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What you will learn in this class

• What is Evolutionary Robotics used for

• Genetic encodings of neural controllers

• Set up, carry out, and analyze a robotic experiment

• Evolution of vision-based neuro-controllers

• Analysis of evolved spiking neural networks

• Feature detection and active vision for neural controllers

• Comparing fitness functions: The Fitness Design Space

• Evolutionary control vs Reinforcement Learning



Evolutionary Robotics is the automated generation of robot control systems* and morphologies by 

means of artificial evolution (Nolfi & Floreano, MIT Press, 2000)

Evolutionary Robotics

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press 3

*The control systems are often neural networks

Two motivations

Engineering: a tool to investigate the space of possible control 

strategies and body design

Biology: A synthetic (as opposed to analytic) approach to the study of 

mechanisms of adaptive behavior in machines and animals (Braitenberg, 

1984)



1. Connection Weights

a. pre-defined neural network architecture

b. binary or real-valued representation of connection weights

c. fixed-length genotype

2. Learning Rules

a. pre-defined neural network architecture

b. Binary or real-valued representation of learning rule 

c. Fixed-length genotype

3. Topology

a. Neural network architecture created at birth

b. Genotype encodes the parameters of a generative algorithm (program, L-System, neural 

network)

c. Fixed-length or variable-length genotype
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Genome can encode



Evolution of connection weights

1 synapse

synapse sign

synapse strength

Fitness function is a measure of the robot behavior

Can be combined with neural network learning:

- learning starts from genetically encoded weights

- fitness measures performance of network after training

- learned weights are not written back into genome
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Binary encoding



Fitness = V x v x (1-s)

motors

sensors

t=300ms

Collision-free Navigation
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Methodology
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The average and best population fitness are typical measures of performance.

Direction

Speed = 60%

Evolved robots always have a preferential direction of motion and speed.

Results
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Fitness = V x (1-s)

motors

sensors

t=300ms

Let us now put the robot in a more complex environment and make the fitness function even simpler. 

The robot is equipped with a battery that lasts only 20 s and there is a battery charger in the arena.

Homing for Battery Charge
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Best evolved robots go to recharge with only 10% residual energy. Why and how?

Activity of an internal neuron

Machine Neuro-Ethology
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It is difficult to evolve from scratch large and complex robots because of:

- hardware robustness

- bootstrap problem: zero-fitness of all individuals of the initial generation

Khepera

robot

Koala

robot

Evolution of complex robots
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Fitness=V x v x (1-s)

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, 

Methods, and Technologies by Dario Floreano and Claudio Mattiussi, MIT Press

Incremental evolution (a.k.a robot shaping)
simulation real robot (Khepera) different robot (Koala)

Fitness=V x v x (1-s) Fitness=V x v x (1-s)

Simulation  Real



EPFL Microrobot 

• 4 proximity sensors

• 2 Swatch motors

• 10 hours autonomy
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Microcontroller PIC16F84, (Microchip, 2001)

1024 words of program memory

68 bytes of RAM

64 bytes of EEPROM

Evolution of spiking neural controllers

spike

refractory period

integration

+ leakage

x1

x2

x3

x4

Binary events



Neural controller = 8 fully connected neurons

Gene to encode signs of the neurons: excitatory or inhibitory (8 bits)

One gene for each of the 8 neurons: weights of neuron connections (8 bits) + input connections (8 bits)

Genome of one controller = 17 bytes
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Representation and encoding of neural architecture



?

6 individuals

(genome + fitness)

Replace if better than worst in population

TEST

Mutation

1 bit SIGN

1 bit NCONN

1 bit ICONN
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Steady-state evolutionary algorithm



Steady-state evolution

Fitness = V x v x (1-s)

Forward navigation with obstacle avoidance

• bias: 

• IR Right:

• IR Left: 
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After 30 generations

Fitness proportional to amount of forward 

translation over 2 mins

Vision-based navigation with spiking neurons
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1 2 3 4 5 6 7 8 9 10

9 445 453 450 330 40 129 363 0 452

Neuron #

spikes/s

- Removing any single neuron (except # 9) decreases the navigation performance

- Removing any pair of neurons decreases even further navigation performance

- Removing neurons 1, 5, 6 has no effect on performance

we infer that evolved neurons use time difference of incoming signals, not only total signal intensity

Firing rate or firing time?





• 5 x 5 room, random size stripes

• Fitness = forward motion (anemometer)

• 2 trials, 2 minutes each

• Evolution + network activation on PC

• Sensory pre-processing on microcontroller

Vision-based flight of a blimp



After 50 generations on the real blimp
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Turning rate from NN output

Encoder turning rate

Amount of perceived contrast

Steering rate

Evolution is opportunistic!
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Center-Surround Oriented Edges

Hebb plasticity
Process whereby visual neurons become

sensitive to certain sensory patterns (features) 

during the developmental process (Hubel & 

Wiesel, 1959)
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Visual feature detection



Process of selecting by motor actions 

sensory patterns (features) that make

discrimination easier (Bajcsy, 1988)

Yarbus, 1967
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Active vision



shape discrimination

robot control

car driving

retina movement

zooming factor

filter type

Neural architecture for active vision



Output of vision system is movement 

of camera (pan/tilt) and of robot 

wheels (mot1/mot2). Filter as before.

Goal: Evolve collision-free navigation using only vision information from a pan/tilt camera.

Robot navigation with active vision architecture
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Fitness = percentage of covered 

distance D in R races on M circuits 

(limited time for each race).

Active Vision for Car Driving
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Active Vision for bipedal locomotion





functional behavioral

internal

externalexplicit

implicit

engineering

biology
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Fitness design space: comparing fitness functions



Reinforcement Learning - Evolutionary Computation

See also https://openai.com/blog/evolution-strategies/

Reinforcement Learning Evolutionary Computation

- Definition of Reinforcement Policy - Definition of Fitness Function

- Need of loss gradient + No need of gradient

- Lots of hyperparameters + Comparatively less hyperparameters

+ Gradient descent, some stochastic operator - Stochastic operators more dominant

- Challenging for long rollouts without reward + No problem with rollout length

- Operates only on weights of neural network + Operates on weights, learning, morphologies

- Requires many rollouts - Requires many rollouts

+ Has strong mathematical foundations - Some algorithms are rather empirical

Two methods for learning behavioral policies from rewards
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