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Astrophysics IV: Stellar and galactic dynamics
Solutions

Problem 1:
We set up our coordinates such that the slab lays on the z = 0 plane. As the mass

distribution is discontinuous, we cannot easily rely on the Poisson equation to derive
the corresponding potential. We instead use Gauss’s law:∫

S

∇⃗Φ · dS⃗ = 4πGMS, (1)

where S is any surface and MS is the mass enclosed by the surface S. Let us define S
to be the surface of a cylinder perpendicular to the plane z = 0. By symmetry (the
surface density of the plane is constant) :

∇⃗Φ =
∂

∂z
Φ(z) · e⃗z and

∂

∂z
Φ(z) = − ∂

∂z
Φ(−z). (2)

Thus, in the integral (1) the surface perpendicular to the plane z = 0 does not con-
tribute and we get : ∫

S

∇⃗Φ · dS⃗ = 2
∂

∂z
Φ(z)∆s. (3)

where ∆s is the surface of the cylinder parallel to the plane z = 0. The mass enclosed
in the cylinder is :

MS = ∆sΣ0 (4)
and (3) with (4) and (1) give :

2
∂

∂z
Φ(z)∆s = 4πG∆sΣ0. (5)

This leads to :
∂

∂z
Φ(z) = 2πGΣ0, (6)

and after integration :
Φ(z) = 2πGΣ0 z + const. (7)

Problem 2:
We consider a wire aligned with the x axis. As the mass distribution is discontinu-

ous, we cannot rely on the Poisson equation to derive the corresponding potential. We
instead rely on the Gauss Theorem :∫

S

∇⃗Φ · dS⃗ = 4πGMS, (8)
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where S is any surface and MS is the mass enclosed by the surface S. Let us define
S to be the surface of a cylinder of length ∆x and radius R, with its symmetry axis
being the axis x, i.e., the wire. The surface ∆s parallel to the x axis is:

∆s = 2πR ∆x, (9)

and the enclosed mass is :
MS = λ0 ∆x. (10)

By symmetry (the linear density of the wire is constant) :

∇⃗Φ =
∂

∂R
Φ(R) e⃗R, (11)

where e⃗R is perpendicular to the axis x. With (9), (10) and (11), the Gauss theorem
becomes : ∫

S

∇⃗Φ · dS⃗ = 2πR∆x
∂

∂R
Φ(R) = 4πGλ0 ∆x, (12)

which leads to :
∂

∂R
Φ(R) = 2G

λ0

R
, (13)

and after integrating over the radius R :

Φ(R) = 2Gλ0 ln(R) + const, (14)

Problem 3:

The ellipse equation is given by

x2

a2
+

y2

b2
= 1 (15)

the focii are at

c = ±
√
a2 − b2

and the eccentricity is defined as

e =
c

a

Using these relations, we write
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e2 =
c2

a2
=

a2 − b2

a2
= 1− b2

a2

y2 = b2 − b2

a2
x2 =

b2

a2
(a2 − x2) = (1− e2)(a2 − x2)

We apply a coordinate transformation now: Let x = x′ + ae (= x′ + c). This gives

y2 = (1− e2)
(
a2 − (x′ + ae)2

)
(16)

Now we show that the equation of Keplerian orbits (17) can be written in the same
form as (16). The Keplerian orbits are defined as

r(φ) =
a(1− e2)

1 + e cos(φ)
(17)

with x′ = r cos(φ), y = r sin(φ)

r(1 + e cos(φ)) = r + er cos(φ) = r + ex′

= a(1− e2)

r2 = a2(1− e2)2 + e2x′2 − 2a(1− e2)ex′

= x′2 + y2

y2 = a2(1− e2) + x′2(e2 − 1)− 2a(1− e2)ex′

= (1− e2)[a2(1− e2)− x′2 − 2aex′]

= (1− e2)[a2 − a2e2 − (x′ + ae)2 + a2e2]

= (1− e2)[a2 − (x′ + ae)2]

which is exactly equation (16) again.
Problem 4:

First law : The orbit of a planet is an ellipse with the Sun at one of the two
foci. This was shown in question 3.

Second law : A line segment joining a planet and the Sun sweeps out equal
areas during equal intervals of time. Consider the Sun to be at the centre of the
coordinate system and a planet at the position x⃗(t) with a velocity v⃗(t). Consider first
the areas sweeps out during an infinitesimal time d t. This area will be:

δA =
1

2
|x⃗(t)× dx⃗(t)| , (18)

where dx⃗ = v⃗dt. So,

δA =
1

2
dt |x⃗(t)× v⃗(t)| = 1

2
dt|L⃗|, (19)

with L⃗, the angular momentum (consider a body of unit mass). As the latter is
conserved in a spherical potential, δA is independent of the time and of the position
along the orbit. We can thus write for any interval time ∆T such that ∆T = t2 − t1:

A =

∫ t2

t1

δA =
1

2
|L⃗|

∫ t2

t1

dt =
1

2
|L⃗|∆T, (20)

which demonstrates the law.
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Third law : The square of a planet’s orbital period is proportional to the
cube of the length of the semi-major axis of its orbit. From the previous law,
we got a result of the form

A =
1

2
L∆T,

with L the magnitude of the angular momentum of a test particle of unit mass. For a
full orbit, ∆T ≡ T is the period, and A is the area of the ellipse:

A = πab = πa2
√
1− e2.

Let us now turn our attention to L. There are different ways of calculating it, but we
will use the Vis-Viva equation:

v2(r) = GM

(
2

r
− 1

a

)
.

Let’s take , e.g., r = rmin:

v2(rmin) = GM

(
2

rmin

− 1

a

)
= GM

(
2a− rmin

rmina

)
but 2a− rmin is rmax, and we also have rminrmax = b2. Together we get:

v2(rmin) =
GM

a

(
b

rmin

)2

So we have

L = L(rmin) =

√
GM

a
b =

√
GM

a
a
√
1− e2

Thus the period is

T =
2A

L
= 2

πa2
√
1− e2√

GM
a
a
√
1− e2

= 2
πa3/2√
GM

,

or
T 2 =

4π2

GM
a3.

Throughout this exercise, we took a test particle of unit mass to make dealing with
the units easier. (Usually, L = mrv and not only L = rv which we used here.)
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