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Astrophysics IV: Stellar and galactic dynamics

Solutions

Problem 1:

We set up our coordinates such that the slab lays on the z = 0 plane. As the mass
distribution is discontinuous, we cannot easily rely on the Poisson equation to derive
the corresponding potential. We instead use Gauss’s law:

/ V& - dS = 4rG Ms, (1)
S

where S is any surface and Mg is the mass enclosed by the surface S. Let us define S
to be the surface of a cylinder perpendicular to the plane z = 0. By symmetry (the
surface density of the plane is constant) :

- 0 . 0 0
Vo = £CI>(2) - €, and —P(2) = —aq)(—z). (2)

Thus, in the integral (1) the surface perpendicular to the plane z = 0 does not con-
tribute and we get :

- ~ 0
/SVCI) -dS = 2543(2) As. (3)

where As is the surface of the cylinder parallel to the plane z = 0. The mass enclosed
in the cylinder is :

Mg = As%, (4)
and (3) with (4) and (1) give :
282@(,2) As = 471G As ¥y. (5)
z
This leads to : 5
&(I)(z) = 21G %, (6)
and after integration :
®(2) = 27G X z + const. (7)

Problem 2:

We consider a wire aligned with the x axis. As the mass distribution is discontinu-
ous, we cannot rely on the Poisson equation to derive the corresponding potential. We
instead rely on the Gauss Theorem :

/ V- dS = 47G Ms, (8)
S
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where S is any surface and Mg is the mass enclosed by the surface S. Let us define
S to be the surface of a cylinder of length Az and radius R, with its symmetry axis
being the axis x, i.e., the wire. The surface As parallel to the = axis is:

As =21R Az, 9)
and the enclosed mass is :
Mg = Ny Ax. (10)
By symmetry (the linear density of the wire is constant) :
-2 ®(R) € (11)
= — €
aR R?

where €f is perpendicular to the axis z. With (9), (10) and (11), the Gauss theorem
becomes :

/ Vo - dS = 2rR Az i<1>(R) = 471G N\ Az, (12)
g OR
which leads to :
9 g(ry =260 (13)
OR N R’

and after integrating over the radius R :
®(R) = 2G Ao In(R) + const, (14)

Problem 3:

The ellipse equation is given by

S A (15)
the focii are at

c=+vVa2 -0

and the eccentricity is defined as

ISHINQ

Using these relations, we write
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y:b—ﬁxZE(a —z7)=(1—-¢€")(a" — x%)

We apply a coordinate transformation now: Let z = 2’ 4+ ae (= 2’ + ¢). This gives
Y= (1—¢) (a® — (2/ + ae)?) (16)

Now we show that the equation of Keplerian orbits (17) can be written in the same
form as (16). The Keplerian orbits are defined as

a(l —e?)
r(p) = T+ ecos(g) (17)

with 2’ = rcos(p), y = rsin(p)

r(1+ecos(p)) =r+ercos(p) =r+ex
=a(l — €?)
r? = a*(1 — e*)* + 2 — 2a(1 — e*)ex’
=2+
y? =a*(1—e*) +2%(e* — 1) — 2a(1 — e*)ea’
(1 —e?)]a*(1 — e*) — 2™ — 2aex’]
(1 —e?)[a® — a®e® — (2’ + ae)® + a*e?]
(1 —eH[a® — (2" + ae)?]
which is exactly equation (16) again.
Problem 4:

First law : The orbit of a planet is an ellipse with the Sun at one of the two
foci. This was shown in question 3.

Second law : A line segment joining a planet and the Sun sweeps out equal
areas during equal intervals of time. Consider the Sun to be at the centre of the
coordinate system and a planet at the position Z(t) with a velocity (t). Consider first
the areas sweeps out during an infinitesimal time d¢. This area will be:

1
0A = 5 |Z(t) x dZ(t)], (18)
where dz’ = vdt. So,
1 1 -
0A = 3 dt|Z(t) x ¥(t)| = 3 dt|L|, (19)

with L, the angular momentum (consider a body of unit mass). As the latter is
conserved in a spherical potential, A is independent of the time and of the position
along the orbit. We can thus write for any interval time AT such that AT =ty — t;:

to 1 . to 1 .
A:/ 5A:—|L|/ dt = = |I| AT, (20)
t1 2 t1 2

which demonstrates the law.



Third law : The square of a planet’s orbital period is proportional to the
cube of the length of the semi-major axis of its orbit. From the previous law,
we got a result of the form

A= %LAT,

with L the magnitude of the angular momentum of a test particle of unit mass. For a
full orbit, AT = T is the period, and A is the area of the ellipse:

A =rmab = ma®V1 — e2.
Let us now turn our attention to L. There are different ways of calculating it, but we

will use the Vis-Viva equation:
2 1
v (r) = GM(— — —).

r a

Let’s take , e.g., r = ryin:

U2<rmin):GM< 2 _1) :GM<M)

T'min a T'min@

but 2a — rmin 1S Tmax, and we also have 7yin"max = b?. Together we get:

0} (Pmin) = G—M< ! )2

a T'min

L = L(rmin) = 4/ GMb: \/ GMa\/l — e2
a a

2A ra*y1 — e2 5 ra’/?

So we have

Thus the period is

T: —_— :2 pr— y
L7 e, 1= VGM
or 4 9
7I8
T? = i
oM

Throughout this exercise, we took a test particle of unit mass to make dealing with
the units easier. (Usually, L = mrv and not only L = rv which we used here.)



