

Renewable Energy

(Prof. Sophia Haussener) MER Jan Van herle

Laboratory of Renewable Energy Sciences and Engineering (LRESE) Group of Energy Materials (GEM, EPFL-Sion)

Content Chapter 2

- Thermodynamics revision
 - Definitions
 - 1st law (energy conservation)
 - 2nd law (entropy)
 - "1st Law minus 2nd Law" => Exergy
- Review of thermodynamic power cycles
 - Rankine, Brayton, combined cycles, engines
- Thermodynamic power cycles relevant for renewable energy applications
- Review of thermodynamic heat pump and refrigeration cycles
 ORC

Learning outcomes

- Understand and apply 1st and 2nd law of thermodynamics, and exergy concept to relevant systems and cycles
- Apply theory to thermodynamic cycles relevant for renewable energy sources

Context

Energy statistics Pocketbook 2024

• Current global power production

 $28'428 \text{ TWh} \Rightarrow 3245 \text{ GW} (100\% \text{ annual load factor})$ In reality more power is installed as the annual load factor is of course <100%.

39. World electricity generation by source, 1990, 2000, 2010, 2020 and 2021 *Terawatt hours*

Source	1990	2000	2010	2020	2021	
Thermal	7,701.0	10,112.2	14,792.6	17,183.1	18,187.0	
- Coal	4,441.6	6,042.1	8,667.2	9,483.5	10,185.0	→ Steam cycles
- Oil	1,339.1	1,198.6	919.3	660.7	694.0	
- Natural gas	1,789.2	2,707.2	4,863.8	6,442.5	6,699.5	Gas + combined cycle
- Biofuels and waste	131.2	164.2	342.3	596.4	608.5	→ Integrated steam cycl
Nuclear	2,019.8	2,589.0	2,756.3	2,676.4	2,798.9	→ Steam cycle
Hydro	2,193.0	2,706.8	3,528.6	4,463.4	4,408.3	
Solar, wind and other sources ⁴	61.5	103.8	510.9	2,565.4	3,034.3	→ incl. Rankine cycles
Total	11,975.3	15,511.9	21,588.3	26,888.3	28,428.5	

Context

• Energy conversion systems overview:

Service	'Traditional' systems	'Advanced' (or 'new') systems		
HEAT (low temperature)	Combustion (fossil fuel, wood)	Heat pumps Solar thermal Cogeneration		
HEAT (high temperature)	Electrical	Efficient clean combustion Cogeneration Concentrated solar thermal		
MOBILITY	Internal combustion engines Electrical (train, bus) Aviation turbines	High efficiency engines Hybrid drives Fuel Cell vehicles, E-vehicles Liquid biofuels		
ELECTRICITY	Fossil thermal (coal, gas) Nuclear (PWR, BWR) Hydro (river, dams)	Optimised fossil & biomass power plants Nuclear Generation-IV Hydro (tidal, wave) Solar (photovoltaics) Solar (concentrated thermal) Wind turbines		

- Systems rely on power cycles and turbomachinery: heat → mechanical energy → electricity
- Heating/cooling applications rely on heat/refrigeration pumping cycles

Examples

Concentrated solar power

Examples

Examples

– Enhanced geothermal systems (EGS)

1st law for closed and open systems

• Energy conservation for **open** systems:

1st law for open systems

- Energy conservation for open systems: (i.e. with mass transfer / enthalpy)
 - Requires mass conservation:

$$\frac{dm_{\rm cv}}{dt} = \sum_{i} \dot{m}_{i} - \sum_{e} \dot{m}_{e}$$

Energy conservation:

$$\frac{dE_{CV}}{dt} = \dot{Q} - \dot{W} + \sum_{i} \dot{m}_{i} \left(u_{i} + \frac{w_{i}^{2}}{2} + gz_{i} \right) - \sum_{e} \dot{m}_{e} \left(u_{e} + \frac{w_{e}^{2}}{2} + gz_{e} \right)$$

$$(w = fluid speed)$$

$$\frac{dE_{CV}}{dt} = \dot{Q}_{cv} - \dot{W}_{cv} + \sum_{i} \dot{m}_{i} \left(h_{i} + \frac{w_{i}^{2}}{2} + gz_{i} \right) - \sum_{e} \dot{m}_{e} \left(h_{e} + \frac{w_{e}^{2}}{2} + gz_{e} \right)$$

enthalpy h = u + pV (work term due to mass transfer in/out))

(cv : control volume)

