
Homework 6 (2nd graded homework)
CS-526 Learning Theory

Exercise 1

For the following convex functions, explain how to calculate a subgradient at a given x.

1. ∀x ∈ Rn : f(x) = max1≤i≤m(a
T
i x+ bi), where ∀i ∈ {1, . . . ,m} : (ai, bi) ∈ Rn × R.

2. ∀x ∈ Rn : f(x) = max1≤i≤m |aTi x+ bi|.

3. ∀x ∈ Rn : f(x) = supt∈[0,1] p(t, x), where p(t, x) = x1 + x2t+ · · ·+ xnt
n−1.

Exercise 2

We recall the definition of a strongly convex function: A function f is λ-strongly convex if
for all w, u and α ∈ (0, 1) we have:

f(αw + (1− α)u) ≤ αf(w) + (1− α)f(u)− λ

2
α(1− α)‖w − u‖2 .

Theorem 14.11 in the textbook is a refined bound for Stochastic Gradient Descent (SGD)
when the function f is strongly convex. The proof of this theorem relies on the following
claim (Claim 14.10 in Understanding Machine Learning):

If f is λ-strongly convex then for every w, u and v ∈ ∂f(w) we have

〈w − u, v〉 ≥ f(w)− f(u) +
λ

2
‖w − u‖2

Prove this claim.

Exercise 3

Mn(R) is the Hilbert space of n×n real matrices endowed with the inner product 〈A,B〉 =
Tr(ATB). The induced norm is the Euclidian (or Frobenius) norm, i.e.,

‖A‖ =
√

Tr(ATA) =

(
n∑

i,j=1

(Aij)
2

)1/2

.

Consider the cone of n×n symmetric positive semi-definite matrices, denoted S+
n ⊆ Mn(R).

For all A ∈ S+
n , λmax(A) is the maximum eigenvalue associated to A. We define

f :
S+
n → [0,+∞)
A 7→ λmax(A)

.
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a) Show that f is convex.
b) Find a subgradient V ∈ ∂f(A) for any A ∈ S+

n .
Hint: A subgradient of f at A is a matrix V ∈ Rn×n that satisfies:

∀B ∈ S+
n : f(B) ≥ f(A) + Tr

(
(B − A)TV

)
.

Exercise 4

Consider the following Least Squares optimization problem:

x∗ = arg min
x∈Rn

1

2
||Ax− b||22,

where b ∈ Rm, A is a full column rank matrix in Rm×n, n ≤ m and there exists a solution to
the linear system Ax = b. Let σmax and σmin be the largest and the smallest singular values
of A and consider the gradient descent method

xt+1 = xt − α∇f(xt)

with a fixed step size α = 1/σmax(A)
2.

a) Show that σmax(I − αATA) = 1− ασmin(A)
2 = 1− σmin(A)2

σmax(A)2
.

b) Calculate the gradient ∇f(x) and rewrite the GD using this gradient.

c) Show that the procedure converges as

||xt+1 − x∗||2 ≤ (1− σmin(A)
2

σmax(A)2
)||xt − x∗||2.

Exercise 5

Consider a dataset given by S = {(xi, yi)}ni=1, where xi ∈ Rd satisfies ‖xi‖ = 1, and yi ∈ R
for all 1 ≤ i ≤ n. Let X be the matrix with xi’s as its rows. Assume that the smallest
eigenvalue of the matrix XTX is µ > 0. We consider the ‘linear noiseless setting’, where we
assume that there exists a β∗ ∈ Rd such that yi = xT

i β
∗ for all i ≤ i ≤ n. We want to find

β∗ by minimizing the loss function

L(β) =
1

n

n∑
i=1

ℓ(β, xi, yi) =
1

n

n∑
i=1

(xT
i β − yi)

2.

1. Show that for any β, β′ ∈ Rd,

L(β′)− L(β) ≥ (β′ − β)T∇L(β) +
µ

n
‖β′ − β‖2.

2. Consider the following stochastic gradient descent for minimizing the loss function L:
At each step k, we sample ik uniformly at random from {1, 2, · · · , n} independent of
the previous steps and do the SGD step given by

βk+1 = βk − η∇ℓ(βk, xik , yik).

2



Show that for sufficiently small η, we have

E‖βk − β∗‖2 ≤
(
1− 2ηµ

n

)k

‖β0 − β∗‖2.

Find the values of η for which the above convergence rate is satisfied.
Hint: First estimate the conditional expectation of ‖βk − β∗‖2 given βk−1.

3. Discuss the differences between the convergence result in question 2 and the conver-
gence result for SGD discussed in class for convex functions with bounded stochastic
gradients.
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