Chile. One analysis investigated
whether the fish muscle had lead pollutant and whether there was evident malforma-
tion in the fish. Of 25 fish without lead, 7 had malformation. Of 14 with lead, 7 had
malformation. Report and interpret the P-value for Fisher’s exact test for a one-sided
alternative of a greater chance of malformation when there is lead pollution.

Seneta and Phipps (2001) described a medical study that compared subjects with
nonacute appendicitis and with acute appendicitis in terms of whether they suffered
severe right abdominal pain. Such severe pain was reported by 5 of the 15 nonacute
cases and by 1 of the 16 acute cases. The doctors believed that greater density of
nerve fibres in the nonacute cases could increase the chance of such pain. Find and
interpret the P-value for a one-sided (a) Fisher’s exact test and (b) unconditional
exact test for two binomials.

Analyze Table 3.1 using the Bayesian approach with independent uniform prior

distributions.

a. Specify the posterior distribution of (7, m2).

b. Using software or your own simulation, estimate the posterior mean of the dif-
ference of proportions and find a 95% equal-tail posterior interval. Interpret.

Refer to the table (11, 0/ 0, 1) analyzed with Bayesian methods in Section 3.6.4.
Using simulation, estimate P (7| > m;|y;, #1; y2, #2) for independent beta(w, o2)
priors having (a) ¢; = a2 = 2, (b) oy = a2 = 1, and (¢) @) = az = 0.50. Interpret.

Table 3.16 cross-classifies votes in the 2000 and 2004 U.S. presidential elections.
Treating the two rows as independent binomials and using uniform priors, generate
the posterior distribution of the odds ratio. Plot it, and find a 95% equal-tail or HPD
posterior interval. What is the disadvantage of an HPD interval here?

Table 3.16 Data on Presidential Votes in 2000
and 2004, for Exercise 3.23

Political Vote in 2004

Vote in 2000 Bush Kerry

Bush 763 65
Gore 59 680

Source: 2006 General Social Survey

Theory and Methods

3.24

3.25

Is § the midpoint of commonly used confidence intervals for the odds ratio 67 Why
or why not?

For comparing two binomial samples with fixed sample sizes, show that the stan-
dard error (3.1) of a log odds ratio increases when, for either sample, the absolute
difference of proportions of successes and failures increases. [Hint: Show that the
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3.26

3.27

3.28

3.29

3.30

3.31

asymptotic variance is minimized when each binomial probability is 0.50. In partic-
ular, when an outcome is relatively uncommon, estimates of the log odds ratio tend
to be imprecise.]

Using the delta method as in Section 3.1.6, show that the Wald confidence interval
for the logit of a binomial parameter 7 18

log[# /(1 — #)] % zqa/ VR (1 — 7).

Explain how to use this interval to obtain one for 7 itself. [Newcombe (2001) noted
that the sample logit is also the midpoint of the score interval (1.14) for z, on the
logit scale. He showed that this logit interval contains the score interval.]

For two parameters, a confidence interval for 6, — 8, based on single-sample estimate
6; and interval (£;, u;) for6;,i = 1,2, 1is

6 —6, - \/(él — 0P+ — 62, 6 -6+ \/(“l — 61 + (6 — 02)?).
Newcombe (1998b) proposed an interval for r; — 75 using the score interval (£;, u;)

for 7; that performs similarly to the score method of Section 3.2.5. It is (7| — 73 —
Zaj25L, 1 — A2 + Zgp280), With

SL:felu—zluuz(l—uz)’ SU:\/Ml(l—Ml)_Ffz(l—Ez).

n n n n
Show that this has the general form above of an interval for 8, — 8,.

For multinomial sampling, use the asymptotic variance of log # to show
that for Yule’s Q (Exercise 2.38) the asymptotic variance of /n(Q — Q) is

(Zi 2 n,f‘) (1 — Q%)?/4 (Yule 1900, 1912).

For multinomial probabilities = = (7}, 73, ...) with a contingency table of ar-
bitrary dimensions, consider a measure of form g(mx) = v/8. Show that the
asymptotic variance of /n[g(#) — g(x)] is of = D n,z — (ZI n,ni)z]/54,
where n; = 6(dv/dm;) — v(88/97;) (Goodman and Kruskal 1972).

Show that X*=n Y, 3 (py = pixp+j)/Pivpas =1 1 25 piePrjl@; — 1)
for the sample association factors {a;}. Thus, X? can be large when n is large,
regardless of whether the association is practically important. Explain why this test,
like other tests, merely indicates the degree of evidence against H, and does not
describe strength of association. (“Like fire, the chi-square test is an excellent servant
and a bad master,” Sir Austin Bradford Hill, Proc. R. Soc. Med. 58: 295-300, 1965.)

Fora?2 x 2 table, consider Hy: 7y = 62, w12 = 721 = 0(1 — ), 7m0 = (1 — 6)%.
a. Show that the marginal distributions are identical and that independence holds.
b. For a multinomial sample, under Hy show that § = (p14 + py1)/2.
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¢. Explain how to test Hy. Show that df = 2 for the test statistic.

d. Refer to Exercise 3.7. Are Kobe Bryant’s pairs of free throws plausibly indepen-
dent and identically distributed?

For testing independence, show that X% <nmin({ —1,J —1). Hence V2 =
X?/[nmin(I — 1, J — 1)] falls between 0 and 1 (Cramér 1946). [For 2 x 2 ta-
bles, X2/n is often called phi-squared; it equals Goodman and Kruskal’s tau of
Exercise 2.39. Other measures based on X? include the contingency coefficient
[X?/(X? + n)]'/2, which Pearson (1904) proposed as an estimate of the correlation
for an underlying bivariate normal distribution.]

Fora 1 x 2 table (i.e., a single binomial Y based on # trials, with probabilities 7 and
1 — m), consider testing Hy: m = my.
a. Show that the Pearson residuals are

(y — nmo)//nmo and = (y — nmo)/v/n(1 — mg),

which have differing absolute values when 7y # 0.50.
b. Show that the standardized residuals are

(y — nmo)//nmo(l —mp) and  — (y — nmg)/+/ nme(l — mo).

Explain why these are more suitable than Pearson residuals.

For a 2 x 2 table, show that:
a. The four Pearson residuals may take different values.

b. All four standardized residuals have the same absolute value. (This is sensible,
since df = 1.)

c. The square of each standardized residual equals X?.

Use a partitioning argument to explain why G? for testing independence can-
not increase after combining two rows (or two columns) of a contingency table.
[Hint: Explain why G2 for full table = G? for collapsed table +G? for table of the
two rows that are combined in the collapsed table.]

Assume independence, and let p;; = ny/n and #; = piy py ;.
a. Show that p;; and 7;; are unbiased for my; = 7 my ;.
b. Show that var(p;) = m; my;(1 — i w1 5)/ 0.

c. Using E(piy py)* = E(p})E(p3 ;) and E(p},) = var(pi+) + [E(pi+)]?, show
that

var(#y) = {miy 7wy jlmie (1 — 7wy ) + 7wy (1 — 7)1}/

+7i (1 =)y (1 — 7T+j)/n2'
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3.37

3.38

3.39

3.40

341

3.42

3.43

d. As n — oo, show that lim var(/n #;) < limvar(,/n p;), with equality only if
7y = 1 or 0. Hence, if the model holds or if it nearly holds, the model estimator
is better than the sample proportion.

Consider an / x J table with ordered columns and unordered rows. Ridits (Bross
1958) are data-based column scores. The jth sample ridit is the average cumulative
proportion within category j,

j—1

. 1

Fj= ZP+/< + (§> P+ij-
k=1

The sample mean ridit in row i is R; = >, Fipji- Show that >, p+jfj =0.50 and
>, pi+R; = 0.50. [For ridit analyses, see Agresti (2010, Sec. 2.1), Beder and Heim
(1990), Bross (1958), Fleiss et al. (2003, Sec. 9.4), and Landis et al. (1978).]

Show that the sample value of the uncertainty coefficient (2.13) satisfies U =
-G?/2n (Z D+ log p+j). [Haberman (1982) gave its standard error.]

Of six candidates for three managerial positions, denote the females by F1, F2, F3
and the males by M1, M2, M3.

a. Identify the 20 possible combinations of candidates that could be selected. Con-
struct the contingency table for the actual sample, which is (F2, M1, M3).

b. Let p; denote the sample proportion of males selected and p, the sam-
ple proportion of females selected. Of the 20 possible samples, show that
10 have p, — p2 > % Thus, if the three managers were randomly selected,
P (pl —p2 > %) = 10/20 = 0.50. Explain why this is the P-value for Fisher’s
exact test with H,: | > .

When a test statistic has a continuous distribution, the P-value has a null uniform dis-
tribution, P(P-value < @) = « for 0 < @ < 1. For Fisher’s exact test, explain why
P(P-value < &) < «. [Hint: P(P-value < o) = E[P(P-value < a|ny4, nyy, n)].]

Note 3.3 showed moments of the hypergeometric distribution (3.17). Letting p =
nyi/n, show that n|; has the same mean as a binomial random variable for 7,
trials with success probability p, and that it has its variance multiplied by a finite
population correction factor (n — n4)/(n — 1). (The hypergeometric is similar to
the binomial when n, is small compared to n.)

For the tea-tasting data (Table 3.9), construct the null distributions of the ordinary
P-value and the mid P-value for Fisher’s exact test with H,: 6 > 1. Find and compare
their expected values.

In Section 3.5.6 we analyzed a 2 x 2 table having entries (3, 0/ 0, 3). Explain why
the unconditional P-value, evaluated at 7 = 0.50, is related to Fisher conditional



112

34

345

346

347

INFERENCE FOR TWO-WAY CONTINGENCY TABLES

P-values for various tables by

6
P(X*26)=Y P(X* 2 6lny = bP(ny) = k).
k=0

Thus, the unconditional P-value of % is a weighted average of the Fisher P-value for
the observed column margins and P-values of 0 corresponding to the impossibility
of getting results as extreme as observed if other margins had occurred (i.e.

