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What you will learn today

• Elements of biological nervous systems

• Artificial neuron models

• Neural architectures

• Input encodings

• Unsupervised learning

• Feature extraction and representations

• Topological Maps

• Supervised learning

• From error correction to backpropagation

• Learning time-dependent features



Do animals need nervous systems?

Not all animals have nervous systems; some use only chemical reactions
Paramecium and sponge move, eat, escape, display habituation
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Why Nervous Systems?

1) Faster reaction times = competitive advantage

2) Selective transmission of signals across distant areas = more complex bodies

3) Generation of non-reactive behaviors

4) Complex adaptation = survival in changing environments
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Central Nervous System with Cortex
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Biological Neurons
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Dynamics of neural activation
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Depolarization

Hyperpolarization

Emission of rapid discharge on axon

This cycle lasts approximately 3-50 ms, depending on type of ion channels 

involved (Hodgkin and Huxley, 1952)



Types of Neurons

Interneurons can be

1- Excitatory

2- Inhibitory
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100 ms

Firing rate Firing time

McCulloch-Pitts Spiking neurons

Connectionism
Computational

Biology

How Do Neurons Communicate?
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How Do Neurons Learn?

Hebb rule (1949):

Synaptic strength is increased if cell A consistently contributes to firing of cell B

This implies a temporal relation: neuron A fires first, neuron B fires second

synapse

pre-synaptic neuron post-synaptic neuron

A B

postsynaptic - presynaptic (ms)

% synaptic

modification

Spike Time Dependent Plasticity (STDP):

- Small time window

- Strengthening (LTP) for positive time difference

-Weakening (LTD) for negative time difference
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They learn by means of synaptic change

From Bi and Poo, 2001



What Does Make Brains Different?
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Components and behavior of individual neurons are very similar across animal

species and, presumably, over evolutionary history (Parker, 1919)

Drawing by Cajal, 1911

Evolution of the brain 

seems to occur mainly in 

the architecture, that is 

how neurons are 

interconnected.

First classification of 

neurons by Cajal in 1911 

was made according to 

their connectivity 
patterns



A neural network communicates 

with the environments through input 

units and output units. All other 

elements are called internal or 

hidden units.

Units are linked by uni-directional 

connections.

A connection is characterized by a 

weight and a sign that transforms 

the signal.

An Artificial Neural Network
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Biological and Artificial Neurons
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x1
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x3

x4

Binary eventsSpiking

Neuron models



 x( ) =
1

1+ e
− kx

Sigmoid function:

• continuous

• non-linear

• monotonic

• bounded

• asymptotic
tanh kx( ) x( ) =

Linear Step Sigmoid

x

x x

 x( )  x( )  x( )

Some output functions
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Rectified Linear



The output of a neuron is a measure of similarity between its input pattern 

and its pattern of connection weights.

1. Output of a neuron is the dot product of the weight and input vectors:

y = a wi xi
i

N

å
æ 

è 
ç ö 

ø 
, a = 1 y = w ×x

cos J =
w × x

w x
, 0£ J £ p

2. Distance between two vectors is:

x = x ×x = x1

2
+ x2

2
+...+xn

2

where the vector length is:

w ×x = w x cosJ
3. Output signals vector distance (familiarity)

J = 0
o

® cos J =1,

J = 90
o
® cos J = 0,

J = 180o ® cosJ = -1,

Neurons signal “familiarity”
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Neural Receptive Fields
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The Receptive Field indicates the input area subtended by a neuron and

the input pattern that generates the strongest activation. 

RF can be visualized by plotting the weight pattern in the input space. 

Fully connected
(only some 

connections are 

shown)



A neuron divides the input space in two regions, one where weighted input sum >=0 and one 

where weighted input sum <0. The separation line is defined by the synaptic weights

w1x1 + w2x2 - J = 0 x2 =
J

w2

-
w1

w2

x1

Neurons can act as classifiers
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The threshold can be expressed as an additional weighted input from a 

special unit, known as bias unit, whose output is always -1.

From Threshold to Bias unit

• Easier to express/program

• Threshold is adaptable like other weights
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e

a) feed-forward

b) feedforward multilayer

c, d) recurrent

e) fully connected

Architectures
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Reservoir Architectures

Exploit rich dynamics in the reservoir of hundreds of randomly 

interconnected neurons with low connectivity (0.01, e.g)

Liquid State Machines (Maas et al, 2002)

Echo State Networks (Jaeger et Haas, 2004)



LOCAL

One neuron stands for one item

a.k.a. «Grandmother neurons»

Scalability problem

DISTRIBUTED

Neurons encode features (not items)

One neuron can represent >1 item

One item may activate >1 neuron

Robust to damage

Local vs Distributed Input Encoding
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Normalisation of sensory input

𝑥𝑖
′ =

𝑥𝑖

σ𝑗=1
𝑁 𝑥𝑗

2

Input signals from different sensory sources can have different 

amplitudes that must be normalised to enable comparisons by 

receiving neurons



Convolution to capture spatial relationships
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Raw data