1st law for closed and open systems

- Energy conservation for open systems: Applications:
 - Nozzle, diffusor

total enthalpy is conserved

- Throttling valves $h_i = h_e$ h = u + Pv h = u + Pvh = u +

 $P_i > P_e \Longrightarrow v_i < v_e \Longrightarrow w_i < w_e$

1st law for closed and open systems

- Energy conservation for open systems: Applications:
 - Turbine, compressor, pump, fan

$$0 = -\dot{W} + \dot{m}\left(h_i + \frac{w_i^2}{2} + gz_i\right) - \dot{m}\left(h_e + \frac{w_e^2}{2} + gz_e\right)$$

work = Δh_{fluid}

(~adiabatic)

GE, LM2500 gas turbine, ships, ca. 30 MW

Heat exchanger

$$0 = \sum_{\text{inlets}:i} \dot{m}_i h_i - \sum_{\text{outlets}:j} \dot{m}_j h_j$$

Voith-Kaplan turbine, 200 MW, diameter 10.5m

SHOP PRODUCTS

GE, Roots* API 617 OIB

Efficiency

- Energy efficiency or performance metric can be introduced for single components or complete systems
 - always need a proper definition!
 - indicates how well an energy conversion or transfer process is accomplished
- General:

 $Efficiency = \frac{\text{desired output}}{\text{required input}}$

Efficiency

• Example - Efficiency of *combustion systems*:

Efficiency of combustion processes is related to the *heating value of a fuel*, which is the amount of heat released when a unit amount of fuel at room temperature is completely burned and the combustion products are cooled to room temperature.

• Combustion efficiency:

SPSI

$n = \frac{\text{amount of heat released during combustion}}{n}$	Fuel	HHV MJ/kg	LHV MJ/kg
heating value of the fuel burned	Hydrogen	141.80	119.96
	Methane	55.50	50.00
Q	Ethane	51.90	47.80
$= \frac{2}{100000000000000000000000000000000000$	Propane	50.35	46.35
mHV		49.50	45.75
	Gasoline	47.30	44.4
 Heating values (HV): Higher heating values (HHV): water is condensed (boilers etc.) Lower heating values (LHV): water exhaust remains vapor (cars. jet engines. etc.) 		46.20	43.00
		44.80	43.4
		32.50	
		15.00	
		21.7	20

Processes and Cycles

Energy for closed systems

• Cycle analysis:

$$\Delta E = 0 = Q_{\rm cycle} - W_{\rm cycle}$$

- Power cycles:

$$\eta_{\rm th} = \frac{W_{\rm cycle}}{Q_{\rm in}} = 1 - \frac{|Q_{\rm out}|}{Q_{\rm in}} \qquad \text{Carnot}$$

- Refrigeration and heat pump cycles:

$$COP_{cm} = \frac{Q_{in}}{|W_{cycle}|} = \frac{Q_{in}}{|Q_{out}| - Q_{in}}^{Q_{in}: \text{ Heat extracted at cold source}}$$
$$COP_{hm} = \frac{Q_{out}}{W_{cycle}} = \frac{|Q_{out}|^{Q_{out}: \text{ Heat rejected at hot source}}}{|Q_{out}| - Q_{in}} = COP_{cm} + 1$$

2nd law of thermodynamics

• It is impossible for a system to operate in such a way that the only result would be an energy transfer by heat from a cooler to a hotter body.

• It is impossible for any system to operate in a thermodynamic cycle and deliver a net amount of energy by work to its surrounding while receiving energy by heat transfer from a single thermal reservoir.

No!

Hot

-Metal

bar

Yes!

• It is impossible for any system to operate in a way that system entropy is destroyed.

$$S_2 - S_1 = \sum_j \frac{Q_j}{T_j} + \sigma \qquad \begin{cases} >0 \text{ irreversibilities} \\ =0 \text{ no irreversibilities} \\ <0 \text{ impossible} \end{cases}$$

internal entropy production

Entropy balance – closed systems

change in the amount of entropy contained within system during time interval net amount of entropy transferred in across system boundary during time interval

 $\sum_{j=1}^{j} \frac{\mathcal{Q}_{j}}{T}$

amount of entropy produced within system during time interval

• General:

$$S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T}\right)_{\rm b} + \sigma = \sum_j \frac{Q_j}{T_j} + \sigma \qquad \frac{dS}{dt} = \sum_j \frac{\dot{Q}_j}{T_j} + \dot{\sigma}$$

 $\frac{dS}{dt} = \left(\sum_{k=1}^{n} \frac{dS}{dk} \right)$

• Internally reversible processes:

int

rev

 $S_{2} - S_{1} = \left(\int_{1}^{2} \frac{\delta Q}{T}\right)$ S = State function: process **independent**

