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Astrophysics IV: Stellar and galactic dynamics

Solutions

Problem 1:

From Poisson’s equation in spherical coordinates we get:
V20 = 47Gp

V2® written in spherical coordinates, and considering a spherical potential we get:
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one then obtains

2
V2o = %

and finally:
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Problem 2:
a) Point mass:
V2 = 0

b) Homogeneous sphere of radius a:
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¢) Plummer-Schuster potential:
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d) Miyamoto-Nagai potential:
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Problem 3:

We are still in the plane z = 0 (where the rotation curves are defined.) With the
parametrization:
hR =a+b
h,=10b

the circular velocity of the Miyamotio-Nagai potential can be written:
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which is obviously independent of the scale height h,. This parametrization is more
telling than the a, b one: it shows how a Miyamoto-Nagai system has a circular velocity
independent of the flattening of the potential. The two extremes are:

e spherical symmetry: a =0 = hg=h, =b,
e thindiski b=0 = hr=a, h, =0.

The rotation in the plane z = 0 is the same for these two extreme cases since V? is
independent of h,.
Problem 4:

From Poisson’s equation in spherical coordinates we get:
V2® = 47Gp
V2® written in spherical coordinates, and considering a spherical potential we get:
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a lot of straight-forward algebra follows, but finally we get

2
(O 1

ArGre (r/rs) (14 1r/rs)?

p:

The circular velocity also follows simply:
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Problem 5:

As per problem 4, the isochrone p is straightforward to derive, taking the form:
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The circular velocity is
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Problem 6:

Let’s define a unit surface on the disk, corresponding to a mass ¥, which is then
the surface density. Defining a slab enclosing the unit surface and making its thickness
tend to a vanishing value (¢ — 0, see Fig. 1), the surface integral reduces to twice the
gradient of the potential:
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Figure 1: The Kuzmin disk with the unit surface (left) and seen edge-on (right), with
the 2¢ thick slab, on the surface of which the integration is made.

We have
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With |z| — 0, we then have:
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Problem 7:

The velocity curve may be obtained from the formula (see course: result from a
razor-thin homeoid since we cannot use Gauss law here):
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Replacing ¥(R') using the Mestel’s surface density we get:
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The derivative with respect to a of this latter result writes:
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which, in the limit R, — oo gives:
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This leads to the circular velocity:
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