Homework 6 (2" graded homework)
(CS-526 Learning Theory

Exercise 1

For the following convex functions, explain how to calculate a subgradient at a given x.
1. Vo € R": f(z) = maxi<i<pm(al x + b;), where Vi € {1,...,m} : (a;,b;) € R x R.
2. Vo € R": f(x) = maxi<i<m, |al © + ;.

3. Vo € R": f(x) = sup;coq p(t, ), where p(t,z) = @1 + 2ot + - + 2,t" L.

Exercise 2

We recall the definition of a strongly convex function: A function f is A-strongly convex if
for all w,u and a € (0, 1) we have:

Flaw + (1~ a)u) < af () + (1~ @) f(u) ~ Sa(l — a)w — ul?

Theorem 14.11 in the textbook is a refined bound for Stochastic Gradient Descent (SGD)
when the function f is strongly convex. The proof of this theorem relies on the following
claim (Claim 14.10 in Understanding Machine Learning):

If fis A-strongly convex then for every w, v and v € df(w) we have
A
(w—w,v) > f(w) = f(w) + w—ul”
Prove this claim.

Exercise 3

M, (R) is the Hilbert space of n x n real matrices endowed with the inner product (A4, B) =
Tr(ATB). The induced norm is the Euclidian (or Frobenius) norm, i.e.,

n 1/2
Al = vTr(ATA) = (Z(A,j)?) :

2,j=1

Consider the cone of n x n symmetric positive semi-definite matrices, denoted S;7 C M,,(R).
For all A € S, Anax(A) is the maximum eigenvalue associated to A. We define

£ St — ]0,+00)
A = Anax(A)
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a) Show that f is convex.
b) Find a subgradient V' € df(A) for any A € S;F.
Hint: A subgradient of f at A is a matrix V' € R™*" that satisfies:

VB e S!: f(B)> f(A)+Tr((B—A)TV).

Exercise 4

Consider the following Least Squares optimization problem:
' in || Ax — b
x* = arg min —||Ax —
g xER™ 2 2

where b € R™, A is a full column rank matrix in R™*" n < m and there exists a solution to
the linear system Ax = b. Let oy, and o, be the largest and the smallest singular values
of A and consider the gradient descent method

xt =x" —aVf(x")

with a fixed step size @ = 1/0max(A4)2.

a) Show that (] — AT A) = 1 — a0y (A)? = 1 — T2

b) Calculate the gradient V f(x) and rewrite the GD using this gradient.

c) Show that the procedure converges as

t+1 * OmiH(A)Q
[x —x ||2§(1—m

)" = %72,

Exercise 5

Consider a dataset given by S = {(z;,v;)}1,, where z; € R? satisfies ||z;]| = 1, and y; € R
for all 1 < i < n. Let X be the matrix with z;’s as its rows. Assume that the smallest
eigenvalue of the matrix X7 X is > 0. We consider the ‘linear noiseless setting’, where we
assume that there exists a f* € R? such that y; = xF3* for all i < i < n. We want to find
£* by minimizing the loss function
I 1, r )
i=1 i=1

1. Show that for any 3, 3’ € R4,

L(B) = L(8) = (8 = BTVL(E) + L |8 = I

2. Consider the following stochastic gradient descent for minimizing the loss function L:
At each step k, we sample i; uniformly at random from {1,2,--- ,n} independent of
the previous steps and do the SGD step given by

ﬁk+1 = [k — Uvg(ﬁm Ly, s yik)-
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Show that for sufficiently small 1, we have

. 2np\" .
Blsc- 517 < (1-22) 1o 51
Find the values of n for which the above convergence rate is satisfied.
Hint: First estimate the conditional expectation of ||8; — 8*||* given Sj_;.

. Discuss the differences between the convergence result in question 2 and the conver-
gence result for SGD discussed in class for convex functions with bounded stochastic
gradients.