EPFL

heat transfer : process dependent

Entropy balance – open systems

• Simplifications for steady state systems, or systems with only one inlet/outlet

Isentropic processes

- Isentropic = constant entropy.
- Isentropic processes are processes where the entropy at the initial and final state are equal.
- Isentropic processes, e.g.: closed system, reversible and adiabatic process

• Isentropic (turbine) efficiencies:

$$\eta_{\rm t,s} = \frac{\dot{W} / \dot{m}}{\left(\dot{W} / \dot{m}\right)_{\rm s}} = \frac{h_1 - h_2}{h_1 - h_{2,\rm s}}$$

Week 9

h-s diagram of fluid expansion/compression

Carnot cycle

р

• Carnot cycle:

cycle that undergoes four reversible processes

- Two isothermal processes at two different temperature levels.
 Require heat to be delivered or rejected
- Two isentropic processes

- $\begin{array}{c} 2 \\ 3 \\ 1 \\ 4 \\ 7_{c} \\ v \end{array}$
- Reverse direction => refrigeration or heat pump cycle
- Efficiency given by Carnot efficiency or COP

Carnot efficiency

• Maximum efficiencies of power and refrigeration/heat pump cycles:

Efficiency independent of process, components, fluids, only dependent on temperature of reservoirs Best case -> exergy efficiency = 1 -> delivered work equals received heat exergy

EPFL

Consequences of the 2nd Law

Practical implications from the second law:

- Increase the temperature differences of the engine cycles. (Superposed cycles, increased higher temperature)
- Limit the temperature drop during heat transfer (Increase the heat exchange surfaces (but take care of the pressure drop), counter current heat exchange)
- Multiply the use of a same thermal source (Cogeneration, heat exchanger cascade, extraction in turbine, superposed cycles)

• What is the potential for use?

Exergy

• Exergy – Definition:

$$Ex = U - U_0 + KE + PE - T_0 (S - S_0) + p_0 (V - V_0)$$

• Specific exergy:

$$ex = u - u_0 + ke + pe - T_0(s - s_0) + p_0(v - v_0)$$

• Exergy difference between two states:

$$Ex_{2} - Ex_{1} = (U_{2} - U_{1}) + (KE_{2} - KE_{1}) + (PE_{2} - PE_{1}) - T_{0}(S_{2} - S_{1}) + p_{0}(V_{2} - V_{1})$$

• Specific exergy difference between two states:

$$ex_{2} - ex_{1} = (u_{2} - u_{1}) + (ke_{2} - ke_{1}) + (pe_{2} - pe_{1}) - T_{0}(s_{2} - s_{1}) + p_{0}(v_{2} - v_{1})$$

Exergy balance - open systems

• Open systems – Exergy:

• With flow exergy:

$$ex_{f} = u - u_{0} + ke + pe - T_{0}(s - s_{0}) + p_{0}(v - v_{0}) + (p - p_{0})v$$

$$ex_{f} = h - h_{0} + ke + pe - T_{0}(s - s_{0})$$

$$ex_{f} = ex + (p - p_{0})v$$

Exergy efficiency

• Exergy efficiency expresses the work-equivalent efficiency of energy resource utilization

$$\varepsilon_{ex} = \frac{\text{used exergy}}{\text{provided exergy}} \qquad \qquad \eta = \frac{\text{used energy}}{\text{provided energy}}$$

• Components:

Turbine:
$$\varepsilon_{ex} = \frac{\left(\dot{W} / \dot{m}\right)}{ex_{f,i} - ex_{f,e}}$$

- Compressor/pump:

$$\varepsilon_{ex} = \frac{ex_{f,e} - ex_{f,i}}{\left(-\dot{W}_{cv} / \dot{m}\right)}$$

- Heat exchanger: (non/mixing) $\varepsilon_{ex} = \frac{m_c(ex_{f,e,c} - ex_{f,i,c})}{m_h(ex_{f,i,h} - ex_{f,e,h})} \qquad \varepsilon_{ex} = \frac{m_2(ex_{f,3} - ex_{f,2})}{m_1(ex_{f,1} - ex_{f,3})}$

Turbine

dissipation in the steam network (inlet, outlet, blades, channels, labyrinth seals)