Softmax
We want to find in the image locations with features 

of interest, for example a brightness contrast

Design a filter (vector) that captures the feature, 

for example a Laplace filter

Convolve the image with the filter
Sweep through image

Features



Learning is experience-dependent modification of connection weights

Learning

Hebb’s rule (1949)

synapse

pre-synaptic neuron post-synaptic neuron

   

x j

   

y i

   

wij
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Learning is a gradual process and requires many input-output comparisons



Learning cycle
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1. Initialize weights (e.g., random values from normal distribution)

2. Present randomly selected input pattern to network

3. Compute values of output units

4. Compute weight modifications

5. Update weights

6. Repeat from 2. until weights do not change anymore

learning rate [0,1]

Standard weight update



Learning modalities
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Unsupervised learning

Supervised learning

Reinforcement learning

Evolution

Evolution and learning



Unsupervised learning: what for?
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Goal: learn compact structure (features) that describes input

Categories (labels): none

Input: x (images, signals, text, etc.)



Unsupervised learning
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The weight change depends on the activity of the pre-synaptic and of the 

postsynaptic neurons:

Unsupervised learning is used for 

• Detecting statistical features of the input distribution

• Data compression and reconstruction

• Detect topological relationships in the input data

• Memorization



Hebb’s rule suffers from self-amplification (unbounded growth of weights), but biological synapses 

cannot grow indefinitely

Oja (1982) introduced self-limiting growth factor in Hebb rule

Dw j = hy xj -w j y( )

As a result, the weight vector develops along the direction of maximal variance of the input distribution. 

Neuron learns how familar a new pattern is: input patterns that are closer to this vector elicit stronger

response than patterns that are far away.

Oja’s learning rule
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Dwij = hyi x j - wkj yk
k=1
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Oja rule for N output units develops

weights that span the sub-space of the 

N principal components of the input 

distribution.

Dwij = hyi x j - wkj yk
k=1

i

å
æ 

è 
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ø 

Sanger rule for N output units develops

weights that correspond to the N 

principal components of the input 

distribution.

Principal Component Analysis
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Do brains compute PCA?

An Oja network with multiple output units exposed to a large set of natural images develops

receptive fields similar to those found in the visual cortex of all mammals [Hancock et al., 1992]
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Image: Kelly Frankenburg

Mammals are born with pre-formed hierarchically-organized feature 

detectors. But they never saw anything in the womb: how can it be?



Multilayer Feature Detection
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Linsker (1986)

A

B

C

D

Input from Lateral Geniculate Nucleus

Topologically restricted connectivity

Linear activation function

Plain Hebbian learning with 

weight clipping at w+ and w-

Learn one layer at a time,

starting from lower layer



Emerging Receptive Fields
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Linsker (1986)

A

B

C

D

Input from Lateral Geniculate Nucleus

+++++++++

Response: Average luminosity in RF

Response: Simple feature detectors

Response: Complex feature detectors



Neighbouring neurons respond to similar patterns with gradual transitions

The visual cortex is organized in specialized modules. 

Each module is composed by a series of columns of 

neurons. For example, neurons in early modules respond

to bars at different orientation

1. The bar orientation gradually varies along the column. 

2. Neighbouring columns correspond to neighbouring

areas of the retina (retinotopic maps). 

Sensory maps

A similar structure exists in the auditory

cortex (tonotopic maps).

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, 

Methods, and Technologies by Dario Floreano and Claudio Mattiussi, MIT Press



Sensory-Motor Body Map
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Cortical neurons display the following

pattern of projective connectivity:

• up to 50-100 m radius = excitatory

• up tp 200-500 m radius = inhibitory

• up to few cm radius = slightly excitatory

Also known as Mexican Hat distribution

In a neural network, we can

approximate the Mexican hat with a 

bipolar weight distribution.

Lateral connections to neighbouring neurons



Formation of neural bubbles around strongest input

Input pattern

Laterally connected neurons

Gradual emergence of bubble centered 

around unit with strongest activation

Simplification: set output of unit with 

highest activation and its n neighbors to 

1, and all other units to 0



Let’s apply Hebb rule to  a layer of laterally connected neurons

yi = Ai
( )=

1 if within neighbourhood of neuron y with highest activation

0 otherwise





wij =  yi xj − yi
( )wij  yi

( )=
 if yi =1

0 if yi = 0





1. The weights are changed only for the neurons that are geographically near

the neuron with the highest activity, 

2. The change moves the weight vector towards the input pattern.

If we set          equal to , then the learning rule becomes: y

wij =
 x j −wij( ) if yi =1

0 if yi = 0





i
( )

wi

t+1 =
wi

t + x −wi
t( ) if yi =1

wi

t if yi =0





and

Self-Organizing Topological Maps Kohonen (1982)

 y( )



 i, i*( )=
1 if c

i
− c

i
= r

0 otherwise





*

The neighbourhood size          is a critical aspect of map self-organization. It 

should be large at the beginning of training to give a chance to all neurons to 

change weights and gradually shrink

Neighborhood function

 y( )

∆𝑤𝑖𝑗 = 𝜂Λ 𝑖, 𝑖∗ 𝑥𝑗 −𝑤𝑖𝑗

We can incorporate the neighborhod

function in the learning rule
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Example of self-organizing map
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input

output



Self-organization phases

Ordering phase:

Fast

Neighborhood change

Convergence phase:

Slow

No neighborhood change



Supervised learning: what for
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Goal: learn mapping between input data and labels

Input: x (images, signals, text, etc.)