0.10 [(g) (%)6]). The Fisher quote in Section 3.5.7 gave his view about this.

1 _
'3

For testing Hy: m| = m, with two binomial variates y; and y,, a “reasonable” test
would not reject Hy if y; = y, = 0. Since as 7y and 7, approach 0, the probability of
this converges to 1 even if 7| # m,, explain why any such test is biased, potentially
having power less than its size (Haber 1986).

For independent uniform prior distributions for two binomial parameters, show that
r = my/my has prior density g(r) = % forO <r <1land g(r)=1/2r>forr > 1.

Explain why a Bayesian HPD interval is sensible for m; — 7, but not usually for
Ty /77.'2.

Consider a particular choice of Dirichlet means {y; = E(m;;) = a;;/ K} for the Bayes
estimator (1.19) extended to two-way tables. Show that the total mean squared error is

LK o+ KOP [ Yy = v | + nfn + KOP[1 = Y w2
divided by n. Show that the value of K that minimizes this is
€= (-5 / [Son-r)
Fienberg and Holland (1973) showed this and used the empirical Bayes approach of

estimating K by replacing = by the sample proportion p and letting {y;; = p;+p+;}.
Albert (2010) surveyed Bayesian methods for smoothing contingency tables.



CHAPTER 4

Introduction to Generalized
Linear Models

In Chapters 2 and 3 we focused on methods for two-way contingency tables. Most studies,
however, have several explanatory variables, and they may be continuous as well as cate-
gorical. Modeling helps us to efficiently evaluate effects and provide improved estimates of
response probabilities because of the parsimonious reduction in the number of parameters.

The rest of the book focuses on model building for categorical response variables. In this
chapter we introduce a family of generalized linear models that contains important models
for categorical responses as well as standard models for continuous responses. Section 4.1
defines three components common to all generalized linear models. Section 4.2 illustrates
with models for binary responses. The most important case is logistic regression, a linear
model for the log odds (logit) transformation of a binomial parameter. In Chapters 5 through
8 we study these models in detail.

In Section 4.3 we present generalized linear models for counts. A Poisson regression
model called a loglinear model is a linear model for the log of a Poisson mean. In Chapters
9 and 10 we use them for modeling counts in contingency tables having multiple response
variables.

Sections 4.4 through 4.7 are more technical. Readers wanting mainly an overview
of methods can skip them or read them lightly. Section 4.4 shows likelihood equations
and the asymptotic covariance matrix of maximum likelihood (ML) parameter estimates
for generalized linear models, and Section 4.5 summarizes inferential methods. Methods
of solving the likelihood equations are presented in Section 4.6. In the final section we
introduce a generalization, quasi-likelihood, that further extends the scope of models.

4.1 THE GENERALIZED LINEAR MODEL

Generalized linear models (GLMs) extend ordinary regression models to encompass
nonnormal response distributions and modeling functions of the mean. They have three
components: A random component identifies the response variable Y and its probabil-
ity distribution; a systematic component specifies explanatory variables used in a linear

Categorical Data Analysis, Third Edition. Alan Agresti.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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predictor function; and a link function specifies the function of £(Y) that the model equates
to the linear predictor. Nelder and Wedderburn (1972) introduced the class of GLMs,
although the most important models in the class were established before then.

4.1.1 Components of Generalized Linear Models

The random component of a GLM consists of a response variable ¥ with independent
observations (yy, . .., yy) from a distribution in the natural exponential family. This family
has probability density function or mass function of form

Fii6) = a@)b(y;) exply; Q6))]. .0

Several important distributions are special cases, including the Poisson and binomial. The
value of the parameter 6; varies fori = 1,..., N as a function of values of explanatory
variables. The parameter Q(9) is called the natural parameter. In Section 4.4 we present
a more general formula (4.17) for f that also permits a dispersion parameter, but (4.1) is
sufficient for the discrete data models that are the primary focus of this book.

The systematic component of a GLM relates a vector (7, ..., ny) to the explanatory
variables through a linear model. Let x;; denote the value of explanatory variable j (j =
0,1,2,...) for subject i. Then

ni:Zﬂ,xij, l=1,,N
J

This linear combination of explanatory variables is called the linear predictor. Usually,
x;0 = | for all i, representing the coefficient of an intercept term Sy (often denoted by «) in
the model.

The third component of a GLM is a link function that connects the random and systematic
components. Let u; = E(Y;),i = 1,..., N. The model links y; to , by n; = g(u;), where
the link function g is a monotonic, differentiable function. Thus, g links y&; to explanatory
variables through the formula

gu) =Y Bixy. i=1,....N. 4.2)
j

The link function g(u) = u, called the identity link, has n; = u;. It specifies a linear
model for the mean itself. This is the link function for ordinary regression with normally
distributed Y. The link function that transforms the mean to the natural parameter is called
the canonical link. For it, g(u;) = Q(4;), and Q(6;) = Z,‘ Bjxi;. Sections 4.1.2 and 4.1.3
show examples.

In summary, a GLM is a linear model for a transformed mean of a response variable that
has distribution in the natural exponential family. We now illustrate the three components
by introducing the key GLMs for discrete response variables.

4.1.2 Binomial Logit Models for Binary Data

Many response variables are binary. We represent the “success” and “failure” outcomes
by | and 0. A Bernoulli trial has probabilities P(Y = 1) =7 and P(Y =0) =1 — x, for
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which E(Y) = m. This is the special case of the binomial distribution (1.1) withn = 1. We
can express the probability mass function as

foim)y=a"0 —m)' =1 —m)[x/(1 — 7))

= (1 —m)exp |:y (log l f”)il (4.3)

for y = Oand 1. This is in the natural exponential family (4.1), identifying 6 withz, a(mw) =
1 —m,b(y) = 1,and Q(r) = log[n /(1 — m)]. The natural parameter log[w /(1 — )] is the
log odds of response outcome 1, the logit of . This is the canonical link function. GLMs
using the logit link are introduced further in Section 4.2.3. They are referred to as logistic
regression models, or sometimes simply as logit models.

4.1.3 Poisson Loglinear Models for Count Data

Some response variables have counts as their possible outcomes. In a health survey, each
observation might be the number of illnesses in the past year for which the subject visited
a doctor. Counts also occur as entries in contingency tables.

The simplest distribution for count data is the Poisson. The Poisson probability mass
function (1.4) for a count Y is

¥

]
flsm) = ¢ = exp(—u) (;) exply(log ), y=0,1,2,....

y!

This has natural exponential form (4.1) with 8 = w, a(u) = exp(—u), b(y) = 1/y!, and
Q(u) = log . The natural parameter is log w, so the canonical link function 1s the log
link, n = log w. The model using this link function is

log u,»:Zﬁj.x,:,-, l=],.N (44)
j
This model, to be introduced further in Section 4.3.1, is called a Poisson loglinear model.

4.1.4 Generalized Linear Models for Continuous Responses

The class of GLMs also includes models for continuous responses. The normal distribution
is in a natural exponential family that includes dispersion parameters. Its natural parameter
is the mean. Therefore, an ordinary regression model is a GLM using the identity link.
Table 4.1 lists this and other standard models for a normal random component. The table
also lists GLMs for discrete responses that are presented in Chapters 5-10.

4.1.5 Deviance of a GLM

For a particular GLM with observations y = (yi, ..., yn), let L(g; y) denote the log-
likelihood function expressed in terms of the means g = (uy, ..., un). Let L(f; y) denote
the maximum of the log likelihood for the model. Considered for all possible models, the
maximum achievable log likelihood is L(y; y). This occurs for the most general model,
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Table 4.1 Types of Generalized Linear Models for Statistical Analysis

Random Systematic

Component Link Function Component Model Chapters
Normal Identity Continuous Regression

Normal Identity Categorical Analysis of variance

Normal Identity Mixed Analysis of covariance

Binomial Logit Mixed Logistic regression 5and 6
Binomial Probit and others Mixed Binary regression 7
Multinomial Generalized logit Mixed Multinomial response 8
Poisson Log Mixed Loglinear 9 and 10

having a separate parameter for each observation and the perfect fit i = y. Such a model
is called the saturated model. This model is not useful, because it does not provide data
reduction. However, it serves as a baseline for comparison with other model fits.

The deviance of a Poisson or binomial GLM is defined to be

=2[L(f; y) — L(y; y)].

This is the likelihood-ratio statistic for testing the null hypothesis that the model holds
against the general alternative (i.e., the saturated model). We use the deviance throughout
the book for model checking and for inferential comparisons of models. Methods for
analyzing the deviance generalize analysis of variance methods for normal linear models.

For some applications with Poisson and binomial GLMs, the number of observations N
is fixed and the individual counts are relatively large. Then the deviance has an approximate
chi-squared null distribution. The df = N — p, where p is the number of model parameters;
that is, df equals the difference between the numbers of parameters in the saturated model
and in the unsaturated model. The deviance then provides a test of model fit.

One such example is independent binomial counts at N fixed settings of predictors when
the number of trials at each setting is large. Let ¥; be bin(n;, 7;), i = 1, ..., N. Consider
the simple model of homogeneity, 7; = « all i. It has p = 1 parameter. The saturated model
makes no assumption about {r;}, letting them be any N values between 0 and 1.0. It has
N parameters. The deviance for the homogeneity model has df = N — 1. In fact, it equals
the G? likelihood-ratio statistic (3.11) for testing independence in the N x 2 contingency
table that these samples form. Under independence, its distribution converges to a chi-
squared distribution as the {»;} increase, for fixed N. Another example is a contingency
table constructed from sample survey data, in which the classification categories and the
number of cells N is fixed as we collect more data, and we treat the cell counts as Poisson
variates.

4.1.6 Advantages of GLMs Versus Transforming the Data

A traditional way to model data transforms Y so that it has approximately a normal distri-
bution with constant variance; then, ordinary least-squares regression is applicable. With
GLMs, by contrast, the choice of link function is separate from the choice of random
component. If a link is useful in the sense that a linear model for the predictors is plausible
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for that link, it is not necessary that it also stabilizes variance or produces normality. This
is because the fitting process maximizes the likelihood for the choice of distribution for Y,
and that choice is not restricted to normality.