Compressor

$\dot{E}^{+} = \dot{Y}^{-} = \sum \left[h_{cj} \dot{M}_{j}^{-} \right] = \dot{M}_{2} h_{c2} + \dot{M}_{3} h_{3} + \dot{M}_{4} h_{4} - \dot{M}_{1} h_{c1}$ Work INPUT (enthalpy balance): **Exergy**: $\dot{E}_{y} = \sum \left[k_{cj} \dot{M}_{j} \right] = \dot{M}_{2} k_{c2} + \dot{M}_{3} k_{3} + \dot{M}_{4} k_{4} - \dot{M}_{1} k_{c1}$ $\dot{E}_{v}^{-} = \dot{E}^{+} - \dot{L}_{r}$ Balance : **Exergy efficiency:** M . 🗲 - *M*₄ $\eta = \frac{\dot{E}_{y}^{-}}{\dot{E}^{+}} = 1 - \frac{\dot{L}_{r}}{\dot{E}^{+}} = \frac{\sum_{j} \left[k_{cj} \dot{M}_{j}^{-} \right]}{\sum \left[h_{cj} \dot{M}_{j}^{-} \right]}$ \dot{E}^+ **Exergy loss:** $\dot{L}_{r} = T_{a} \sum_{i} \left[s_{j} \dot{M}_{j}^{-} \right] = T_{a} (\dot{M}_{2} s_{2} + \dot{M}_{3} s_{3} + \dot{M}_{4} s_{4} - \dot{M}_{1} s_{1})$

Fig. 10.43 A schematic representation of an axial compressor.

fluid dissipation in the network (inlet, outlet, blades, channels, labyrinth seals)

Example of countercurrent HEX (steady state)

Heat transfer in counter-current between two fluids, steady state. f.ex. fluid β heats up, evaporates, and superheats (application: steam generator fluid (β) heated by exit gas (α) of a gas turbine)

Steek 2 graphical representation, in terms of power (kW)

33

=> Pinch theory

Transformation power

All flows a, b, c, d, e are to cool \rightarrow hot composite curve All flows a',b',c',d',e' are to heat \rightarrow cold composite curve Goal = maximise the internal heat transfer between the 2 composite curves (the orange zone represents the exergy losses due to <u>internal</u> heat transfer)

Comments

- → basis for the conception of heat exchanger networks (HEN), and of the identification of hot and cold utilities; also indicates the possibility to introduce heat pump or cogeneration units in the system
- → the pinch point fixes the limit which is possible to achieve with internal heat exchanges (crossing of the hot and cold composite curves)
- → in practice, the ∆T at the pinch cannot be zero (which would imply infinitely large heat exchanger surface); it is optimised for cost (=avoid too large heat exchanger surfaces) and pressure drop

transfered power in a heat exchange = $h.A.\Delta T$, with:

h = heat transfer coefficient (W/m².K), material-dependent;

A = exchange surface

Power systems

• Produce net power output from an energy source, such as (fossil/renewable) fuel, nuclear, solar, biomass,...

- Three major types of systems:
 - Vapor power plants (working fluid alternately vaporizes and condenses)
 - Gas turbine power plants (working fluid = gas, series of components)
 - Internal combustion engines (working fluid = gas, reciprocating)
- Vapor power systems:
 - Water is the working fluid, which alternately vaporizes and condenses
 - Majority of electrical power generation done by these systems
 - Basic components in a simple system are:
 - Boiler
 - Turbine
 - Condenser
 - Pump

- Idealized *Rankine* cycle:
 - Turbine: *isentropic* expansion $(1 \rightarrow 2)$ $\dot{W}_t / \dot{m} = (h_1 - h_2)$
 - Condenser: *isobaric* heat transfer $(2 \rightarrow 3)$ $\dot{Q}_{out} / \dot{m} = (h_3 - h_2)$
 - Pump: *isentropic* compression $(3 \rightarrow 4)$

$$\dot{W_{\rm p}} / \dot{m} = (h_3 - h_4)$$

- Boiler: *isobaric* heat transfer $(4 \rightarrow 1)$

$$\dot{Q}_{\rm in} / \dot{m} = (h_1 - h_4)$$

– Efficiency:

$$\eta = \frac{\dot{W_{t}} / \dot{m} + \dot{W_{p}} / \dot{m}}{\dot{Q_{in}} / \dot{m}} = \frac{(h_{1} - h_{2}) + (h_{3} - h_{4})}{(h_{1} - h_{4})}$$

- Idealized Rankine cycle: effects of components on performance:
 - Increase of average temperature at which energy is added and decrease of average temperature at which energy is rejected leads to increased efficiency (Carnot):

$$\eta_{\text{ideal}} = \frac{(\dot{Q}_{\text{in}} / \dot{m})_{\text{int,rev}} - (\dot{Q}_{\text{out}} / \dot{m})_{\text{int,rev}}}{(\dot{Q}_{\text{in}} / \dot{m})_{\text{int,rev}}} = 1 - \frac{T_{\text{out}}}{\overline{T}_{\text{in}}}$$

