
Solutions to Homework 6 (graded)
CS-526 Learning Theory

Exercise 1
1. f(x) = max1≤i≤m fi(x) where fi(x) = aTi x + bi is convex differentiable with gradient
∇fi(x) = ai. By Claim 14.6, it follows that ∀x : aj ∈ ∂f(x) where j ∈ argmaxi fi(x).

2. f(x) = max1≤i≤m fi(x) where fi(x) = |aTi x + bi| is convex subdifferentiable. Fix x, let
j ∈ argmaxi fi(x) and choose v ∈ ∂fj(x) as follows:

v =


−aj if aTj x+ bj < 0 ,

0 if aTi x+ bi = 0 ,

+aj if aTj x+ bj > 0 .

A straightforward generalization of Claim 14.6 shows that v is a subgradient of f at x.

3. Note that the sup is really a maximum as t 7→ p(t, x) is a continuous function on a
compact. Hence f(x) = maxt∈[0,1] p(t, x) and ∀t ∈ [0, 1] : ∇xp(t, x) = [1, t, . . . , tn−1]T ∈ Rn.
A straightforward generalization of Claim 14.6 shows that [1, t(x), . . . , t(x)n−1]T ∈ ∂f(x),
where t(x) ∈ argmaxt∈[0,1] p(t, x).

Exercise 2
Fix w, u. The function f is λ-strongly convex, so for all α ∈ [0, 1] we have:

f((1− α)w + αu) ≤ (1− α)f(w) + αf(u)− λ

2
α(1− α)‖w − u‖2

⇔ f(w + α(u−w))− f(w) ≤ α
(
f(u)− f(w)− λ

2
(1− α)‖w − u‖2

)
(1)

Let v ∈ ∂f(w). Then, ∀α ∈ [0, 1] : f(w + α(u −w)) ≥ f(w) + 〈α(u −w),v〉. Combining
this inequality and (1) gives:

〈α(u−w),v〉 ≤ α
(
f(u)− f(w)− λ

2
(1− α)‖w − u‖2

)
⇔ 〈u−w,v〉 ≤ f(u)− f(w)− λ

2
(1− α)‖w − u‖2

⇔ 〈w − u,v〉 ≥ f(w)− f(u) +
λ

2
(1− α)‖w − u‖2

Taking the limit α → 0+ ends the proof: 〈w − u,v〉 ≥ f(w)− f(u) + λ
2
‖w − u‖2.
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Exercise 3
a) Fix A,B ∈ S+

n and α ∈ [0, 1]. Let e ∈ Rn a unit-norm eigenvector of αA + (1 − α)B
associated to the maximum eigenvalue, i.e., (αA+ (1− α)B)e = λmax(αA+ (1− α)B)e and
‖e‖ = 1. We have:

f(αA+ (1− α)B) = eT (αA+ (1− α)B)e = αeTAe+ (1− α)eTBe

≤ αλmax(A) + (1− α)λmax(B)

= αf(A) + (1− α)f(B) .

This shows that f is convex.
b) Let A ∈ S+

n . A subgradient of f at A is a matrix V ∈ Rn×n that satisfies:

∀B ∈ S+
n : f(B) ≥ f(A) + Tr

(
(B − A)TV

)
.

Consider any e ∈ Rn which is a unit-norm eigenvector of A associated to the maximum
eigenvalue, i.e., Ae = λmax(A)e and ‖e‖ = 1. Then for all B ∈ S+

n :

f(A) = λmax(A) = eTAe = eTBe+ eT (A− B)e ≤ λmax(B) + eT (A− B)e

= f(B) + Tr(eT (A− B)e)

= f(B) + Tr((A− B)TeeT ) .

In the last equality we used that (A−B)T = A−B and that the trace is preserved by cyclic
permutations. We see that eeT satisfies the definition of a subgradient: eeT ∈ ∂f(A).

Exercise 4

a) Assume that A has the singular value decomposition UΛV T . Plugging this into the
expression I − αATA we see that I − αATA has the singular value decomposition V Λ′V T ,
where Λ′ is of dimension n× n and has the singular values 1− ασ2

i . For the given choice of
α all these singular values are non-negative and the largest is 1− ασ2

min(A) = 1− σ2
min(A)

σ2
max(A)

.
b) We get

∇f(x) = AT (Ax− b) = ATA(x− x∗),

where we used the fact that A has full column rank so that Ax∗ = b. Hence GD can be
rewritten as

xt+1 = xt − αATA(xt − x∗). (2)

c) Subtracting x∗ from both sides of (2) gives

xt+1 − x∗ = xt − x∗ − αATA(xt − x∗) = (I − αATA)(xt − x∗).

By taking norms we obtain

||xt+1 − x∗||2 ≤ σmax(I − αATA)||xt − x∗||2
= (1− ασmin(A)

2)||xt − x∗||2.
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Exercise 5

1. From the Taylor’s theorem, we have

L(β′) = L(β) + (β′ − β)T∇L(β) +
1

2
(β′ − β)THessian(L)(ξβ + (1− ξ)β)(β′ − β),

for some ξ ∈ [0, 1]. We can rewrite L as

L(β) =
1

n
‖Xβ − y‖2,

which gives Hessian(L)(β) = 2
n
XTX. Hence, we have

(β′ − β)THessian(L)(ξβ + (1− ξ)β)(β′ − β) ≥ 2µ

n
‖β′ − β‖2,

giving the desired result.

2. Expanding ‖βk+1 − β∗‖2, we have
‖βk+1 − β∗‖2 = ‖βk − η∇ℓ(βk, xik , yik)− β∗‖2

= ‖βk − β∗‖2 − 2η〈βk − β∗,∇ℓ(βk, xik , yik)〉+ η2‖∇ℓ(βk, xik , yik)‖2

Let Ek denote expectation conditioned on the randomness till step k. We have
Ek‖βk+1 − β∗‖2 = ‖βk − β∗‖2 − 2η〈βk − β∗,Ek∇ℓ(βk, xik , yik)〉+ η2Ek‖∇ℓ(βk, xik , yik)‖2

= ‖βk − β∗‖2 − 2η〈βk − β∗,∇L(βk)〉+ 4η2Ek[(x
T
ik
βk − yik)

2‖xik‖2]

The result from the previous question with β = βk, β
′ = β∗ gives

〈βk − β∗,∇L(βk)〉 ≥ L(βk) +
µ

n
‖βk − β∗‖2.

Hence,

Ek‖βk+1 − β∗‖2 ≤ ‖βk − β∗‖2 − 2ηL(βk)−
2ηµ

n
‖βk − β∗‖2 + 4η2Ek[(x

T
ik
βk − yik)

2‖xik‖2]

Using the fact that ‖xik‖2 = 1, we get

Ek‖βk+1 − β∗‖2 ≤ ‖βk − β∗‖2 − 2ηL(βk)−
2ηµ

n
‖βk − β∗‖2 + 4η2L(βk)

=

(
1− 2ηµ

n

)
‖βk − β∗‖2 − 2(η − 2η2)L(βk),

≤
(
1− 2ηµ

n

)
‖βk − β∗‖2, for η ≤ 1

2
.

Taking expectation, we get

E‖βk+1 − β∗‖2 ≤
(
1− 2ηµ

n

)
E‖βk − β∗‖2.

Now, recursively applying the above result, we get

E‖βk − β∗‖2 ≤
(
1− 2ηµ

n

)k

E‖β0 − β∗‖2.
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3. Here the convergence is guaranteed for the iterates (βk) itself without averaging, and
is exponentially fast. The convergence result derived in class is for function value at
the average of iterates, and the convergence is polynomial in the number of iterations.
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