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Some useful facts:

1. Taylor’s theorem with remainder: Let f : R → R be a twice differentiable func-
tion. Then for any x, y ∈ Rd we have

f(y) = f(x) + (y − x)T∇f(x) +
1

2
(y − x)THessian(f)(ξx+ (1− ξ)y)(y − x),

for some ξ ∈ [0, 1].

2. AM-GM inequality: For ai > 0, we have[ m∏
i=1

ai

]1/m
≤ 1

m

m∑
i=1

ai.
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Problem 1. PAC learning ( 10 pts)

Let Di, i = 1, · · · ,m be a collection of possibly different distributions over (x, y) ∈ X×{0, 1}.
Let H be a finite class of binary classifiers h. In other words for |H| < +∞ and h : x ∈
X 7→ h(x) = y ∈ {0, 1}. Let S = {(x1, y1), . . . , (xm, ym)} where (xi, yi) ∼ Di be a set of i.i.d
samples. Consider the average distribution given by the convex combination

D =
1

m

m∑
i=1

Di

We recall that the true (or population) risk for a distribution P is

LP(h) = EP [1(h(x) 6= y)]

(in this exercise P = D,Di) and the empirical risk is

LS(h) =
1

m

m∑
i=1

1(h(xi) 6= yi).

1. Show that
P[LS(h) = 0] ≤ (1− LD(h))

m.

2. Prove that for any ϵ > 0 we have

P[∃h ∈ H : LD(h) > ϵ andLS(h) = 0] ≤ |H|e−ϵm.
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Solution to Problem 1:

1. (5 pts) Since the empirical risk is a sum of non-negative i.i.d terms distributed with
Di:

P[LS(h) = 0] =
m∏
i=1

PDi
[1(h(x) 6= y) = 0]

=
m∏
i=1

(1− PDi
[1(h(x) 6= y) = 1])

=
m∏
i=1

(1− PDi
[1(h(x) 6= y) = 1])

=
m∏
i=1

(1− EDi
[1(h(x) 6= y)])

=
m∏
i=1

(1− LDi
(h))

Note that
∑m

i=1 LDi
(h) = LD(h). Thus using the AGM inequality

PD[LS(h) = 0] ≤
[
1

m

m∑
i=1

(1− LDi
(h))

]m
= (1− LD(h))

m

2. (5 pts) We have

{∃h ∈ H : LD(h) > ϵ andLS(h) = 0} = ∪h∈H:LD(h)>ϵ{LS(h) = 0}

Thus by the union bound

P[∃h ∈ H : LD(h) > ϵ andLS(h) = 0] ≤
∑

h∈H:LD(h)>ϵ

P[LS(h) = 0]

Replacing the inequality obtained in the previous question in this union bound:

P[∃h ∈ H : LD(h) > ϵ andLS(h) = 0] ≤
∑

h∈H:LD(h)>ϵ

(1− LD(h))
m

≤
∑

h∈H:LD(h)>ϵ

(1− ϵ)m

≤ |H|(1− ϵ)m

≤ |H|e−ϵm
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Problem 2. Gradient descent( 14 pts)

Consider a dataset given by S = {(xi, yi)}ni=1, where xi ∈ Rd satisfies ‖xi‖ = 1, and yi ∈ R
for all 1 ≤ i ≤ n. Let X be the matrix with xi’s as its rows. Assume that the smallest
eigenvalue of the matrix XTX is µ > 0. We consider the ‘linear noiseless setting’, where we
assume that there exists a β∗ ∈ Rd such that yi = xT

i β
∗ for all i ≤ i ≤ n. We want to find

β∗ by minimizing the loss function

L(β) =
1

n

n∑
i=1

ℓ(β, xi, yi) =
1

n

n∑
i=1

(xT
i β − yi)

2.

1. Show that for any β, β′ ∈ Rd,

L(β′)− L(β) ≥ (β′ − β)T∇L(β) +
µ

n
‖β′ − β‖2.

2. Consider the following stochastic gradient descent for minimizing the loss function L:
At each step k, we sample ik uniformly at random from {1, 2, · · · , n} independent of
the previous steps and do the SGD step given by

βk+1 = βk − η∇ℓ(βk, xik , yik).

Show that for sufficiently small η, we have

E‖βk − β∗‖2 ≤
(
1− 2ηµ

n

)k

‖β0 − β∗‖2.

Find the values of η for which the above convergence rate is satisfied.
Hint: First estimate the conditional expectation of ‖βk − β∗‖2 given βk−1.

3. Discuss the differences between the convergence result in Problem 2.2 and the conver-
gence result for SGD discussed in class for convex functions with bounded stochastic
gradients.
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Solution to Problem 2:

1. (4 pts) From the Taylor’s theorem, we have

L(β′) = L(β) + (β′ − β)T∇L(β) +
1

2
(β′ − β)THessian(L)(ξβ + (1− ξ)β)(β′ − β),

for some ξ ∈ [0, 1]. We can rewrite L as

L(β) =
1

n
‖Xβ − y‖2,

which gives Hessian(L)(β) = 2
n
XTX. Hence, we have

(β′ − β)THessian(L)(ξβ + (1− ξ)β)(β′ − β) ≥ 2µ

n
‖β′ − β‖2,

giving the desired result.

