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Astrophysics IV: Stellar and galactic dynamics
Solutions

Problem 1:

From Poisson’s equation in spherical coordinates we get:

∇2Φ = 4πGρ

∇2Φ written in spherical coordinates, and considering a spherical potential we get:

∇2Φ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
one then obtains

∇2Φ =
3GMb2

(r2 + b2)5/2

and finally:

ρ =
3M

4πb3

(
1 +

r2

b2

)−5/2

Problem 2:

a) Point mass:

V 2
c (r) =

GM

r

b) Homogeneous sphere of radius a:

V 2
c (r) =

{
GMr2

a3
if r < a

GM
r

if r ≥ a

c) Plummer-Schuster potential:

V 2
c (r) =

GMr2

(r2 + a2)3/2

d) Miyamoto-Nagai potential:

V 2
c (R) =

GMR2

[R2 + (a+ b)2]3/2
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Problem 3:

We are still in the plane z = 0 (where the rotation curves are defined.) With the
parametrization:

hR = a+ b
hz = b

the circular velocity of the Miyamotio-Nagai potential can be written:

V 2
c (R) =

GMR2

(R2 + h2
R)

3/2

which is obviously independent of the scale height hz. This parametrization is more
telling than the a, b one: it shows how a Miyamoto-Nagai system has a circular velocity
independent of the flattening of the potential. The two extremes are:

• spherical symmetry: a = 0 =⇒ hR = hz = b,

• thin disk: b = 0 =⇒ hR = a, hz = 0.

The rotation in the plane z = 0 is the same for these two extreme cases since V 2
c is

independent of hz.
Problem 4:

From Poisson’s equation in spherical coordinates we get:

∇2Φ = 4πGρ

∇2Φ written in spherical coordinates, and considering a spherical potential we get:

∇2Φ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
a lot of straight-forward algebra follows, but finally we get

ρ =
v2s

4πGr2s

1

(r/rs)(1 + r/rs)2

The circular velocity also follows simply:

v2c = r
∂Φ

∂r
= r v2s

− 1

r
rs

(
1 + r

rs

) +
ln
(
1 + r

rs

)
rs

(
r
rs

)2

 = v2s

 ln
(
1 + r

rs

)
r
rs

− 1(
1 + r

rs

)


= v2s


(
1 + r

rs

)
ln
(
1 + r

rs

)
− r

rs

r
rs

(
1 + r

rs

)
 = v2s

(rs + r) rs ln
(
1 + r

rs

)
− r rs

r (rs + r)

Problem 5:

As per problem 4, the isochrone ρ is straightforward to derive, taking the form:
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ρ = M

[
3(b+ a)a2 − r2(b+ 3a)

4π(b+ a)3a3

]
with a ≡

√
b2 + r2

The circular velocity is

v2c =
GMr2

(b+ a)2a

Problem 6:

Let’s define a unit surface on the disk, corresponding to a mass Σ, which is then
the surface density. Defining a slab enclosing the unit surface and making its thickness
tend to a vanishing value (ε → 0, see Fig. 1), the surface integral reduces to twice the
gradient of the potential:

4π GΣ =

∫
d2S∇ΦK = 2

∂ΦK

∂z

Figure 1: The Kuzmin disk with the unit surface (left) and seen edge-on (right), with
the 2ε thick slab, on the surface of which the integration is made.

We have

∂ΦK

∂z
=

∂

∂z

[
−GM

[
R2 + (a+ |z|)2

]−1/2
]

= GM
[
R2 + (a+ |z|)2

]−3/2
(a+ |z|)

With |z| → 0, we then have:

4π GΣK = 2
∂ΦK

∂z
= 2aGM

[
R2 + a2

]−3/2

⇒ ΣK =
aM

2π (R2 + a2)3/2

Problem 7:

The velocity curve may be obtained from the formula (see course: result from a
razor-thin homeoid since we cannot use Gauss law here):

3



v2c (R) = −4G

∫ R

0

da
a√

R2 − a2
d

da

∫ ∞

a

dR′ R′Σ(R′)√
R′2 − a2

(1)

Replacing Σ(R′) using the Mestel’s surface density we get:

∫ ∞

a

dR′ R′Σ(R′)√
R′2 − a2

=
v20
2πG

∫ ∞

a

dR′ 1√
R′2 − a2

=
v20
2πG

∫ Rmax

a

dR′ 1√
(R′/a)2 − 1

1

a

=
v20
2πG

∫ Rmax

a

dR′ d

dR
(arccosh(R/a))

=
v20
2πG

[arccosh(Rmax/a)− arccosh(1)]

=
v20
2πG

arccosh(Rmax/a)

(2)

The derivative with respect to a of this latter result writes:

d

da

(
v20
2πG

arccosh(Rmax/a)

)
=

v20
2πG

d

da
arccosh(Rmax/a)

= − v20
2πG

Rmax√
R2

max − a2
1

a

(3)

which, in the limit Rmax → ∞ gives:

− v20
2πGa

(4)

This leads to the circular velocity:

v2c (R) =
2v20
π

∫ R

0

da
1√

R2 − a2

= v20
(5)
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