Let g denote a function, such as the log function, that is a link function in the GLM
approach or a transformation function in the transformed data approach. An advantage of
the GLM formulation is that the model parameters describe g[ E£(Y )], rather than E[g(Y )] as
in the transformed data approach. With the GLM approach, those parameters also describe
effects of explanatory variables on E(Y), after applying the inverse function for g. Such
effects are more relevant than effects of explanatory variables on E[g(Y)].

GLMs provide a unified theory of modeling that encompasses the most important models
for continuous and discrete variables. Models studied in this text are GLMs with binomial
or Poisson random component, or multivariate extensions of GLMs. The ML parameter
estimates are computed with an algorithm, presented in Section 4.6, that iteratively uses a
weighted version of least squares. A reason for restricting GLMs to the exponential family
of distributions for Y is that the same algorithm applies to this entire family, for any choice
of link function.

Nearly all statistical software has the facility to fit GLMs. This text’s computing appendix
at www.stat .ufl.edu/~aa/cda/cda.html gives details.

4.2 GENERALIZED LINEAR MODELS FOR BINARY DATA

Let Y denote a binary response variable, such as the result of a medical treatment (success,
failure). Each observation has one of two outcomes, denoted by 1 and 0, which we treat
as a binomial variate for a single Bernoulli trial. The mean E(Y) = P(Y = 1). We denote
P(Y = 1) by 7 (x), reflecting its dependence on values x = (xy, ..., x,) of explanatory
variables. The variance of Y is

var(Y) = 7(x)[1 — w(x)],

which is the binomial variance for n = 1.

4.2.1 Linear Probability Model

For a binary response variable, the regression model
r(x)=a+ fixi+ -+ Bpxp (4.5)

is called a linear probability model. With independent observations it is a GLM with
binomial random component and identity link function.

This model has a major structural defect: Probabilities fall between 0 and 1, but linear
functions take values over the entire real line. Model (4.5) can have 7 (x) < 0 and/or
7(x) > 1 for some x values. The model can be valid over a restricted range of x values.
When it is plausible, an advantage is its simple interpretation: 8; is the change in 7 (x) for
a one-unit increase in x;.

We defer to Section 4.6 the technical details of ML model fitting for this and other
GLMs. Since var(Y) = m(x)[1 — 7 (x)], the variance depends on x through its influence on
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7 (x). The constant variance condition that makes ordinary least-squares estimators optimal
(i.e., minimum variance in the class of linear unbiased estimators) is not satisfied, so the
ML estimator is more efficient than least squares. The estimates and standard errors for
ML and least squares are usually similar, however, when 7 (x) for the sample x values
falls in the range within which the variance is relatively stable, about 0.3 to 0.7. When
used with multiple explanatory variables, difficulties often occur with ML model fitting
because at a step of the iterative fitting process, 7 (x) falls outside the [0, 1] range for
some subjects’ x values. Least-squares fitting still works in such cases, but also typically
gives such unsatisfactory 7 (x) estimates. Also Y, being binary, is very far from normally
distributed, so the usual ¢ sampling distribution for standardized least-squares estimators
do not apply.

4.2.2 Example: Snoring and Heart Disease

We illustrate the linear probability model with Table 4.2, from an epidemiological survey to
investigate snoring as a risk factor for heart disease. The sample consists of 2484 subjects
who visited four family practice units in Toronto that served different socioeconomic classes
and ethnic groups. Those surveyed were classified according to their spouses’ report of how
much they snored and according to whether they reported having heart disease. The model
states that the probability of heart disease 1s linearly related to the level of snoring x. We
treat the rows of the table as independent binomial samples. No obvious choice of scores
exists for categories of x. We used (0, 2, 4, 5), treating the last two levels as closer than
the other adjacent pairs. ML estimates and standard errors are the same if we use a data
file of 2484 binary observations or if we enter the four binomial totals of “yes” and “no”
responses listed in Table 4.2.

Software reports the ML fit, 7 (x) = 0.0172 4 0.0198x, with 8 = 0.0198 having SE =
0.0028. For nonsnorers (x = 0), the estimated proportion of subjects having heart disease
15 0.0172. We refer to the estimated values of E(Y) for a GLM as fitted values. Table 4.2
shows the sample proportions and the fitted values for this model. Figure 4.1 graphs
the sample and fitted values. The table and graph suggest that the model fits well. (In
Section 5.2.3 we present formal goodness-of-fit analyses for binary-response GLMs.) The
model interpretation is simple. The estimated probability of heart disease is about 0.02 for
nonsnorers; it increases 2(0.0198) = 0.04 for occasional snorers, another 0.04 for those
who snore nearly every night, and another 0.02 for those who always snore. The study was
observational, and it is unclear whether this association could be due to some confounding
factor or a medical condition such as sleep apnea.

Table 4.2 Relationship Between Snoring and Heart Disease

Heart Disease

Proportion Linear Logistic
Snoring Yes No Yes Fit? Fit?
Never 24 1355 0.017 0.017 0.021
Occasionally 35 603 0.055 0.057 0.044
Nearly every night 21 192 0.099 0.096 0.093
Every night 30 224 0.118 0.116 0.132

“Model fits refer to proportion of yes responses.
Source: P. G. Norton and E. V. Dunn, Br. Med. J. 291: 630-632. 1985, BMJ Publishing Group.
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Figure 4.1 Estimated probabilities for linear probability and logistic regression models.

4.2.3 Logistic Regression Model

Usually, binary data result from a nonlinear relationship between 7 (x) and x. A fixed
change in x often has less impact when 7 (x) is near O or 1 than when 7 (x) is near 0.50. In
the purchase of an automobile, consider the choice between buying new or used. Let 7 (x)
denote the probability of selecting new when annual family income = x. An increase of
$10,000 in annual income would have less effect when x = $1,000,000 [for which 7 (x) is
near 1] than when x = $50,000.

In practice, nonlinear relationships between 7 (x) and x are often monotonic, with 7 (x)
increasing continuously or 7 (x) decreasing continuously as x increases. The S-shaped
curves in Figure 4.2 are typical. The most important curve with this shape has the model
formula

T() = exp(a + Bx)

=— 4.6)
1 4 exp(a + Bx)

This is a logistic regression model. As x increases, 7 (x) increases when 8 > 0 and decreases
when 8 < 0.

Let’s find the link function for which logistic regression is a GLM. For (4.6) extended
to multiple predictors, the odds are

m(x)

T—rm) exp(a + Bixy + -+ -+ Bpxp).

The log odds has the linear relationship

log —F)_ _ o4 Bixy + ¥ By, 4.7)
I—7(x)
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Figure 4.2 Logistic regression functions.

Thus, the appropriate link is the log odds transformation, the logiz. Logistic regression
models are GLMs with binomial random component and logit link function.

The logit is the natural parameter for the binomial distribution, so the logit link is its
canonical link function. Whereas 7 (x) must fall in the (0, 1) range, the logit can be any real
number. The real numbers are also the range for linear predictors that form the systematic
component of a GLM. So, this model does not have the structural problem that the linear
probability model has.

For the snoring data in Table 4.2, software reports the logistic regression ML fit

logit[# (x)] = —3.87 + 0.40x.

The positive 8 = 0.40 reflects the increased incidence of heart disease at higher snoring
levels. In Chapters 5 and 6 we study logistic regression in detail and interpret such equations.
Estimated probabilities result from substituting x values into the estimate of probability
formula (4.6). Table 4.2 also reports these fitted values. Figure 4.1 displays the fit. The fit
is close to linear over this narrow range of estimated probabilities, and results are similar
to those for the linear probability model.

4.2.4 Binomial GLM for 2 x 2 Contingency Tables

Among the simplest GLMs for a binary response is the one having a single explanatory
variable x that is also binary. Label its values by O and 1. For a given link function, the
GLM

link[7(x)] =« + Bx
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has the effect of x described by
B = link[z (1)] — link[7 (0)].

For the identity link, 8 = w(1) — w(0) is the difference between proportions. For the
log link, 8 = log[m(1)] — log[7(0)] = log[m (1)/7(0)] is the log relative risk. For the logit
link,

(1) m(0)

p = logitlm ()] = logitlz (O] = log y—"7 35 —log 7= 5

[ﬂ(l)/(l —ﬂ(l))]
7(0)/(1 — 7 (@)

is the log odds ratio. Measures of association for 2 x 2 tables are effect parameters in GLMs
for binary data.

4.2.5 Probit and Inverse cdf Link Functions

A monotone regression curve such as the first one in Figure 4.2 has the shape of a cumulative
distribution function (cdf) for a continuous random variable. This suggests a model for a
binary response having form m(x) = F(x) for some cdf F.

Using a class of location-scale cdf’s, such as normal cdf’s with their variety of means
and variances, permits the curve 7 (x) = F(x) to have flexibility in the rate of increase and
in the location where most of that increase occurs. Let ®(-) denote the standard cdf of the
class, such as the N(0, 1) cdf. Using ® but writing the model as

7(x) = ®(a + Bx) (4.8)

provides the same flexibility. The values of & and B determine the particular cdf in the
class. Replacing x by Sx permits the curve to increase at a different rate than the standard
cdf (or even to decrease if 8 < 0); varying & moves the curve to the left or right.

When @ is strictly increasing over the entire real line, its inverse function d! exists
and (4.8) is, equivalently,

O [r(x)] =« + Bx. 4.9)

For this class of cdf shapes, the link function for the GLM is ®~'. The link function maps
the (0, 1) range of probabilities onto (—oc, 00), the range of linear predictors. The curve
has the shape of a normal cdf when @ is the standard normal cdf. Model (4.9) is then called
the probit model. This curve has similar appearance to the logistic regression curve. Probit
models are discussed in Section 7.1.