Category (label): y (eat, wear, wear, eat, wear, eat)



• Teacher provides desired responses for a set of training patterns

• Synaptic weights are modified in order to reduce the error between the output y and 

its desired output t (a.k.a. teaching input)

x0 x1 x2

y,  t

linear

units

repeat

for every

input/output

pair until 

error is 0

w
ij
= rnd±0.1( ) initialize weights to random values

yi = wij
j= 0

å x j
present input pattern and 

compute neuron output

w
ij
=  t

i
− y

i
( )x

j

compute weight change using 

difference between desired 

output and neuron output

wij = wij
t-1

+ Dwij
get new weights by adding 

computed change to previous 

weight values

=
i

t
i
− y

i
Widrow-Hoff defined the error with the symbol delta:

(a.k.a. delta rule)

Supervised Learning
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The delta rule modifies the weights to descend the gradient of the error function

E
W
=

1

2
t
i


− w

ij

j= 0

 x
j








i





2

Error space for a network with a single layer of synaptic weights

(perceptron, Rosenblatt, 1962)

E
W

weight space

before

learning

after

learning

Error (loss) function
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input/output space

class A

class B

Perceptrons can solve only problems whose input/output 

space is linearly separable.

Several real world problems are not linearly separable.

Linear Separability

Example of

XOR problem
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• Multi-layer neural networks can solve problems that are not linearly separable 

• Hidden units re-map input space into a space which can be linearly separated 

by output units.

Multi-layer Perceptron (MLP)

G:\figure libro\Figura 3.6.tif
Each hidden unit draws a line

Output units “look” at regions (in/out)
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• Multi-layer networks should not use linear output functions because a linear 

transformation of a linear transformation remains a linear transformation.

• Therefore, such a network would be equivalent to a network with a single layer

Output Function in MLP

 x( ) =
1

1+ e
− kx

For example, sigmoid function
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In a multilayer network, what is the error of the 

hidden units? This information is needed to change 

the weights between input units and hidden units.

In a simple perceptron, it is easy to change the weights to minimize the 

error between output of the network and desired output.

 A
i( )

.
=

i
t

i
− y

i
( ) in the case of non-linear 

output functions, add derivative of output

y,  t =
i

t
i
− y

i
Dwij = hd ix j

i

j

Back-propagation of Error

The idea suggested by Rumelhart et al. in 1986 is to propagate the error of the 

output units backward to the hidden units through the connection weights:

Once we have the error for the hidden units, we 

can change the lower layer of connection weights 

with the same formula used for the upper layer.


j
=  A

j( ) w
ij


i

i


.
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Algorithm

1. Initialize weights (random, around 0)

2. Present pattern

3. Compute hidden

4. Compute output

5. Compute delta output

6. Compute delta hidden

7. Compute weight change

8. Update weights

   

xk
m = sk

m

   

h j
m = F v jkxk

m

k

å
æ 

è 
ç 

ö 

ø 
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y i
m = F wijh j

m

j

å
æ 

è 
ç ç 

ö 

ø 
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di
m = ˙ F wijh j

m

j

å
æ 

è 
ç ç 

ö 

ø 
÷ ÷ ti

m - y i
m( )

   

d j
m = h j

m 1- h j
m( ) wijdi

m

i

å

  

di
m = yi

m 1- yi
m( ) tim - yi

m( )

Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by 

Dario Floreano and Claudio Mattiussi, MIT Press 51



Error space can be complex in multilayer networks: local minima and 

flat areas

weight space

Ew

Using Back-Propagation

1. Large learning rate: take large steps in the direction of the gradient descent

1

2

2. Momentum: add direction component from last update

3

3. Additive constant: keep moving when no gradient

  

di
m = ˙ F + k( ) ti

m - yi
m( )
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Solution: Use a Validation Set

Divide available data into: 

- training set (for weight update)

- validation set (for error monitoring)
Stop training when error for validation 

set starts growing

Over-fitting

Overfitting training data leads to 

poor generalisation

Overfitting can derive from too

many weights and/or too long 
learning of training patterns
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pattern
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training

pattern
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pattern



How to learn time-dependent features

Learning of time-dependent features is necessary in production of language, behavior, predictions

a

b

c

d
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a-b-c (t-1) a-b-c (t) a-b-c (t+1) a-b-c (t) a-b-c (t)

d (t) d (t) d (t)

memory

units
memory

unit

Time Delay Neural Network Elman Network Jordan Network



[Sejnowski & Rosenberg, 1987]

A neural network that learns to read aloud

written text:

• 7 x 29 input units encode characters within

a 7-position window(TDNN)

• 26 output units encode english phonemes

• approx. 80 hidden units

Training on 1000-word text, reads any text

with 95% accuracy

Learns like humans: segmentation, bla-bla, 

short words, long words

NETtalk
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