- Increase in boiler pressure and decrease in condenser pressures:

- Rankine cycle: improving performance:
 - 1.Superheating (using additional heat exchanger, combination of boiler and heat exchanger is called steam generator)

Protects turbine (higher vapor quality *x*) & increases efficiency (higher *T*)

• Rankine cycle: improving performance:

- 2.Reheating

Rankine cycle: improving \dot{Q}_{in} (1 - y)• performance: (1) W, T - 3.Regeneration via (1 - y)Steam open feedwater heater generator Condenser $\dot{Q}_{
m out}$ (1 - y)Open (1) feedwater heater Pump 2 Pump 1 \dot{W}_{p2} \dot{W}_{p1} $\zeta \dot{Q}_{in}$ -v(1) closed feedwater heater T $3 \downarrow (1-y)$ Steam Condenser √ ↓ \dot{Q}_{out} generator $\triangleleft^{(1)}$ (1) \triangleleft Pump MM 6 Closed Ŵ, feedwater Trap 8 (\mathbf{y}) heater

(y) -

Real steam plant example:

Multistage extraction

Heat addition to the cycle is reduced from the area bounded by 4'-4-4"-5-1-1'-2-2'-4' to the area bounded by 3'-3-4"-5-1-1'-2-2'-3', hence the heat addition to the cycle is reduced by the area 4'-4-4"-3-3'-4', keeping the output unchanged, thereby reducing the cost of power generation.

Real steam plant example:

- 2 * 150 MW_e
- 8 extractions
- 1 reheater; for feed-water at HP and LP
- 5 turbines (1 HP, 1 MP, 3 LP)
- 2 cooling towers $\epsilon_{Turbogroup} = 75\%$
- $\varepsilon_{\text{Boiler}} = 52\%$

Co-generation

- Power and heat:
 - steam extraction to HEX for district heating (70°C)
 - output service: power E^- and enthalpy Y_D^-

Internal combustion engines

• Spark ignition or compression ignition

- Air-standard analysis:
 - Fixed amount of air modeled as ideal gas
 - Combustion modeled by heat transfer from external source
 - No exhaust and intake strokes.
 Constant volume heat rejection
 - Internally reversible processes

Internal combustion engines

p

2

a

- Air-standard Otto cycle:
 - 1-2: Isentropic compression

$$\frac{W_{12}}{m} = u_1 - u_2 \tag{<0}$$

- 2-3: Constant-volume heat transfer

$$\frac{Q_{23}}{m} = u_3 - u_2$$

- 3-4: Isentropic expansion

$$\frac{W_{34}}{m} = u_3 - u_4$$

- 4-1: Constant-volume heat rejection

$$\frac{Q_{41}}{m} = u_1 - u_4 \tag{<0}$$

- Cycle efficiency:
$$\eta = \frac{W_{\text{cycle}}}{Q_{23}} = \frac{u_3 - u_4 + u_1 - u_2}{u_3 - u_2}$$

Internal combustion engines

20

S

Gas turbine power plants

- Air-standard Brayton cycle (ideal): ullet
 - 1-2: Isentropic compression \dot{W}_1

$$\frac{W_{12}}{\dot{m}} = h_1 - h_2$$

- 2-3: Isobaric heat transfer

$$\frac{Q_{23}}{m} = h_3 - h_2$$

Cycle efficiency:

$$\eta = \frac{W_{\text{cycle}}}{Q_{23}} = \frac{h_3 - h_4 + h_1 - h_2}{h_3 - h_2}$$

- 3-4: Isentropic expansion

$$\frac{\dot{W}_{34}}{\dot{m}} = h_3 - h_4$$

- 4-1: Isobaric heat transfer

$$\frac{Q_{41}}{m} = h_1 - h_4$$

EPFL

Gas turbine power plants

External combustion engines

• Ericsson and Stirling cycle (both with same features as Carnot):

 In the limit of large number of multi-stage compression with intercooling, and multi-stage expansion with re-heating, with ideal regeneration

Cycle with regeneration,
 internally reversible,
 internal heat transfer
 processes → Stirling cycle

Combined cycle (CC)

- Gas cycle + steam cycle
- Fuels: oil, natural gas, gasified coal fuels
- <u>GT on top of ST</u> (*'topping cycle'*) **reduces exergy heat transfer loss** between fuel combustion gases and steam
- <u>ST below the GT</u> ('*bottoming cycle*') **reduces heat exergy loss** of the hot GT exhaust gas (450-650°C)
- → *`win'-'win'* combination between both cycles
- → the individual cycles in a CC configuration find themselves <u>simplified</u> with respect to their stand-alone configurations:
 - for the GT: no regenerator (it becomes the steam heater)
 - for the ST: almost no steam extraction