When 8 > 0, the logistic regression curve (4.6) is a cdf for the logistic distribution. When
B < 0, the curve for 1 — 7 (x) has that appearance. The cdf of the logistic distribution with
mean p and dispersion parameter T > 0 is

F(x)= explx — w)/7l —00 < X < 00,

1 texplx — /Tl
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The corresponding probability density function (pdf) is symmetric and bell-shaped, with
standard deviation 77 /+/3, for the mathematical constant 7 = 3.14 . . .. It looks much like
the normal density with the same mean and standard deviation but with slightly thicker
tails.! The standard form of the logistic cdf has 4 = 0 and T = 1, so ®(x) = " /(1 + €°).
For that function, the logistic regression curve (4.6) has form 7 (x) = ®(« + Bx). By (4.9)
the logit transformation is simply the inverse function for the standard logistic cdf; that 1s,
when ®(x) = 7 (x) = /(1 + ¢¥), thenx = d Mz = loglm (x)/(1 — m(x))].

4.2.6 Latent Tolerance Motivation for Binary Response Models

We now present another motivation for the link function having the form of the inverse of
a cdf. It results from early applications of binary response models to toxicology studies,
such as in Bliss (1935), with an unobserved tolerance distribution.

In toxicology, binary response models describe the effect of dosage of a toxin on whether
a subject dies. Let x denote the dosage level. For a randomly selected subject, let Y =1
if the subject dies. Suppose that the subject has a tolerance threshold T for the dosage,
with (Y = 1) equivalent to (T < x). For instance, an insect survives if the dosage x is
less than T and dies if the dosage is at least T. Tolerances vary among subjects, and let
F(t) = P(T <1t). For fixed dosage x, the probability a randomly selected subject dies is

a(x)=PY =1|1X=x)=P(T <x)=F(x).

That is, the appropriate binary model is the one having the shape of the cdf F of the tolerance
distribution.

An unobserved variable such as T is referred to as a latent variable. In practice we do not
know the particular F that generates T, and we assume that F belongs to some parametric
family. Let ® denote the standard cdf for that family. A common standardization uses the
mean and standard deviation of T, so that

n(x) = F(x) = ®[(x —p)/o].
Then, the model has form 7 (x) = ®(« + Bx), foree = —p/o and 8 = 1/0 . In GLM form,
& ' r(x)] = a + Bx. (4.10)
Whereas the cdf maps the real line onto the (0, 1) probability scale, the inverse cdf maps
the (0, 1) scale for 7 (x) onto the real line values for linear predictors in binary response
models.

4.3 GENERALIZED LINEAR MODELS FOR COUNTS AND RATES

The best known GLMs for count data assume a Poisson distribution for Y. We’ll use
Poisson GLMs for counts in contingency tables with categorical response variables. We

ts kurtosis equals that of a 7 distribution with df = 9. Albert and Chib (1993) noted that a ¢ variate with
df = 8 divided by 0.634 well approximates a standard logistic variate. Caffo and Griswold (2006) used a similar
approximation with df = 8.78.
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first introduce Poisson GLMs to model count or rate data for a single nonnegative integer-
valued response variable.

4.3.1 Poisson Loglinear Models

The Poisson distribution (1.4) has a positive mean u. Although a GLM can model a positive
mean using the identity link. it is more common to model the log of the mean. Like the
linear predictor, the log mean can take any real value. The log mean is the natural parameter
for the Poisson distribution, and the log link is the canonical link for a Poisson GLM. A
Poisson loglinear GLM assumes a Poisson distribution for ¥ and uses the log link.

The Poisson loglinear model with explanatory variables x is

log “(x)=a+ﬁ]xl+"'+ﬁpxp~ (411)
For this model, the mean satisfies the exponential relationship
p(x) = exp(er + Bixy + - Bypxp) = () (ePry. (4.12)

A 1-unit increase in x; has a multiplicative impact of ¢f: The mean at x; + 1 equals the
mean at x; multiplied by #/.

4.3.2 Example: Horseshoe Crab Mating

We illustrate Poisson GLMs using a study of female horseshoe crabs” on an island in the
Gulf of Mexico. During spawning season, the females migrate to a shore to breed, with
a male attached to her posterior spine, and she burrows into the sand and lays clusters of
eggs. During spawning, other male crabs may group around the pair and may also fertilize
the eggs. These male crabs that cluster around the female crab are called sarellites.

In this example, the response outcome for each of 173 female crabs is her number of
satellites. Explanatory variables are the female crab’s color, spine condition, weight, and
carapace width. Table 4.3 shows a small set of the data. The complete data are available at
the text website www. stat.ufl.edu/~aa/cda/cda.html. For now, we use width alone

Table 4.3 Number of Male Satellites by Female Crab’s Characteristics®

c S W Wt Sa | C S W Wt Sa | C S W Wt Sa
2 3 283 305 8 3 3 225 1.55 0 1 1 26.0 230 9
3 3260 260 4 2 3238 210 0|3 2 247 1.90 0
3 3 256 215 0 3 3 243 215 02 3 258 265 0
4 2 210 185 0 2 1 260 230 14 1 1 27.1 2.95 8

“C, color (1, light medium: 2, medium; 3, dark medium; 4, dark); S, spine condition (1, both good; 2, one worn
or broken; 3, both worn or broken); W, carapace width (cm); Wt, weight (kg); Sa, number of satellites.

Source: Data courtesy of Jane Brockmann, Zoology Department, University of Florida; study described in
Ethology 102: 1-21, 1996. The complete data are at the text website.

*Sec en.wikipedia.org/wiki/Horseshoe crab and horseshoecrab.org for details
about horseshoe crabs. including pictures of their mating.
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Figure 4.3 Number of satellites by width of female crab.

as a predictor. Table 4.3 lists width in centimeters. The sample mean width equals 26.3 and
the standard deviation equals 2.1.

Figure 4.3 plots the response counts of satellites against width, with numerical symbols
indicating the number of observations at each point. The substantial variability makes it dif-
ficult to discern a clear trend. To get a clearer picture, we grouped the female crabs into width
categories (<23.25, 23.25-24.25, 24.25-25.25, 25.25-26.25, 26.25-27.25, 27.25-28.25,
28.25-29.25, >29.25) and calculated the sample mean number of satellites for female
crabs in each category. Figure 4.4 plots these sample means against the sample mean width
for crabs in each category.

More sophisticated ways of portraying the trend smooth the data without grouping the
width values or assuming a particular functional relationship. Figure 4.4 also shows a
smoothed curve based on a semiparametric extension of the GLM (the generalized additive
model) presented in Section 7.4.9. The sample means and the smoothed curve both show
a strong increasing trend. (The means tend to fall above the curve, since the response
counts in a category tend to be skewed to the right; the smoothed curve is less susceptible
to outlying observations.) The trend seems approximately linear, and we discuss the next
models for the ungrouped data for which the mean or the log of the mean is linear in width.

For a female crab, let u(x) be the expected number of satellites at width x. From GLM
software as shown in the Appendix at the text website, the ML fit of the Poisson loglinear
model (4.11) is

log A(x) = @ + Bx = —3.305 + 0.164x.
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Figure 4.4 Smoothings of horseshoe crab counts.

The effect B = 0.164 of width is positive, with SE = 0.020. The model fitted value at a
width level x is an estimated mean number of satellites {1(x). For instance, the fitted value
at the mean width of x = 26.3 is

a(x) = exp(@ + Bx) = exp[—3.305 4 0.164(26.3)] = 2.74.

For this model, exp(ﬁ) = exp(0.164) = 1.18 is the multiplicative effect on fi(x) for a
1-cm increase in x. For instance, the fitted value at x = 27.3 = 26.3 + 1 is exp[—3.305 +
0.164(27.3)] = 3.23, which equals 1.18 x 2.74. A 1-cm increase in width yields an 18%
increase in the estimated mean.

Figure 4.4 shows that u(x) may grow approximately linearly with width. This suggests
the Poisson GLLM with identity link. It has ML fit

a(x) =& + Bfx = —11.53 + 0.55x.

This model has an additive rather than a multiplicative effect of x: A 1-cm increase in x has
an estimated increase of 8 = 0.55 in f1(x). The fitted values are positive at all sampled x,
and the model describes the effect simply: On the average, about a 2-cm increase in width
is associated with an extra satellite.

Figure 4.5 plots fi(x) against width for the models with log link and identity link.
Although they diverge somewhat for relatively small and large widths, they provide similar
predictions over the width range in which most observations occur. We now study whether
either model fits adequately.
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Figure 4.5 Estimated mean number of satellites for log and identity links.

4.3.3 Overdispersion for Poisson GLMs

In Section 1.2.4 we noted that count data often show greater variability than the Poisson
allows. For the grouped horseshoe crab data, Table 4.4 shows the sample mean and variance
for the counts of number of satellites for the female crabs in each width category. The
variances are much larger than the means, whereas Poisson distributions have identical
mean and variance. The greater variability than predicted by the GLM random component
reflects overdispersion.

A common cause of overdispersion is subject heterogeneity. For instance, suppose that
width, weight, color, and spine condition are the four predictors that affect a female crab’s
number of satellites. Suppose that Y has a Poisson distribution at each fixed combination
of those predictors. Our model uses width alone as a predictor. Crabs having a certain
width are then a mixture of crabs of various weights, colors, and spine conditions. Thus,

Table 4.4 Sample Mean and Variance of Number of Satellites

Number of Number of Sample Sample

Width (cm) Cases Satellites Mean Variance
<23.25 14 14 1.00 2.77
23.25-24.25 14 20 1.43 8.88
24.25-25.25 28 67 2.39 6.54
25.25-26.25 39 105 2.69 11.38
26.25-27.25 22 63 2.86 6.88
27.25-28.25 24 93 3.87 8.81
28.25-29.25 18 71 3.94 16.88

>29.25 14 72 5.14 8.29
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the population of crabs having that width is a mixture of several Poisson populations, each
having its own mean for the response. This heterogeneity results in an overall response
distribution at that width having greater variation than the Poisson predicts. If the variance
equals the mean when all relevant variables are controlled, it exceeds the mean when only
one is controlled.

