EPFL Practical: Overview

All practicals are in Python

- Algorithms (evolutionary algorithms)
- EvoRob exercises (evolutionary robotics experiments)
- EvoRob report (Final grade)

EPFL Practical: Overview

EPFL Practical: Learning goals

- Hands-on experience with commonly used evolutionary algorithms and deep reinforcement learning algorithms in robotics.
- Proficiency with state-of-the art software tools like (OpenAI) Gym environments and the MuJoCo physics engine.
- Ability to design and build an evolutionary experiment

EPFL Practical: Algorithms

EPFL Practical: Algorithms

- Hands-on experience with commonly used evolutionary algorithms
 - GA: combinatorial optimisation
 - ES: real-valued optimisation
 - NSGA-II: multi-objective optimisation
- Will be used for the EvoRob exercises

- Hands-on experience with commonly used evolutionary algorithms and deep reinforcement learning algorithms in robotics.
- Proficiency with state-of-the art software tools like (OpenAI) Gym environments and the MuJoCo physics engine.

(OpenAI) Gym: simulation environment

Translate genomes \rightarrow robots \rightarrow fitnesses

We need:

- Simulation environment
- Physics engine

Translate genomes \rightarrow robots \rightarrow fitnesses

We need:

- Simulation environment (gym)
- Physics engine

	2	
Weights:		
	agai	
Evaluate Individual		
Agent		
Observations		Actions

Robot simulation with: Gym interface

```
observations, _ = gym.reset()
For n_time_steps:
    actions = controller(observations)
    observations, = gym.step(actions)
```


Robot simulation with: Gym interface

```
observations, _ = gym.reset()
For n_time_steps:
actions = controller(observations)
observations, _ = gym.step(actions)
```


Translate genomes \rightarrow robots \rightarrow fitnesses

We need:

- Simulation environment (gym)
- Physics engine

Translate genomes \rightarrow robots \rightarrow fitnesses

We need:

- Simulation environment (gym)
- Physics engine (MuJoCo)

18/21

19/21

- Hands-on experience with commonly used evolutionary algorithms and deep reinforcement learning algorithms in robotics.
- Proficiency with state-of-the art software tools like (OpenAI) Gym environments and the MuJoCo physics engine.
- Ability to design and build an evolutionary experiment

- <u>Start on time</u> (multiple experiments can take long)
 - We expect you to understand the EvoRob exercises here
- Groups of 2 student
- Max 2 pages
- Follow the Word template

- Start on time (multiple experiments can take long)
 - We expect you to understand the EvoRob exercises here
- Groups of 2 student
- Max 2 pages

FPFLLIS

• Follow the Word template

Title

1. Introduction

Provide a brief introduction to the topic or purpose of your evolutionary experiment. Include a short overview of the objectives, environment, robot design.

EA: Short description of EA World: Short description of your world

2. Methods

Describe the geno2pheno type (and reason why you choose this representation), fitness function, what do you measure/why, and describe your statistical method.

2 Deculto

Questions?

For questions outside of lectures/practical:

- Moodle