Layout

Combined gas-steam cycle in T-s diagram

Efficiency evolution and perspectives

(T. Kaiser, Alstom)

Steam *P-T* **diagram for various cycle applications**

Concentrated Solar Power - Centralized

Concentrated Solar Power - Decentralized

• Stirling cycle:

Low temperature heat sources

- For geothermal, waste heat, non- / low-concentrated solar:
 - temperatures too low for water as HTF (heat transfer fluid)
 - instead using (organic) fluid with different critical parameters

HTF for ORC

- Choice depends on:
 - Flammability and toxicity
 depending on security of the site
 - ODP for the environment
 - Stability
 - Authorization for the fluid

(ODP ozone depletion potential)

Entropy

	R245 fa	R152A	R32	Pen- tane	lso- Butane	Toluene
Saturated pressure at 120 $^{\circ}{\rm C}$ (bar)	19.2	42	58	9	28	1.3
Service temperature (\mathfrak{C})	140	140	140	140	140	140
Saturated pressure at 50 $^{\circ}\!\!\!\!^{\circ}$ (bar)	3.5	11	31	1.6	6.8	0.1
Expander pressure ratio	5.6	3.6	1.8	5.7	4.1	10.7
Ozone Depletion Potential	0	0	0	0	0	0
Global Warming Potential	950	140	675	7	3	3
ASHRAE Safety group	B1	A2	A2L	A3	A3	A3
Power density [kW/Exp]	16	26	16	8	21	1.4

ORC example

• Biomass: working fluid silicone oil

ORC example

• Geothermal

Refrigeration and heat pump systems

- Refrigeration and heat pump
 - Maintain colder temperature below temperature of surrounding
 - Maintain higher temperature above temperature of surrounding

Vapor-compression refrigeration system

T

- Practical refrigeration/heat pump cycle, ideal:
 - 1-2: Isentropic compression $\frac{\dot{W_c}}{\dot{m}} = h_1 - h_2$
 - 2-3: Isobaric heat rejection (incl. condensing step) $\frac{\dot{Q}_{out}}{\dot{m}} = h_3 - h_2$ - 3-4: throttling process

$$h_{3} = h_{4}$$

EPFL

- 4-1: Isobaric heat addition (evaporation step)

 $\frac{Q_{\text{in}}}{\dot{m}} = h_1 - h_4$ - Coefficient of performance: $COP_{\text{cm}} = \frac{h_1 - h_4}{h_2 - h_1} < COP_{\text{cm,max}}$ $COP_{\text{hm}} = \frac{h_2 - h_3}{h_2 - h_1} < COP_{\text{hm,max}}$

65

Gas refrigeration systems

- Gas refrigeration systems, Brayton refrigeration cycle
 - 1-2(s): (Isentropic) compression

$$\frac{\dot{W_{\rm c}}}{\dot{m}} = h_1 - h_2$$

- 2-3: Isobaric cooling

$$\frac{\dot{Q}_{\text{out}}}{\dot{m}} = h_3 - h_2$$

- 3-4(s): (Isentropic) expansion $\frac{\dot{W_t}}{\dot{m}} = h_3 - h_4$

- 4-1: Isobaric evaporation/heating

$$\frac{\dot{Q}_{in}}{\dot{m}} = h_1 - h_4$$

Coefficient of performance: $\text{COP}_{cm} = \frac{h_1 - h_4}{|h_1 - h_2| - (h_3 - h_4)}$

- Heat pump system:
 - Common application: space heating
 - Vapor-compression as well as absorption heat pumps

• Vapor-compression heat pumps:

• Vapor-compression heat pumps:

- 1-2:
$$\frac{\dot{W_{c}}}{\dot{m}} = h_{1} - h_{2}$$

- 2-3: $\frac{\dot{Q}_{out}}{\dot{m}} = h_{3} - h_{2}$
- 3-4: $h_{3} = h_{4}$
- 4-1: $\frac{\dot{Q}_{in}}{\dot{m}} = h_{1} - h_{4}$
- Performance: $COP_{hm} = \frac{\dot{Q}_{out} / \dot{m}}{\dot{W_{c}} / \dot{m}} = \frac{h_{2} - h_{3}}{h_{2} - h_{1}}$