Overdispersion is not an issue in ordinary regression with normally distributed Y, because
that distribution has a separate variance parameter to describe variability. For binomial and
Poisson distributions, however, the variance is a function of the mean. Overdispersion is
common in the modeling of counts. When the model for the mean is correct but the true
distribution is not Poisson, the ML estimates of model parameters are still consistent but
standard errors are incorrect. We next introduce an extension of the Poisson GLM that
has an extra parameter and accounts better for overdispersion. In Section 4.7 we present
another approach for this, quasi-likelihood inference.

4.3.4 Negative Binomial GLMs

The negative binomial distribution has probability mass function

C(y + k) k "( k >>'
. — - =0,1,2,..., .
Ok 1) NMNy+D<M+k> ) =0k @19

where k > 0 and p > O are parameters. This distribution results when, given the mean,
Y has a Poisson distribution, but the mean itself varies according to a gamma distribution
with shape parameter k (Section 14.4).

Notationally, we’ll find it simpler to parameterize the negative binomial distribution in
terms of i and y = 1/k. Then, Y has

EY)=pu, var(Y)=p+yu

The index y > 0is a type of dispersion parameter. As ¥ — 0, var(Y) — u and the negative
binomial distribution converges to the Poisson. Usually, y is unknown. Estimating it helps
summarize the extent of overdispersion. For k = y fixed, we can express (4.13) in natural
exponential family form (4.1). Then, a model with negative binomial random component
is a GLM. For simplicity, such models let ¥ be the same constant for all observations but
treat it as unknown.

In Section 14.4 we present more detail about negative binomial GLMs. We illustrate the
model here for the horseshoe crab data analyzed above with Poisson GLMs. With the identity
link and width as predictor, the Poisson GLM has 2t = —11.53 + 0.55x (SE = 0.06 for A).
For the negative binomial GLM, convergence problems are caused by a slightly negative
predicted response during the iterative fitting process at the lowest observed width value of
21 cm. Without that observation, the ML fitis i = —11.47 + 0.55x (SE = 0.12). Moreover,
7 = 1.07, so at a predicted /1, the estimated var(Y) is roughly 2 + 22, compared to j for
the Poisson GLM. (The fit is similar to that of the geometric distribution, which is the
special case of the negative binomial with ¥ = 1.0.) Although fitted values are similar to
the Poisson GLM, the greater SE for B and the greater estimated var(Y) in the negative
binomial model reflect the overdispersion uncaptured with the Poisson GLM. Further
improved fit is obtained by allowing “zero-inflation,” permitting a higher fitted count at 0
than the negative binomial model allows.
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4.3.5 Poisson Regression for Rates Using Offsets

Often a response count Y; has an index #; such that its expected value is proportional to ¢;.
For instance, this index could be an amount of time or a spatial area over which the count is
made. Then, the sample rate is y; /1;, with expected value u; /t;. With explanatory variables
x, a loglinear model for the expected rate has form

log(u;/t;)) = a + Bixi1 + -+ + BpXip- (4.14)
This model has equivalent representation
log p; —log ti =+ Bixiy + -+ + Bpxip.

The adjustment term, — log ¢;, to the log link of the mean is called an offser. The fit
corresponds to using log #; as a predictor on the right-hand side and forcing its coefficient
to equal 1.0.

For model (4.14), the expected response count satisfies

wi = tiexpla + Bixj1 + - + BpXip).

The mean has proportionality constant depending on the value of x;. The identity link is
also sometimes useful. The model is then

Kilti =+ Bixiy + -+ + BpXip,  or  pi =t + Pixiti + -+ BpXipti.

This does not require an offset. It corresponds to an ordinary Poisson GLM using identity
link with no intercept and with explanatory variables ;, x;1t;, . . ., X;4;. It provides additive,
rather than multiplicative, predictor effects. It is less useful with several predictors, as the
fitting process may fail because of a negative fitted count at an x; at some step in the
iterative process.

4.3.6 Example: Modeling Death Rates for Heart Valve Operations

Laird and Olivier (1981) analyzed patient survival after heart valve replacement operations.
A sample of 109 patients were classified by type of heart valve (aortic, mitral) and by age
(<55, =55). Follow-up observations occurred until the patient died or the study ended.
Operations occurred throughout the study period, and follow-up observations covered
lengths of time varying from 3 to 97 months. The response was whether the subject died
and the follow-up time. For subjects who died, this is the time after the operation until
death; for the others, it is the time until the study ended or the subject withdrew from it.
Table 4.5 lists the numbers of deaths during the follow-up period, by valve type and age.
These counts are the first layer of a three-way contingency table that classifies valve type,
age, and whether died (yes, no). The subjects not tabulated in Table 4.5 were not observed
to die. They are censored, since we know only a lower bound for how long they lived after
the operation. It is inappropriate to analyze that 2 x 2 x 2 table using binary GLMs for
the probability of death, since subjects had differing times at risk; it is not sensible to treat
a subject who could be observed for 3 months and a subject who could be observed for
97 months as identical trials with the same probability. To use age and valve type as
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Table 4.5 Data on Heart Valve Replacement Operations

Type of Heart Valve
Age Aortic Mitral
<55 Number of deaths 4 1
Time at risk (months) 1259 2082
Death rate 0.0032 0.0005
55+ Number of deaths 7 9
Time at risk (months) 1417 1647
Death rate 0.0049 0.0055

Source: Reprinted with permission, based on data in Laird and Olivier (1981).

predictors in a model for frequency of death, the proper baseline is not the number of
subjects but rather the total time that subjects were at risk. Thus, we model the rate of
death.

The time at risk for a subject is their follow-up time of observation. For a given age and
valve type, the total time at risk is the sum of the times at risk for all subjects in that cell
(those who died and those censored). The sample rate, also shown in that table, divides the
number of deaths by total time at risk, in months. For instance, 4 deaths in 1259 months of
observation occurred for younger subjects with aortic valve replacement, so their sample
rate is 4/1259 = 0.0032.

We now model effects of age and valve type on the rate. Let Y;; denote the number of
deaths for age a; and valve type v;, with expected value j;; for total time at risk #;. Given
1;j, the expected rate is p;;/t;. Let a be an indicator variable for age, with @; = 0 for the
younger age group and @y = 1 for the older group. Let v be an indicator variable for valve
type, with v = 0 for aortic and v, = 1 for mitral. The model

log(ﬂi/’/tij) =o+ fia; + /32\7]‘ 4.15)

assumes a lack of interaction in the effects of age and valve type.

Using software (as shown at the text website), we treat {¥;} as independent Poisson
variates with means {11;;}, conditional on {#;}. Table 4.6 presents the fitted death counts and
estimated rates. The estimated effects are

B = 1221 (SE=0.514), B, =—0.330 (SE = 0.438).

Table 4.6 Fit of Poisson Regression Models to Table 4.5 on Heart Valve Operation Deaths

Log Link Identity Link
Age Aortic Mitral Aortic Mitral
<55 Number of deaths 2.28 2.72 3.16 1.19
Death rate 0.0018 0.0013 0.0025 0.0006
55+ Number of deaths 8.72 7.28 9.17 7.48

Death rate 0.0062 0.0044 0.0065 0.0046
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There is evidence of an age effect. Given valve type, the estimated death rate for the older
age group is exp(1.221) = 3.39 times that for the younger age group. The study contains
much censored data. Of the 109 patients, only 21 died during the study period, so both
effect estimates are imprecise. Note, though, that the analysis uses all 109 patients through
their contributions to the times at risk.

Table 4.6 also shows the fit of the corresponding model with identity link,

Wi = atj + Biaity + Bav it

Substantive conclusions are similar. The estimate ,31 = 0.0040 (SE = 0.0014) represents
the estimated difference in death rates between the older and younger age groups for each
valve type.

4.3.7 Poisson GLM of Independence in Two-Way Contingency Tables

Poisson loglinear models are also used to model counts in ordinary contingency tables.
We illustrate for two-way tables with independent counts {Y;;} having Poisson distributions
with means {z;;}. Suppose that {y;} satisfy

Hij = pati B,

where {o;} and {8} are positive constants satisfying > ; &; = }~; 8; = 1. This is a multi-
plicative model, but a linear predictor for a GLM results using the log link,

log ,u,-j:)\—l-a;‘—l-ﬁ;, (4.16)

where A = log i, af = loga;, 7 = log B;. This Poisson loglinear model has additive main
effects of the two classifications but no interaction.

Since the {Y;;} are independent, the total sample size >, > ¥;; has a Poisson distri-
bution with mean }_; > u;; = . Conditional on 3, 3~ y; = n, the cell counts have a
multinomial distribution with probabilities {7;; = u;/n = ; B; = m; 474 ;). This is inde-
pendence between the two categorical variables. In fact, in Poisson form, independence
is the loglinear model (4.16). The inferences conducted in Chapter 3 about independence
in two-way contingency tables relate to GLMs, either Poisson loglinear models or corre-
sponding multinomial models that fix n or the row or column totals.

44 MOMENTS AND LIKELIHOOD FOR GENERALIZED LINEAR MODELS

Having introduced GLMs for binary and count data, we now turn our attention to the
likelihood equations and methods for fitting GLMs. The remainder of this chapter is
somewhat technical, providing general results applying to the modeling methods presented
in subsequent chapters. Some readers may prefer to skip this material.

4.4.1 The Exponential Dispersion Family

It is helpful to extend the notation for a GLM to handle many distributions that have a
second parameter. The random component of the GLM specifies that the N observations
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(y1, ..., yn)onY are independent, with probability mass or density function for y; of form

iz 6, @) = exp{lyi6; — b(0:)]/a(@) + c(yi. §)}. (4.17)

This is called the exponential dispersion family and ¢ is called the dispersion parameter
(Jgrgensen 1987). The parameter 6; is the natural parameter.

