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Astrophysics IV : Stellar and galactic dynamics

Solutions
Problem 1 :
With N = 1000, R=200 pc, by is :
2R
bgo = W = 0.1pC, (1)
InA=1In (£> =6 (2)
boo

The typical velocity is :

N
V= \/GTm%’O.?)km/s (3)

and the crossing time is thus :

leross = — = 0.16 Gyr (4)
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Finally, the relaxation time becomes :

N
tre ax — S . tcross =24
: 8In A Giyr (5)

Consequently, the system cannot be assumed to be collision-less over a Hubble time
(~ 10 Gyrs).

If the system is embedded in a massive dark matter halo and has velocity dispersion
of about 4km/s, we can write the typical velocity as :

V:4km/s:\/XG]]%Vm, (6)

where we have introduced the constant x equal to the ratio between the total mass
(including the dark matter mass) and the mass of the stars. From the first part, we
have that

N
GNM () 3 kem /s (7)
R
thus : )
4km/s
= ——— =1
X (O.Skm/s) 77 ®)



Now, from the lecture, we know that the net change of AV? for one crossing of the

system is :
Gm
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Replacing R with Eq. 6 gives :

Following the same procedure than in the lecture, we finally get :

N 2
trelax = —X ' tcross-
InA

With t.0s being now :
R
tcross = V =0.012 GyI‘
and x? = 31000, we finally get :

X2
Zfrelax = mtrelax = 7800 Gyl"

(9)

(10)

(11)

(12)

(13)

An ultra-faint that includes dark matter can be considered a collision-less over a

Hubble time.

Problem 2 :

Lets define the following Lagrangian, a function of the potential ¢ and its gradient

Vo : .
L(6,V0,7) = s—=(VO) + ¢,

We associate to this Lagrangian an action :

3@%:/d%£<¢vaf)

Extremalizing this action amounts to solving the Fuler-Lagrange equation :

oL o L
-~ v T = 9
0P OV
Plugging the Lagrangian (Eq. 14) to this equation, we obtain :
Vi =471G p.

which is nothing else than the Poisson equation.

Interpretation : What is the physical meaning of the Lagrangian ?
From the potential theory, the total potential energy of a system is :

W:%/ﬁ%mawa.

2

(14)



or
1

W = —SWG/d?’f(%)? (19)

The physical meaning of L(¢, €¢, ¥) is now obvious and is nothing else than the total
potential energy written as W = —W + 2W. Thus, the variational principle answers
the following question : For a given density field, what is the relationship between the
density and the potential that render the total potential energy extremum ? The answer
is : The Poisson equation.

Problem 3 :

For a ring of mass M and radius R centered on 0, lets consider the surface s of a
sphere of radius r (r > R). The Gauss Law states that :

/ 3(Z) - dS = —4nGM. (20)
S
Benefiting from the symmetry of the problem, we can write :

g(@) = g(r) - & (21)
and -

dS =r*dQ) - é,. (22)

So, we obtain :

/ﬁ(f) - dS = /g(?") & -2 - €, =12g(r) / dQ = 4mr?g(r) = —4nGM,  (23)
s s s

S0,
GM
o) = "5 (24)
The corresponding potential is thus :
M
O(r) = —G—. (25)
r

Problem 4 :

The norm of the specific force of the spherical model can be written as an integral over
the norm of forces dg,/(r) generated by individual shells of radius 7’ :

g(r) = /0 N g (r) (26)

Lets split the integral into two parts, one including the contribution of shells with a
radius smaller than r’ and one with radius larger :

g(r) = /OT dgm (1) + /TOO dgp (1). (27)

Using the Newton theorem, we know that the norm of the specific gravitational field

of a shell of mass d M, is : s
M,
dgm(r) = — ; (28)
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and is null for any point inside the shell. For a shell of density p(r’), 6 M, writes :

oM, = Axp(r')r'2dr. (29)
dgp(r) is thus :
4 1,2
g (r) = — TGPy (30)
r

Inserting the latter in Eq. 27, and recognizing that the second integral is zero (the
contribution of shells with a radius larger that r), we get :

o) = [ bgur) = = 547G [ ptryr ' (31)

As: ,
47?/ p(r'Yr2dr’ = M(r), (32)
0
we obtain the final result : GM(r)
r
9(r) = ——5—, (33)
and GM(r)
- r).
g(r)-é. = — e (34)
Problem 5 :

Using the following relations for spherical systems, derived during the lectures :
the Poisson equation in Spherical coordinates :

14 (ﬁi—f) — 47 G p(r) (35)

r2dr

the mass inside a radius r due to a spherical distribution of matter p(r’) :

M(r) =4r / dr' ' p(r'), (36)
0
the gravitational field due to a spherical distribution of matter p(r’)
N GM(r) _
i) = 10 g, (37)

the potential due to a spherical distribution of matter p(r’)

_GM(T’)

O(r) =

—47TG/ p(r"yr'dr’, (38)

the gradient of the potential due to a spherical distribution of matter p(r’)

d® G M(r)
dr 2

, (39)

we can express p(r), ®(r), M(r) and 42 as a function of respectively p(r), ®(r), M(r)
and 42 :
dr



do
dr

as a function of p(r) : -
as a function of ®(r) : use the Poisson equation Eq. (35)
as a function of M(r) : use Eq. (36)

as a function of 42 : compute the first derivative of M(r) from Eq. (36)

as a function of p(r) : use Eq. (38)

as a function of ®(r) : -

as a function of M(r) : integrate Eq. (39)
as a function of $2 : integrate ®(r)

as a function of p(r) : use Eq. (36)
as a function of ®(r) : use Eq. (39)
as a function of M (r) : -

as a function of 42 : use Eq. (39)

as a function of p(r) : use Eq. (39) and express M(r) with Eq. (36)
as a function of ®(r) : compute the first derivative of ®(r)

as a function of M(r) : use Eq. (39)

as a function of ¢ : -