2. (8 pts) Expanding ‖βk+1 − β∗‖2, we have

‖βk+1 − β∗‖2 = ‖βk − η∇ℓ(βk, xik , yik)− β∗‖2

= ‖βk − β∗‖2 − 2η〈βk − β∗,∇ℓ(βk, xik , yik)〉+ η2‖∇ℓ(βk, xik , yik)‖2

Let Ek denote expectation conditioned on the randomness till step k. We have

Ek‖βk+1 − β∗‖2 = ‖βk − β∗‖2 − 2η〈βk − β∗,Ek∇ℓ(βk, xik , yik)〉+ η2Ek‖∇ℓ(βk, xik , yik)‖2

= ‖βk − β∗‖2 − 2η〈βk − β∗,∇L(βk)〉+ 4η2Ek[(x
T
ik
βk − yik)

2‖xik‖2]

The result from the previous question with β = βk, β
′ = β∗ gives

〈βk − β∗,∇L(βk)〉 ≥ L(βk) +
µ

n
‖βk − β∗‖2.

Hence,

Ek‖βk+1 − β∗‖2 ≤ ‖βk − β∗‖2 − 2ηL(βk)−
2ηµ

n
‖βk − β∗‖2 + 4η2Ek[(x

T
ik
βk − yik)

2‖xik‖2]

Using the fact that ‖xik‖2 = 1, we get

Ek‖βk+1 − β∗‖2 ≤ ‖βk − β∗‖2 − 2ηL(βk)−
2ηµ

n
‖βk − β∗‖2 + 4η2L(βk)

=

(
1− 2ηµ

n

)
‖βk − β∗‖2 − 2(η − 2η2)L(βk),

≤
(
1− 2ηµ

n

)
‖βk − β∗‖2, for η ≤ 1

2
.
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Taking expectation, we get

E‖βk+1 − β∗‖2 ≤
(
1− 2ηµ

n

)
E‖βk − β∗‖2.

Now, recursively applying the above result, we get

E‖βk − β∗‖2 ≤
(
1− 2ηµ

n

)k

E‖β0 − β∗‖2.

3. (2 pts) In Problem 2.2, the convergence is guaranteed for the iterates (βk) itself without
averaging, and is exponentially fast. The convergence result derived in class is for
function value at the average of iterates, and the convergence is polynomial in the
number of iterations.
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Problem 3. Tensor decomposition (14 pts)

Consider a collection of R of d-dimensional vectors w⃗i ∈ Rd, ‖w⃗i‖2 = d, i = 1, . . . , R. We
assume that their barycenter is at the origin, that is

∑R
i=1 w⃗i = 0. Consider the following

‘model’

y =
1

6

R∑
i=1

(w⃗T
i x⃗√
d

)3
+ ξ

where the observation y ∈ R, the signal x⃗ ∈ Rd is random distributed as N (0, Id) (with Id
the d× d identity matrix), and the additive noise ξ ∈ Rd is gaussian distributed as N (0, Id)

(independent of x⃗).

In this problem the goal is to construct an algorithm (using tensor methods) to estimate the
vectors w⃗i, i = 1, . . . , R given n training data samples (x⃗1, y1), . . . , (x⃗n, yn).

1. What is the mean, variance, and covariance, of the random variables Zi =
w⃗T

i x⃗√
d

?

2. Form the tensor
T = d

3
2E[y x⃗⊗ x⃗⊗ x⃗]

where the expectation is with respect to x⃗ and ξ. Compute and find an expression for
this expectation which involves only the w⃗i’s.
Hint: you are advised to work with the components T αβγ , α, β, γ = 1, · · · , d. You
can also use the following property for standard Gaussian variables (sometimes called
Wick’s theorem)

E[xkxlxmxαxβxγ] =(δkαδlβδmγ + permutations ofk, l,m)

+ δαβ
(
δγkδlm + cyclic permutations ofk, l,m

)
+ δαγ

(
δβkδlm + cyclic permutations ofk, l,m

)
+ δβγ

(
δαkδlm + cyclic permutations ofk, l,m

)
3. Now suppose that we are given data (x⃗1, y1), . . . , (x⃗n, yn) and that we assume it follows

the above model. Suggest a tensor-based algorithm to estimate w⃗1, . . . , w⃗R. Justify
your answer by specifying:

(a) What tensor exactly do you suggest we should look at ?
(b) Suggest an algorithm of your choice and discuss the ”chances” of succeeding.