When ¢ is known, (4.17) simplifies to the form (4.1) for the natural exponential family,
which is

F(ii6) = aB)b(y:) exply: Q(6)].
We identify Q(6) here with 8/a(¢) in (4.17), a(6) with exp][—b(6)/a(¢)] in (4.17), and
b(y) with explc(y, ¢)] in (4.17). The more general formula (4.17) is not needed for one-
parameter families such as the binomial and Poisson. Usually, a(¢) has form a(¢) = ¢/w;

for a known weight w;. For instance, when y; is a mean of n; independent readings, such
as a sample proportion for #n; Bernoulli trials, ¢ = | and w; = n; (Section 4.4.3).

4.4.2 Mean and Variance Functions for the Random Component

Expressions for E(Y;) and var(Y;) use terms in (4.17). Let L; = log f(y;;6;, ¢) denote the
contribution of y; to the log likelihood, so the log-likelihood functionis L = )", L;. From
4.17),

Ly = {yi0; — b(6;)]/a(®) + c(y;, ¢). (4.18)
Therefore,
AL /36, = [y; — V'(@))/a(p), *L;/367 = —b"(6:)/a(e),

where b'(6;) and b”(6;) denote the first two derivatives of b(-) evaluated at §;. We now apply
the general likelihood results

L 9L AL\’
E(Z=)=0 and —E(=—=)=E(=),
(ae) " (aez) (ae)
which hold under regularity conditions satisfied by the exponential family (Cox and
Hinkley 1974, Sec. 4.8). From the first formula applied with a single observation,
E[Y; — b'(6)]/a(¢) = 0, or
wi = E(Y;) = b'(6)). (4.19)
From the second formula,
b'(0:)/a(@) = E[(Y; — b'(6))/a($)]* = var(Y,)/la(¢)]’,

so that

var(Y;) = b"(6;)a(9). (4.20)
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In summary, the function b(-) in (4.17) determines moments of Y;. This function is
called the cumulant function, since when a(¢) = 1 its derivatives yield the cumulants of
the distribution (Jgrgensen 1987).

4.4.3 Mean and Variance Functions for Poisson and Binomial GLMs

We illustrate the mean and variance expressions for Poisson and binomial distributions.
When Y; is Poisson,

e Hi M?‘l
Fisw) = W — =exp(y; log u; — p; —log y;!)

i

= explyifi — exp(6;) — log y;!],

where 6; = log 1;. This has exponential dispersion form (4.17) with b(6;) = exp(9;),
a(p) =1, and c(y;, ) = —log y;!. The natural parameter is 6; = log u;. From (4.19)
and (4.20),

E(Y;) = b'(0:) = exp(6)) = i,
Var(Y,~) = b”(9,—) = exp(gi) = l;.

Next, suppose that n;Y; has a bin(n;, ;) distribution; that is, here y; is the sample
proportion (rather than number) of successes, so E(Y;) = 7; does notdepend on n;. Let §; =
log[m; /(1 — m;)]. Then, m; = exp(6;)/[1 + exp(6;)] and log(l — 7;) = —log[! + exp(6,)].
Extending (4.3), we have the result

n; n;y; —
f()’ilﬂisni)=<n.’.)7[,' M=y
Iyl

_ exp|:)’19i — logl[/ln—-i_ exp(6;)] N log< 111;)’ )] ' @21)

This has exponential dispersion form (4.17) with b(6;) = log[1 + exp(6;)], a(¢) = 1/n;,
and c(y;, ¢) = log (n";,i ) The natural parameter is the logit, 6, = log[z; /(1 — =;)]. From
(4.19) and (4.20),
E(Y;) = b'(6;) = exp(8)/[1 + exp(6))] = m;,
var(Y;) = b"(6))a(¢) = exp(6:)/{[1 + exp(6)’n;} = m:(1 — 7;)/n;.

4.4.4 Systematic Component and Link Function of a GLM

For observation i, the systematic component of a GLM relates parameters {5;} to the
explanatory variables using a linear predictor

77,-=Z,Bjx,~j, l=l,.N
J
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In matrix form,

n=X8,
where 9 = (51, ..., ny)7 and B = (B, B, B2, .. .)T is the column vector of model param-
eters. With p parameters in 8, X is the N x p matrix of explanatory variable values for the
N subjects. In ordinary linear models, X is called the design matrix. It need not refer to an
experimental design, however, and the GLM literature calls it the model matrix.

The GLM links n; to u; = E(Y;) by alink function g(-). Thus, u; relates to the explana-
tory variables by

ni =g(Mi)=Zﬁng,', i=1,...,N.
J

The link function g for which g(u;) = 6; in (4.17) is the canonical link. For it, the direct
relationship

0= Bix;
j

occurs between the natural parameter and the linear predictor.

4.4.5 Likelihood Equations for a GLM

For N independent observations, from (4.18) the log likelihood is
Yi6; b(9 )
L(B) = Z L= Z log f(yi36i,¢) = Z + Z (i, 9)- (4.22)

The notation L(f) reflects the dependence of # on the model parameters 8.
The likelihood equations are

aL(B)/3B; =) _OLi/3B; =0

for all j. To differentiate the log likelihood (4.22), we use the chain rule,

8L,— _ 8L,~ 89, a/,L,' 81’),'
B, 36; du; Omi 3B,

(4.23)

Since dL;/36; = [y: — b'(6;)1/a(¢), and since p; = b'(6;) and var(Y;) = b"(6;)a(¢) from
(4.19) and (4.20),

AL;/86; = (yi — pi)/a(g), du;i/36; = b"(6;) = var(Y;)/a(e).
Also, since n; = }_; B;x;j,

an;i /0B = xjj.
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Finally, since ; = g(u;), du;/9n; depends on the link function for the model. In summary,
substituting into (4.23) gives us

OLi _ yi— i a(@) i (i — pi)xy Op;

aLi _ i = : (4.24)
9B, a(gp) var(Y;) an; var(Y;) dn;
Summing over the N observations yields the likelihood equations,
N
i — W)X O, .
Zwi—o, i=0,1,2,.... (4.25)

P var(Y;) 9m
Although B does not appear in these equations, it is there implicitly through u;, since
wi =g ( ZJ- ﬂjx,j). Different link functions yield different sets of equations.

4.4.6 The Key Role of the Mean—Variance Relationship

Interestingly, the likelihood equations (4.25) depend on the distribution of ¥; only through
w; and var(Y;). The variance itself depends on the mean through a particular functional
form

var(Y;) = v(u;)

for some function v. For example, v(u;) = pu; for the Poisson, v(u;) = wu;(1 — pu;)/n; for
the binomial proportion, and v(i;) = o (i.e., constant) for the normal.

When Y; has distribution in the natural exponential family, the relationship between the
mean and the variance characterizes the distribution (Jorgensen 1987). For instance, if ¥;
has distribution in the natural exponential family and if v(u;) = u;, then necessarily ¥; has
the Poisson distribution.

4.4.7 Likelihood Equations for Binomial GLMs

Suppose that n;Y; has a bin(n;, 7r;) distribution. We use the binomial parameterization of
Section 4.4.3, so y; is a sample proportion of successes for n; trials. The binomial GLM
(4.8) for a single predictor extends with several predictors to

= q>< hY: ,x,,) : (4.26)
J

where @ is the standard cdf of some class of continuous distributions. Since 7; = u; =
(n) withm; = 3=, B,

o,
3’; = p(n) = ¢<;ﬂ,~x,;,->,

H

where ¢(u) = d®(u)/du [i.e., the pdf corresponding to the cdf ®, not the disper-
sion parameter in (4.17)]. Since var(Y;) = m;(1 — 7;)/n;, the likelihood equations (4.25)
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simplify to

(1 — ;)

pRRALIAE.ILTIY | P Y 4.27)
i J

where 7; = <I>(Zj Bixi)-
For the logit link, n; = log[z; /(1 — m;)], so dn;/dm; = 1/[m: (1 — 7;)] and du;/dn; =
am; /on; = m;(1 — m;). Then the likelihood equations (4.27) simplify to

D niyi — mx; =0, (4.28)
where 1; = () B ;Xij) with ® as the standard logistic cdf.
4.4.8 Asymptotic Covariance Matrix of Model Parameter Estimators
The likelihood function for the GLM also determines the asymptotic covariance matrix of

the ML estimator ,B . This matrix is the inverse of the information matrix J, which has
elements E[—3°L(B )/3B, 3B;]. To find this, for the contribution L; to the log likelihood

we use the helpful result
3%L; AL\ (OL;
¢ (smoos ) =2 (55.) (55)
P 3B, Bn ) \ 3B;

which holds for exponential families (Cox and Hinkley 1974, Sec. 4.8). Thus,

2L, —_E (¥i — pidxin Opti (Vi — pi)xyj dpu;
9By 3B; var(Y;) anm var(Y;)

_ —XinXy Bu,-)z
var(Y;) \an; /

] from (4.24)

Since L(B) =), L;,

o (_ 82L(ﬂ)) N Sinki (3&)2_
9B 9B, — var(Y;) \ 9n;
Let W be the diagonal matrix with main-diagonal elements
wi = (g /3m:)? fvar(Y)). (4.29)
Then, generalizing from the typical element of the information matrix to the entire matrix,
J=X"WXx. (4.30)

Note that the form of W and hence J depends on the link function.
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The asymptotic covariance matrix of B is estimated by
— 7 P | P
covip) =TI =XTWx), 4.31)

where W is W evaluated at 8. We’ll see an example for Poisson GLMs next and for
binomial GLMs in Section 5.5.

4.4.9 Likelihood Equations and cov(B) for Poisson Loglinear Model

The general Poisson loglinear model (4.4) has the matrix form
logn = XB.

For the log link, n; =log w;, so u; =exp(n;) and ou,/dn; = exp(n;) = u;. Since
var(Y;) = u;, the likelihood equations (4.25) simplify to

Y (i — pi)xy =0. (432)

These equate the sufficient statistics _, y;x;; for B to their expected values. Also, since
wi = (0ui /0m)* var(Y;) = u;

the estimated covariance matrix (4.31) ofﬁ is (XTWX)™!, where W is the diagonal matrix
with elements of fi on the main diagonal.

