Astrophysics IV, Dr. Yves Revaz

EPFL

 $\begin{array}{l} \text{4th year physics} \\ \text{26.02.2025} \end{array}$

Exercises week 2 Spring semester 2025

Astrophysics IV : Stellar and galactic dynamics Exercises

$\underline{\text{Problem 1}}$:

The surface density of our Galaxy's disk is ~ $50 \,\mathrm{M_{\odot}/pc^2}$ and its thickness is ~ $500 \,\mathrm{pc}$. Given that its mass is ~ 1/45 of the total mass of our Galaxy ($M_{\rm tot} = 2 \times 10^{12} M_{\odot}$), estimate its radius and its mean density. Given that the Sun is at $R_{\rm sun} = 8 \,\mathrm{kpc}$ from the Galaxy center and that its rotation period is 220 Myr, estimate the mass inside a sphere of $R_{\rm sun}$.

<u>Problem 2</u> :

For a galaxy cluster and for a galaxy, estimate the ratio between the volume of the N components and the total volume of the system. Consider a mean radius of $R_{\star} = 10^6$ km for the stars.

<u>Problem 3</u> :

For a galaxy cluster and for a galaxy, estimate the ratio between the volume of the tube travelled by one of the component during $t = 10^{10}$ years and the total volume of the system. Consider a mean radius of $R_{\star} = 10^{6}$ km for the stars.

<u>Problem 4</u> :

Estimate the gravitational influence radius R_G for a galaxy moving within a galaxy cluster and for a star moving within a galaxy.

<u>Problem 5</u> :

Assuming that the disk of galaxies are (uniformly) randomly oriented, what fraction will be seen face-on (say under 10°) between their axis of symmetry and line of sight? What fraction are seen edge-on, 10° between their equatorial plane and the line of sight?

<u>Problem 6</u> :

Estimate the relaxation time of the following systems, assuming that all stars are solar type ones :

- 1. An open cluster (typical radius : ~ 2 parsecs, typical velocity $\sim 0.5~{\rm km\,s^{-1}},$ mass $\sim 300~M_{\odot}).$
- 2. A globular cluster (typical radius : ~ 3 parsecs, typical velocity ~ 6 km s⁻¹, mass ~ $2 \times 10^5 M_{\odot}$).
- 3. A dwarf spheroidal galaxy (typical radius : \sim 500 parsecs, typical velocity \sim 10 $\rm km\,s^{-1},\,mass$ \sim 10^7 $\rm M_{\odot}).$

<u>Problem 7</u> :

Discuss briefly, why the relaxation time of a system will increase with the number of members assuming the size is held constant. (This will also help with the next problem.)