Heat pump

The largest heat pump (for District heating): 3 compression stages

Goteborg: 45 MW_{th}

Absorption heat pump

- Principle: achieve the pressure raise from low (BP) → high (HP) <u>not</u> by *mechanical compression*, but by desorption (using a *heat source*) of a working fluid from its solvent, in which this working fluid had previously been absorbed (=rejecting heat during absorption)
 - e.g. working fluid **NH**₃ with water as solvent
 - e.g. working fluid water with LiBr as solvent

often low temperature (~100°C), ideal for many renewables
Absorption heat pump

replaces a compressor

absorber (water): Condenser NH₃ vapor receives low p NH₃ vapor (BP) \Rightarrow liberates absorption heat (H) Desorber liquid pump $BP \rightarrow HP$ Liquid NH₃ Hot source G boiler: delivers the absorption HP solution HP \dot{E}_{P}^{+} heat (G) to desorb the NH_3 Weak solution HP vapor \rightarrow HP Heat exchanger expander (liq.) $HP \rightarrow BP$ NHS expansion internal heat exchanger valve solution expansion valve ump between the rich and poor Weak solution BP solutions (in NH₃) Absorber NH₃ Rici liq. + vap. solution BP tubing BP Intermediate source H(A)Evaporator NH₃ vapor BP Cold source S(F)TRITHERMAL CYCLE 1, 2, 3

Learning outcomes

- Introduction into thermodynamics:
 - 1st law for closed and open systems
 - -2^{nd} law for closed and open systems, entropy definition
 - Exergy
 - State functions
- Exemplary thermodynamic power systems:
 - Power systems:
 - Vapor power systems
 - Gas power systems:
 - Internal combustion engines
 - Gas turbine power plants
- Examples of relevant power cycles for renewable sources
- Examples thermodynamic cooling and heating systems:
 - Refrigeration and heat pump systems

Addendum : derivation of exergy balance from 1st + 2nd Laws

1st Law

Enthalpy flow = Rate of variation of Mechanical work Heat + balance (linked + internal energy transfer transfer to mass flow) (accumulation or diminution) $\sum_{k} (\dot{E}_{k}^{+}) + \dot{E}_{a}^{+} + \sum_{i} (\dot{Q}_{i}^{+}) + \dot{Q}_{a}^{+} + \sum_{i} (h_{cz_{i}} \dot{M}_{j}^{+}) = dU_{cz} / dt$ **Section S** 1 2 Effective work (via crankshaft or connecting rod) $\dot{E}_{a}^{+} = -P_{a}dV/dt =$ mechanical work related to the atmosphere

(separating atmosphere terms)

$$\sum_{k} \begin{bmatrix} \dot{E}_{k}^{+} \end{bmatrix} - \begin{bmatrix} P_{a} \frac{dV}{dt} + \sum_{i} \begin{bmatrix} \dot{Q}_{i}^{+} \end{bmatrix} + \underbrace{\dot{Q}_{a}^{+}}_{i} + \sum_{j} \begin{bmatrix} h_{czj} \dot{M}_{j}^{+} \end{bmatrix} = \frac{dU_{cz}}{dt}$$

$$\sum_{k} \begin{bmatrix} \dot{E}_{k}^{+} \end{bmatrix} + \sum_{i} \begin{bmatrix} \dot{Q}_{i}^{+} \end{bmatrix} + \underbrace{\dot{Q}_{a}^{+}}_{i} + \sum_{j} \begin{bmatrix} h_{czj} \dot{M}_{j}^{+} \end{bmatrix} = \frac{d(U_{cz} + P_{a} dV)}{dt}$$

For 1 network:

$$\sum_{k} \left[\dot{E}_{k}^{+} \right] + \sum_{i} \left[\dot{Q}_{i}^{+} \right] + \dot{Q}_{a}^{+} + \sum_{j} \left[h_{czj} \dot{M}_{j}^{+} \right] - \frac{d(U_{cz} + P_{a}V)}{dt} = 0$$

For n networks:

$$\sum_{k} \left[\dot{E}_{k}^{+} \right] + \sum_{i} \left[\dot{Q}_{i}^{+} \right] + \dot{Q}_{a}^{+} + \sum_{n} \left(\sum_{j} \left[h_{czj} \dot{M}_{j}^{+} \right] - \frac{d(U_{cz} + P_{a}V)}{dt} \right)_{n} = 0$$

2nd Law (separating heat transfer with atmosphere)