4. Bonus question (3 pts): Now we want to investigate how many samples we would need
in practice, given a dimensionality d. How would you go about finding the minimum
number of samples required for your algorithm to work ? Your answer may consist of
a qualitative argument.
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Solution to Problem 3:

1. (3 pts) Since x⃗ ∼ N (0, Id) and Zi =
1√
d

∑d
α=1 w

α
i x

α,

E[Zi] = 0, Var[Zi] =
1

d

∑
i

Var[wα
i x

α] =
1

d

∑
i

(wα
i )

2 = 1

and
Cov(Zi;Zj) = E[ZiZj]− E[Zi]E[Zj] =

1

d

∑
α,β

wα
i w

β
j E[xαxβ] =

1

d
w⃗i · w⃗j

2. (7 pts) Working in components, using that ξ is zero mean and independent of x⃗, and
using Wick’s theorem (in the hint):

T αβγ = d3/2E[yxαxβxγ]

=
1

6

R∑
i=1

E[
(
w⃗T

i · x⃗
)3
xαxβxγ]

=
1

6

R∑
i=1

d∑
k,l,m=1

wk
i w

l
iw

m
i E[xkxlxmxαxβxγ]

=
R∑
i=1

wα
i w

β
i w

γ
i +

1

2
δαβ

R∑
i=1

d∑
l=1

wγ
i (w

l
i)

2 +
1

2
δαγ

R∑
i=1

d∑
l=1

wβ
i (w

l
i)

2 +
1

2
δβγ

R∑
i=1

d∑
l=1

wα
i (w

l
i)

2

Using
∑d

l=1(w
l
i)

2 = d and
∑R

i=1 w
α
i = 0 (barycenter at origin) we find

T αβγ =
R∑
i=1

wα
i w

β
i w

γ
i

in other words T =
∑R

i=1 w⃗i ⊗ w⃗i ⊗ w⃗i.

3. (4 pts) Given the data we have access to the empirical tensor

Temp =
d3/2

n

n∑
k=1

ykx⃗k ⊗ x⃗k ⊗ x⃗k

We expect that for n large enough this will concentrate on T =
∑R

i=1 w⃗i ⊗ w⃗i ⊗ w⃗i.
One could try Jennrich’s algorithm as we have a three mode tensor. However the wi’s
are not independent so the guarantees of success are not fulfilled. One could try the
tensor power method but again this would require to whiten the Tensor first and again
the vectors are not linearly independent. Finally the alternating minimisation method
often works in practice but without any a priori guarantees.
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4. (3 pts) Bonus question: We must ensure that Temp concentrates on T . Since we have
a sum of i.i.d terms the squared-fluctuations of Temp are of the order of

Var[T αβγ
emp ] =

d3

n2
nVar[yxα

kx
β
kx

γ
k]

With ξ independent additive noise we have two contributions (cross terms vanish).
The first one is

d3

n
E[ξ2]E[(xαxβxγ)2] = O(

d3

n
)

The second one is

d3

n
Var[

R∑
i=1

Z3
i x

αxβxγ] =
d3

n

R∑
i,j=1

Cov[Z3
i x

αxβxγ;Z3
j x

αxβxγ] = O(
d3

n
)

(R dependent). To see the last fact we check that Zi’s, xk’s are jointly gaussian with
covariances independent of d. For example:

E[ZiZj] =
1

d

∑
k,l

wk
i w

l
jE[xkxl] =

1

d
w⃗i · w⃗j ≤

1

d
‖w⃗i‖‖wj‖ = 1

E[Zix
k] =

1√
d

∑
l,k

wl
iE[xlxk] =

1√
d
wk

i ≤ O(1/
√
d) roughly speaking

ect...

In conclusion to have small fluctuations we should have n >> d3 samples.
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Problem 4 (12 pts). This problem consists of 4 short questions. Answer each point with a
short justification, picture, or calculation.

1. (3 pts) Determine the VC-dimension of the following hypothesis class defined on x ∈ R:

H =

{
sgn

2k∏
i=1

(x− ai), a1 < a2 < . . . a2k

}

where sgn means the sign of the product.

2. (3 pts) Let f(x) = a|x|3 + b|x| + c for a, b ∈ R+ and c ∈ R. Is this function convex ?
If yes what are the subgradient sets ∂f(x) ?

3. (3 pts) Let G(z) = e−
z2

2√
2π

and the convolution fG(x) =
∫
R dzG(z − x)f(z). Consider

the standard Gaussian random variable Z ∼ N (0, 1). Consider the random map
x 7→ Zf(x+ Z). Which is true ?

(a) This random map is a stochastic gradient of fG.
(b) This random map cannot be a stochastic gradient since it does not contain any

derivative.

4. (3 pts) Let T =
∑4

r=1 ar ⊗ br ⊗ cr, where the ar, br, and cr form the columns of square
matrices A, B, and C. Let detA = detB 6= 0 and detC = 0. Which of the following
is true ? Justify.

(a) For all matrices A,B,C satisfying the assumptions above, the decomposition of
T is not unique (up to trivial rescalings and permutation of terms).

(b) There exist matrices A,B,C satisfying the assumptions above, such that the
decomposition of T is unique (up to trivial rescalings and permutation of terms).
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Solution:

1. The VC dimension is 2k+1. Pictures.

2. The function |x|3 is convex (but not strictly convex) and this can be seen by computing
the second derivative. Also |x| is convex. The sum of convex fuunctions is convex
therefore the whole function is convex. For x 6= 0 the subgradient is just the derivative
3ax2 + bsgn(x). For x = 0 the subgradient is [−b,+b].

3. Small calculation shows that (a) is true.

4. By Jenrich’s theorem (b) is true.
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