4.5 INFERENCE AND MODEL CHECKING
FOR GENERALIZED LINEAR MODELS

For most GLMs the likelihood equations (4.25) are nonlinear functions of 8. For now, we
defer details about solving them for the ML estimator B and focus instead on using the fit
for statistical inference.

The Wald, score, and likelihood-ratio methods introduced in Section 1.3.3 for signifi-
cance testing and interval estimation apply to any GLM. Likelihood-ratio inference utilizes
the deviance of the GLM.

4.5.1 Deviance and Goodness of Fit

From Section 4.1.5, the saturated GLM has a separate parameter for each observation. It
gives a perfect fit. This sounds good, but it is not a helpful model. It does not smooth the
data or have the advantages that a simpler model has, such as parsimony. Nonetheless, it
serves as a baseline for other models, such as for checking model fit.

A saturated model explains all variation by the systematic component of the model. Let 8
denote the estimate of 6 for the saturated model, corresponding to estimated means fi; = y;

for all i. For a particular unsaturated model, denote the corresponding ML estimates by 6
and f1;. For maximized log likelihood L(jt; y) for that model and maximized log likelihood
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L(y; y) in the saturated case,

maximum likelihood for model
—2log

= 2[L(ft; y) — L(y;
maximum likelihood for saturated model (LR ) (y: 9l

describes lack of fit. It is the likelihood-ratio statistic for testing the null hypothesis that the
model holds against the alternative that a more general model holds. From (4.22),

=2[L(f; y) — L(y; y)]
=2 "Iy 6 — b@))/a(¢) — 2 [yib; — b6)/a(@).

When a(¢) in (4.17) has the form a(¢) = ¢ /w;, this statistic equals

23" wilyi@ — 6,) — b@) + b@))/$ = D(y: 1)/9. (4.33)

This is called the scaled deviance and D(y; ft) is the deviance. The greater the scaled
deviance, the poorer the fit. For some GLMs the scaled deviance has an approximate
chi-squared distribution.

4.5.2 Deviance for Poisson GLMs

For Poisson GLMs, by Section 4.4.3, é; = log (i; and b(éi) = exp(éi) = fi;. Similarly,
0; = log y; and b(6;) = y; for the saturated model. Also a(¢) = 1, so the deviance and
scaled deviance (4.33) equal

D(y; ) =2 [yilog(yi/ ) — yi + - (4.34)

When a model with log link contains an intercept term, the likelihood equation (4.32)
implied by that parameter is ) ; y; = > _; fi;. Then the deviance simplifies to

D(y; ) =2 yi log(yi/fu). (4.35)

For two-way contingency tables, substituting cell count n; for y; and the independence
fitted value [;; for i;, this reduces to the G? statistic (3.11) in Section 3.2.1. For a Poisson
or multinomial model applied to a contingency table with a fixed number of cells N,
Section 16.3 shows that the deviance has an approximate chi-squared distribution for

large {u;}.

4.5.3 Deviance for Binomial GLMs: Grouped Versus Ungrouped Data

Now consider binomial GLMs with sample proportions {y;} based on {#;} trials. By Sec-
tion 4.4.3, 6; = log[#; /(1 — #;)] and h(6;) = log[1 + exp(éi)] = —log(l — #;). Similarly,
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6; = log[y; /(1 — y;)] and b(f;) = —log(1 — y;) for the saturated model. Also, a(¢) =
1/n;,s0 ¢ = 1 and w; = n;. The deviance (4.33) equals

A

ZZn[ {y[ (log I ii — log - )—i—log(l — y;) — log(1 —71',)}
niyi _yz
_ZZn,y,log =y —ZZn y,log +22n,log -
1 l 1

n;yi i — iy
=2 n;y; lo .
X milog 12

n;
; — niyi)log ———
n; —n;m;

At setting i, n; y; is the number of successes and (n; — n;y;) is the number of failures,
i =1,..., N. Thus, the deviance is a sum over the 2N cells of successes and failures and
has the same form,

D(y; 1) =2 Z observed x log(observed/fitted), (4.36)

as the deviance (4.35) for Poisson loglinear models with intercept term. With binomial
responses, it is possible to construct the data file as expressed here with the counts of
successes and failures at each setting for the predictors, or with the individual Bernoulli 0
or 1 observations at the subject level. The deviance differs in the two cases. In the first case
the saturated model has a parameter at each setting for the predictors, whereas in the second
case it has a parameter for each subject. We refer to these as grouped data and ungrouped
data cases. The approximate chi-squared distribution for the deviance occurs for grouped
data but not for ungrouped data (see Exercises 4.5, 4.18, and 5.35). With grouped data, the
sample size increases for a fixed number of settings of the predictors and hence a fixed
number of parameters for the saturated model.

4.5.4 Likelihood-Ratio Model Comparison Using the Deviances

For a Poisson or binomial model denoted by M, ¢ = 1, so the deviance (4.33) equals
D(y; i) = =2[L(#; y) — L(y; y)]. (4.37)

Consider two models, My with fitted values fig and M, with fitted values ft;, with My a
special case of M. Model My is said to be nested within M.

Since My is simpler than M|, a smaller set of parameter values satisfies M than satisfies
M;. Maximizing the log likelihood over a smaller space cannot yield a larger maximum.
Thus, L(fty; y) < L(fi;; y), and it follows from (4.37) with the same L(y; y) for each model
that

D(y; it1) < D(y; fp).
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Simpler models have larger deviances. Assuming that model M, holds, the likelihood-ratio
test of the hypothesis that M, holds uses the test statistic

—2{L{fty; y) — L(fiy; y)]
= —=2[L{fto; y) — L(y; »)} — {=2[L(f;; y) — L(y; »)]}
= D(y; o) — D(y; i)).

The likelihood-ratio statistic comparing the two models is simply the difference between
the deviances. This statistic is large when M fits poorly compared to M.

In fact, since the part in (4.33) involving the saturated model cancels, the difference
between deviances,

D(y; fro) — D(y; o)) =2 wilyiBy; — Qo) — b(O1) + b)),

H

also has the form of the deviance. Under regularity conditions, this difference has approxi-
mately a chi-squared null distribution with df equal to the difference between the numbers
of parameters in the two models.

For binomial GLMs and Poisson loglinear GLMs with intercept, from expressions (4.35)
and (4.36) for the deviance, the difference in deviances uses the observed counts and the
two sets of fitted values in the form

D(y; frg) — D(y; o)) =2 yi log(1;/fto)-

H

In fact, Simon (1973) showed that when observations have distribution in the natural
exponential family, this equals

D(y; o) — D(y; o) =2 Y fii; log(iri/ froi) (4.38)

H

for GLMs using the canonical link.? In the rest of this text, we denote this likelihood-ratio
statistic for comparing models by G*(MyIM).

With binomial responses, the test comparing models is the same whether the data file
has grouped or ungrouped form. The saturated model differs in the two cases, but its log
likelihood cancels when we form the difference between the deviances.

4.5.5 Score Tests for Goodness of Fit and for Model Comparison

For the common GLMs having variance function var(Y;) = v(u;) with ¢ = 1, the score
statistic for testing the model fit has the generalized Pearson form (Lovison 2005,

3This result, which follows from the simple form of the likelihood equations for such models, is shown for Poisson
loglinear models in Section 10.2.3.
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Smyth 2003)

2 e = )
X% = Ziv(ﬂi) ) (4.39)

For Poisson y;, for which v(i;) = f;, this has the usual Pearson form of
Pearson statistic = Z(observed — fitted)?/fitted.

When y; is a binomial proportion based on #; trials, for which v(4;) = v(#;) = 7;(1 —
f;)/n;, then the X 2 sum (4.39) over the N binomial success observations is identical to a
sum over the 2N counts of successes and failures that also has this Pearson form (see also
Section 6.2.1).

For two nested models, the Pearson difference X*(My) — X*(M,) does not have Pearson
form. It is not even necessarily nonnegative. A more appropriate generalized Pearson
statistic for comparing models is (Lovison 2005, Rao 1961)

X (MolMy) =Y (fur; — foi)*/v(Roi). (4.40)

This has the generalized Pearson form with {{2;} in place of {y;}. This is not the score
statistic for comparing the models unless M is the saturated model. However, for Poisson
models with v({ig;) = fig; (and corresponding binomial and multinomial GLMs) it is a
quadratic approximation for the difference (4.38) between the deviances and has the same
null asymptotic behavior.

Let X be the model matrix for the full model and let V (fi,) be the diagonal matrix of
estimated variances of the observations under the simpler model. Then, for the canonical
link case, Lovison (2005) showed that the score statistic for comparing models has a
somewhat different extended Pearson form comparing the two sets of fitted values,

(B — R) XIXTV()XT' X () — fo).

Lovison also noted that that statistic bounds below X?(Mo|M). Pregibon (1982) gave the
score statistic in the more general case. He showed also that the score statistic is a difference
between Pearson goodness-of-fit statistics for the models in which the statistic for the full
model is evaluated at fitted values that result from the first step of an iterative fitting process
that starts at the ML estimates for the reduced model.

4.5.6 Residuals for GLMs

When a GLM fits poorly according to an overall goodness-of-fit test, examination of
residuals highlights where the fit is poor. The Pearson residual for observation i is

Yi — K

W)

(4.41)

€ =
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For it, 3", ¢ = X?, the generalized Pearson X? statistic. In (4.33) let D(y; ) = Y, d;,
where

di = 2wi[y:0; — 6) — b(@) + b(d)).
The deviance residual is
Vd; x sign(y; — &), (4.42)

for which the sum of squares is the deviance.
For instance, for a Poisson GLM, the Pearson residual is

e = (i — )/ 1.

Consider the model of independence for two-way contingency tables. Forcell count y; = n;
and independence fitted value (i;;, the Pearson residual has the form (3.13). Then, Z,- > ; eizj
is the Pearson X? chi-squared statistic (3.10), and ), > dij= G2, the likelihood-ratio
statistic (3.11) for testing independence.