EXERGY BALANCE (1st Law *minus* **2nd Law):**

1st Law

EXERGY BALANCE

1st Law

$$\sum_{k} \left(\dot{E}_{k}^{+} \right) + \sum_{i} \dot{Q}_{i}^{+} + \dot{Q}_{a}^{+} + \sum_{j} \left(h_{cz_{j}} \dot{M}_{j}^{+} \right) - d\left(U_{cz} + P_{a} V \right) / dt = 0$$
minus the 2nd Law
$$-T_{a} \sum_{i} \dot{Q}_{i}^{+} / T_{i} - \dot{Q}_{a}^{+} - T_{a} \sum_{j} \left(s_{j} \dot{M}_{j}^{+} \right) + T_{a} dS / dt = T_{a} \delta S^{i} / dt$$

$$\sum_{i} \left(\dot{E}_{k}^{+} \right) + \sum_{i} \left(1 - \frac{T_{a}}{T_{i}} \dot{Q}_{i}^{+} \right) + \sum_{j} \left(h_{cz_{j}} - T_{a} s_{j} \right) \dot{M}_{j}^{+} - d\left(U_{cz} + P_{a} V - T_{a} S \right) / dt = T_{a} \delta S^{i} / dt$$
Mech.work- Heat-exergy
$$\sum_{k} \dot{E}_{k}^{+} + \sum_{i} \dot{E}_{qi}^{+} + \sum_{i} \dot{E}_{qi}^{+} + \sum_{n} \dot{E}_{yn}^{+} = L$$

In this formulation, every term is either positive or negative

Summary of formulations (with + = entering the system)

Energy balance (1st law)

$$\sum_{k} (\dot{E}_{k}^{+}) + \sum_{i} \dot{Q}_{i}^{+} + \dot{Q}_{a}^{+} + \sum_{j} (h_{cz_{j}} \dot{M}_{j}^{+}) - d(U_{cz} + P_{a}V)/dt = 0$$

$$\sum_{k} \dot{E}_{k}^{+} + \sum_{i} \dot{Q}_{i}^{+} + \sum_{i} \dot{Q}_{i}^{+} + \sum_{n} \dot{Y}_{n}^{+} - \dot{Q}_{a}^{-} = 0$$

Every received energy quantity not kept in the system eventually is heat loss to the atmosphere

Exergy balance (1st + 2nd laws)

$$\sum_{k} \left(\dot{E}_{k}^{+} \right) + \sum_{i} \left(1 - \frac{T_{a}}{T_{i}} \right) \dot{Q}_{i}^{+} + \sum_{j} \left(h_{cz_{j}} - T_{a}s_{j} \right) \dot{M}_{j}^{+} - d \left(U_{cz} + P_{a}V - T_{a}S \right) / dt - T_{a}\delta S^{i} / dt = 0$$

$$\sum_{k} \dot{E}_{k}^{+} + \sum_{i} \dot{E}_{qi}^{+} + \sum_{i} \dot{E}_{qi}^{+} + \sum_{n} \dot{E}_{yn}^{+} - \dot{L} = 0$$

Every received work quantity not exported as work from the system is internal entropy creation

B²Ceek 2 **Formulations with only positive terms**

Energy balance (1st law)

$$\sum_{k} \dot{E}_{k}^{+} + \sum_{i} \dot{Q}_{i}^{+} + \sum_{n} \dot{Y}_{n}^{+} - \dot{Q}_{a}^{-} = \sum_{k} \dot{E}_{k}^{-} + \sum_{i} \dot{Q}_{i}^{-} + \sum_{n} \dot{Y}_{n}^{-}$$

All received energy in a system equals the energy output services plus the heat loss to the atmosphere

Exergy balance (1st + 2nd laws)

$$\sum_{k} \dot{E}_{k}^{+} + \sum_{i} \dot{E}_{qi}^{+} + \sum_{n} \dot{E}_{yn}^{+} - \dot{L} = \sum_{k} \dot{E}_{k}^{-} + \sum_{i} \dot{E}_{qi}^{-} + \sum_{n} \dot{E}_{yn}^{-}$$

Real equivalent work output of a system equals the maximal equivalent work received by the system minus the irreversibility losses due to internal entropy creation

& Beek 2 **Effectiveness and exergy efficiency**

Effectiveness (1st law)

 $\varepsilon = \frac{\sum \left\lfloor \dot{E}^{-} \right\rfloor + \sum \left\lfloor \dot{Q}^{-} \right\rfloor + \sum \left\lfloor \dot{Y}^{-} \right\rfloor}{\sum \left\lfloor \dot{E}^{+} \right\rfloor + \sum \left\lceil \dot{Q}^{+} \right\rceil + \sum \left\lceil \dot{Y}^{+} \right\rceil}$

Exergy efficiency (1st and 2nd laws)

Examples:

General and always applicable

