Evolution of Neurocontrollers

What you will learn in this class

- What is Evolutionary Robotics used for
- Genetic encodings of neural controllers
- Set up, carry out, and analyze a robotic experiment
- Evolution of vision-based neuro-controllers
- Analysis of evolved spiking neural networks
- Feature detection and active vision for neural controllers
- Comparing fitness functions: The Fitness Design Space
- Evolutionary control vs Reinforcement Learning

Evolutionary Robotics

Evolutionary Robotics is the automated generation of robot control systems^{*} and morphologies by means of artificial evolution (Nolfi & Floreano, MIT Press, 2000)

Two motivations

Engineering: a tool to investigate the space of possible control strategies and body design

Biology: A synthetic (as opposed to analytic) approach to the study of mechanisms of adaptive behavior in machines and animals (Braitenberg, 1984)

Genome can encode

1. Connection Weights

- a. pre-defined neural network architecture
- b. binary or real-valued representation of connection weights
- c. fixed-length genotype
- 2. Learning Rules
 - a. pre-defined neural network architecture
 - b. Binary or real-valued representation of learning rule
 - c. Fixed-length genotype
- 3. <u>Topology</u>
 - a. Neural network architecture created at birth
 - b. Genotype encodes the parameters of a generative algorithm (program, L-System, neural network)
 - c. Fixed-length or variable-length genotype

Evolution of connection weights

Fitness function is a measure of the robot behavior

Can be combined with neural network learning:

- learning starts from genetically encoded weights
- fitness measures performance of network after training
- learned weights are not written back into genome

Collision-free Navigation

Fitness = V x
$$\Delta v$$
 x (1-s)

Methodology

Results

The average and best population fitness are typical measures of performance. Evolved robots always have a preferential direction of motion and speed.

Homing for Battery Charge

Let us now put the robot in a more complex environment and make the fitness function even simpler. The robot is equipped with a battery that lasts only 20 s and there is a battery charger in the arena.

Machine Neuro-Ethology

Best evolved robots go to recharge with only 10% residual energy. Why and how?

Activity of an internal neuron

Evolution of complex robots

It is difficult to evolve from scratch large and complex robots because of:

- hardware robustness
- bootstrap problem: zero-fitness of all individuals of the initial generation

Incremental evolution (a.k.a robot shaping)

simulation

Fitness=V x Δv x (1-s)

real robot (Khepera)

Fitness=V x Δv x (1-s)

different robot (Koala)

Fitness=V x Δv x (1-s)

Evolution of spiking neural controllers

EPFL Microrobot

- 4 proximity sensors
- 2 Swatch motors
- 10 hours autonomy

Microcontroller PIC16F84, (Microchip, 2001) 1024 words of program memory 68 bytes of RAM 64 bytes of EEPROM

Representation and encoding of neural architecture

Neural controller = 8 fully connected neurons

Gene to encode signs of the neurons: excitatory or inhibitory (8 bits)

One gene for each of the 8 neurons: weights of neuron connections (8 bits) + input connections (8 bits) Genome of one controller = 17 bytes

Steady-state evolutionary algorithm

Forward navigation with obstacle avoidance

Fitness = V x
$$\Delta v$$
 x (1-s)

A A

Vision-based navigation with spiking neurons

Fitness proportional to amount of forward translation over 2 mins

After 30 generations

Firing rate or firing time?

- Removing any single neuron (except # 9) decreases the navigation performance
- Removing any pair of neurons decreases even further navigation performance
- Removing neurons 1, 5, 6 has no effect on performance

we infer that evolved neurons use time difference of incoming signals, not only total signal intensity

Vision-based flight of a blimp

- 5 x 5 room, random size stripes
- Fitness = forward motion (anemometer)
- 2 trials, 2 minutes each
- Evolution + network activation on PC
- Sensory pre-processing on microcontroller

After 50 generations on the real blimp

The set

Evolution is opportunistic!

Steering rate

Visual feature detection

Process whereby visual neurons become sensitive to certain sensory patterns (features) during the developmental process (Hubel & Wiesel, 1959)

Oriented Edges

+ + +

Center-Surround

(+)

Active vision

Process of selecting by motor actions sensory patterns (features) that make discrimination easier (Bajcsy, 1988)

Neural architecture for active vision

Robot navigation with active vision architecture

<u>Goal</u>: Evolve collision-free navigation using <u>only</u> vision information from a pan/tilt camera.

Output of vision system is movement of camera (pan/tilt) and of robot wheels (mot1/mot2). Filter as before.

Pan Tilt Filter Mot1 Mot2

T

Active Vision for Car Driving

<u>Fitness</u> = percentage of covered distance D in R races on M circuits (limited time for each race).

The

Active Vision for bipedal locomotion

Fitness design space: comparing fitness functions

Reinforcement Learning - Evolutionary Computation

Two methods for learning behavioral policies from rewards

	Reinforcement Learning		Evolutionary Computation
-	Definition of Reinforcement Policy	-	Definition of Fitness Function
-	Need of loss gradient	+	No need of gradient
-	Lots of hyperparameters	+	Comparatively less hyperparameters
+	Gradient descent, some stochastic operator	-	Stochastic operators more dominant
-	Challenging for long rollouts without reward	+	No problem with rollout length
-	Operates only on weights of neural network	+	Operates on weights, learning, morphologies
-	Requires many rollouts	-	Requires many rollouts
+	Has strong mathematical foundations	-	Some algorithms are rather empirical

See also https://openai.com/blog/evolution-strategies/