When the model holds, Pearson and deviance residuals are less variable than standard
normal because they compare y; to the fitted mean fi; rather than the true mean y; (e.g.,
the denominator of (4.41) estimates [v(u;)]"/? = [var(¥; — w;)]'/? rather than [var(¥; —
2)1"%). When X2 = 3", ¢? has an approximate chi-squared distribution with df = v, X?is
asymptotically comparable to the sum of squares of v (rather than N) independent standard
normal random variables. Thus, when the model holds, E(Zi eiz)/N ~y/N < 1.

We prefer to use standardized residuals, which divide each raw residual (y; — ;) by its
standard error. Let V = V(u) denote the diagonal matrix of variances of the observations.
For GLMs we’ll see below that the asymptotic covariance matrix of the vector of raw
residuals is

cov(y — o) = V(I — H, V',
where I is the identity matrix and H ,, is the generalized hat matrix,
H, =W xX"wx)y'xTw!'/2 (4.43)

[Recall that W is the diagonal matrix with elements w; = (du;/3n; )z/var(Yf).] Let fzi
denote the estimated diagonal element of H, for observation i, called its leverage. Then,
standardizing by dividing y; — f&; by its estimated SE yields the standardized residual

Yi — Qi €

= — = . (4.44)
Vv —h) V1=

I

For Poisson GLMs, for instance, r; = (y; — f1;)/+/ f1i(1 — h;). Pierce and Schafer (1986)
presented standardized deviance residuals.

In linear models the hat matrix is so named because H,, x y projects the data to the
fitted values, it = “mu-hat.”” For GLMs with link function g, a corresponding relation holds
for a linearized approximation for g(y), as discussed in Section 4.6.4 and Exercise 4.29.
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As 1n ordinary regression, the greater an observation’s leverage, the greater its potential
influence on the fit. The leverages fall between 0 and 1 and sum to the number of model
parameters. Unlike ordinary regression, the hat values depend on the fit as well as the model
matrix, and points that have extreme predictor values need not have high leverage.

4.5.7 Covariance Matrices for Fitted Values and Residuals
We found in (4.31) that the asymptotic covariance matrix ofﬁ is(XTWX)~!. Let D denote
the diagonal matrix with elements dyu; /9n;. Then,

W=DV~'D and V=DW'D.

Since the vector of linear predictor estimated values relates to /§ by ) =X ﬁ, its
asymptotic covariance matrix is X(X”WX)~'XT. By the delta method, we can obtain
the asymptotic covariance matrix of fitted values from this, as

cov(p) = DX(X"WX)"'X" D.
As in ordinary linear models, we can exploit the decomposition
Y-—w=Qy—-—np+{@E-—np),
If (y — ) is asymptotically uncorrelated with (ft — u), then the asymptotic
cov(y— )=V —cov(t) = DW'D - DX(X"WX)"'X" D.

This equals V l/2[1 — H,,1V'/? for the hat matrix given in (4.43).

So, whyis (y — ft) asymptotically uncorrelated with (i — u), thus generalizing the exact
orthogonal decomposition for linear models? One argument* is as follows: An alternative
asymptotically unbiased estimator of g is A* = [ + L(y — )], fora N x N matrix of
constants L. But such an estimator cannot be asymptotically more efficient than the ML
estimator ft. Let C = cov(y — fi, ) and consider the case L = —C[cov(y — 1L Then,
direct calculation shows that the asymptotic covariance matrix of * is

cov(ft*) = cov(ft) — Cleov(y — )17'C".

But this gives the contradiction that 2* is asymptotically more efficient than @, unless
C =0

4.5.8 The Bayesian Approach for GLMs

There is by now an enormous literature on the Bayesian approach to inference using GLMs,
and many books that survey the Bayesian approach spend considerable time on GLMs. For
instance, see Dey et al. (2000) and Christensen et al. (2010).

In this book, we’ll show some details about the Bayesian approach as we present the
various important GLMs for categorical data. In particular, Section 7.2 presents Bayesian

“Thanks to Dr. Gianfranco Lovison for showing me this argument.
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methods for binomial regression models, Section 8.6 presents them for multinomial mod-
els, and Section 10.7 presents them for Poisson loglinear models. A couple of general
results for GLMs are that (1) model parameters in models for categorical data are more
commonly treated with normal prior distributions than conjugate priors, and (2) the Jef-
freys prior is improper for most GLMs except for binary regression models (Ibrahim
and Laud 1991).

4.6 FITTING GENERALIZED LINEAR MODELS

How do we find the ML estimators f) of GLM parameters? The likelihood equations (4.25)
are usually nonlinear in B. We describe a general-purpose iterative method for solving
nonlinear equations and apply it in two ways to determine the maximum of a likelihood
function.

4.6.1 Newton-Raphson Method

The Newton-Raphson method is an iterative method for solving nonlinear equations, such
as equations whose solution determines the point at which a function takes its maximum.
It begins with an initial guess for the solution. It obtains a second guess by approximating
the function to be maximized in a neighborhood of the initial guess by a second-degree
polynomial and then finding the location of that polynomial’s maximum value. It then
approximates the function in a neighborhood of the second guess by another second-degree
polynomial, and the third guess is the location of its maximum. In this manner, the method
generates a sequence of guesses. These converge to the location of the maximum when the
function is suitable and/or the initial guess is good.

In more detail, here’s how Newton—Raphson determines the value ﬁ at which a func-
tion L(B) is maximized. Let u” = (3L(B)/3po, IL(B)/3B1, ...). Let H denote the matrix
having entries ., = 3°L(B)/3B.3Bs, called the Hessian matrix. Let u'” and H® be u and
H evaluated at B, the guess ¢ for B. Step ¢ in the iterative process (r =0,1,2,...)
approximates L(B) near B by the terms up to second order in its Taylor series
expansion,

LB~ LB +uT (B - B+ (3)(B-B HOB - BY).

Solving dL(B)/3B ~ u® + HV(B — BY) = 0 for B yields the next guess. That guess can
be expressed as

B(t+1) — B(r) _ (H(t))vlu(f)’ (4.45)

assuming that H" is nonsingular. (Computing routines use standard methods for solving
the linear equations rather than explicitly calculating the inverse.)

Iterations proceed until changes in L(B"’) between successive cycles are sufficiently
small. The ML estimator is the limit of 8% as t — oo; however, this need not happen if
L(pB) has other local maxima at which the derivative of L(8) equals 0. In that case, a good
initial estimate is crucial. To help understand the Newton—Raphson method, work through
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Figure 4.6 A cycle of the Newton—Raphson method.

these steps when 8 has a single element (Exercise 4.30). Then, Figure 4.6 illustrates a cycle
of the method, showing the parabolic (second-order) approximation at a given step.

The convergence of B to f? for the Newton-Raphson method is usually fast. For large
t, the convergence satisfies, for each j,

LB;.’H) - le < c|,3y) - ,3J-|2 for some ¢ > 0

and is referred to as second-order. This implies that the number of correct decimal places
in the approximation roughly doubles after sufficiently many iterations. In practice, it often
takes relatively few iterations for satisfactory convergence.

For many GLMs, including Poisson models with log link and binary models with logit
link, with full-rank model matrix the Hessian is negative definite and the log likelihood is
a strictly concave function. Then ML estimates of model parameters exist and are unique
under quite general conditions (Wedderburn 1976).

4.6.2 Fisher Scoring Method

Fisher scoring is an alternative iterative method for solving likelihood equations. It resem-
bles the Newton—Raphson method, the distinction being with the Hessian matrix. Fisher
scoring uses the expected value of this matrix, called the expected information, whereas
Newton—Raphson uses the Hessian matrix itself, called the observed information.

Let J denote the approximation ¢ for the ML estimate of the expected information
matrix; that is, J© has elements —F (32L(B)/08, 3B). evaluated at 8. The formula for
Fisher scoring is

ﬂ(f+l) — ﬂ(f) + (J(f))—lu(r)
or

J(r)ﬂ(r+1) — J(t)ﬂ(r) +ul”, (4.46)
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Formula (4.30) showed that J = X TW X, where W is the diagonal matrix with main-
diagonal elements w; = (dp;/9n;)?/var(Y;). Similarly, 7 = XT WX, where W is W
evaluated at ). The estimated asymptotic covariance matrix J ' of B [see (4.31)] occurs
as a by-product of this algorithm as (J)~! for  at which convergence is adequate. From
(4.25), for both Fisher scoring and Newton-Raphson, the score function u has elements

N

L) N O i) O
ST —E var(Y;) om;

(4.47)

Using the matrix D = diag{du;/9n;} introduced in Section 4.5.7, we see that the GLM
likelihood equations can be expressed as

u=X"WD ' (y—pn)=0. (4.48)

For GLMs with a canonical link, we’ll see (Section 4.6.5) that the observed and expected
information are the same. For noncanonical link models, Fisher scoring has the advantages
that it produces the asymptotic covariance matrix as a by-product, the expected information
is necessarily nonnegative definite, and as seen next, it is closely related to weighted
least-squares methods for ordinary linear models. However, it need not have second-order
convergence, and for complex models the observed information is often easier to calculate.
Efron and Hinkley (1978), developing arguments of R. A. Fisher, gave reasons for preferring
observed information. They argued that its variance estimates better approximate a relevant
conditional variance (conditional on statistics not relevant to the parameter being estimated),
it is “closer to the data,” and it tends to agree more closely with Bayesian analyses.

4.6.3 Newton-Raphson and Fisher Scoring for Binary Data

In the next three chapters we use the Newton—Raphson and Fisher scoring methods for
binary regression models. For now, we illustrate them with a simpler problem for which we
know the answer, maximizing the log likelihood based on an observation y from a bin(n, )
distribution.

From Section 1.3.2, the first two derivatives of L(w) = ylognm + (n — y)log(l — ) are

u=(y—nm)/m(l—mn), H=-[y/nx+@xn—y)/d-r)l

Each Newton—Raphson step has the for