
Advanced Probability and Applications EPFL - Fall Semester 2024-2025

Final exam: solutions

Exercise 1. Quiz. (26 points) Answer each short question below. For yes/no questions explicitly
say if the statement is true of false and provide a brief justification (proof or counter-example) for
your answer. For other questions, provide the result of you computation, as well as a brief justifi-
cation for your answer.

a) (3 points) Let (Ω,F ,P) be a probability space, and let X : Ω → R be a random variable with
cumulative distribution function FX(x). Suppose g : R → R is a strictly decreasing and continuous
function. Define Y = g(X). What is the cumulative distribution function of Y ?

Solution: For a strictly decreasing and continuous g, Y ≤ y ⇐⇒ X ≥ g−1(y) Thus:

FY (y) = P (Y ≤ y) = P (X ≥ g−1(y)) = 1− FX(g−1(y)).

b) (3 points) Let X1 and X2 be two Gaussian random variables such that the random vector
X = (X1, X2) has a covariance matrix

Cov(X) =

(
1 0
0 1

)
Does this imply that X1 and X2 are independent?

Answer: No. Consider the following counter example. Let X1 ∼ N (0, 1) and Z be equiprobable
on {−1, 1} and independent of X1. Let X2 = Z ·X1. Then

Cov(X1, X2) = E(X1X2)− E(X1)E(X2) = E(X1X2) = E(X1ZX1) = E(Z)E(X2
1 ) = 0.

Here we have that the random vector X is not a Gaussian random vector and so zero covariance
does not imply independence.

c) (4 points) Let X,Y be integrable random variables on the measurable space (Ω,F , P ). Define
G = σ(Y ). Suppose that E[XY |G] = aY 2 + bY , where a and b are constants. Compute E[X] in
terms of a, b, and E[Y ].

Solution: We know that:

E[XY |G] = E[X|G]Y a.s. and (1)

E[X] = E[E[X|G]]. (2)

Thus, using the linearity of expectation, we have that

E[X] = E[E[X|G]]

= E
[
E[XY |G]

Y

]
= E

[
aY 2 + bY

Y

]
= E[aY + b]

= aE[Y ] + b.
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d) (4 points) Let X,Y be i.i.d random variables on the measurable space (Ω,F ,P). Further,
also suppose X + Y and X − Y are independent random variables. Is it true that ϕX(2t) =
(ϕX(t))2|ϕX(t)|2 for all t ∈ R? Why or Why not?

Answer: Yes.
Since, X and Y are independent. We have

ϕ(X+Y,X−Y )(t1, t2) = E
(
eit1(X+Y )+it2(X−Y )

)
= E

(
ei(t1+t2)X+i(t1−t2)Y

)
= ϕX(t1 + t2)ϕY (t1 − t2).

But, also recall that, we are given that X + Y and X − Y are independent as well. Thus,

ϕ(X+Y,X−Y )(t1, t2) = E
(
eit1(X+Y )+it2(X−Y )

)
= ϕX+Y (t1)ϕX−Y (t2).

Thus, we have that

ϕX(t1 + t2)ϕY (t1 − t2) = ϕX+Y (t1)ϕX−Y (t2)

Substitute t1 = t2 = t,

ϕX(2t) = (ϕX(t))3ϕY (−t)

again since X and Y are identical, we have ϕX(t) = ϕY (t) for all t ∈ R. Thus,

ϕX(2t) = (ϕX(t))3ϕX(−t)

= (ϕX(t))2|ϕX(t)|2.

e) (4 points) Let M0 = 0.4 and define recursively

Mn+1 =

{
M2

n with probability1
2

2Mn −M2
n with probability1

2 .

Is it true that the resulting martingale (Mn, n ∈ N) converges almost surely to some random
variable M∞? Why or why not?

Answer: Yes. This is a special case of the example covered in lecture. You can show that the
martingale is always bounded between zero and one, e.g. Mn ∈ (0, 1). By MCT v1 it will converge
to some M∞. (In fact, here, M∞ is distributed as Benouilli(0.6).)

A sequence of biased coins is flipped. The chance that the rth coin shows head is Θr, where Θr is
a random variable taking values in (0, 1). Let Xn be the number of heads after n flips.

f) (4 points) Does Xn obey the central limit theorem when Θr are independent and identically
distributed?

Answer: Yes. Let Yn be one if at time n the coin flip is heads. Then Xn =
∑n

i=1 Yn (i.e. Xn

takes the role of Sn in our statement of the CLT in the notes). In this setting, we can show that
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all Yn are iid and the probability that each coin shows heads is some constant p which depends on
the distribution of Θr. Specifically,

P({Yn = 1}) = E(1{Yn=1}) = E
(
E
(
1{Yn=1}|Θn

))
= E(Θn)

But, since all the Θn are iid, the probability will be the same for all n.

g) (4 points) Does Xn obey the central limit theorem when Θr = Θ for all r, where Θ is a random
variable on (0, 1)?

Answer: No. Unless Θ is a constant random variable, the limiting distribution may not be a
Gaussian. First, to get the intuition, think of Θ which is supported on {0, 1}. Then, for all ω ∈ Ω
the outcome of a sequence of (Yn, n ∈ N) will either be all zeros, or all ones. Likewise, Xn = 0 for
all n or Xn = n for all n. This clearly does not obey the CLT. In this problem, Θ is a random
variable on (0, 1), but the same logic still applies. Suppose it is supported on {ϵ, 1− ϵ}. Then, for
all ω ∈ Ω the sequence (Yn, n ∈ N) will be either mostly made up of zeros, or mostly made up of
ones and thus will not obey the CLT. (In this case, the limiting distribution will be actually be a
mixture of Guassians with expectations at ϵ and 1− ϵ).

Exercise 2. (26 points)

Let X and Y be random variables on common probability space (Ω,F ,P). The total variation
distance is defined as

dTV (X,Y ) = sup
A∈B(R)

|(P(X ∈ A)− P(Y ∈ A))| .

a) (5 points) Show that
P(X = Y ) ≤ 1− dTV (X,Y ).

Solution: Let A ∈ F be the set that achieves the supremum.

P({X ̸= Y }) ≥ P({X ∈ A, Y /∈ A}) = P({X ∈ A})− P({X ∈ A, Y ∈ A})
≥ P({X ∈ A})− P({Y ∈ A}) = dTV (X,Y )

This shows the desired result.

(Note, if no A that achieves the above supremum exists, we can take a set A that is arbitrarily
close to achieving the supremum, and the same argument will hold with minor modification.)

b) (5 points) Let X and Y be discrete and supported on {0, 1, 2, . . . } with pmfs pX and pY .
Show that

dTV (X,Y ) =
1

2

∑
m≥0

|pX(m)− pY (m)|.

Solution: First, note that if A ∈ F achieves the supremum above, so does Ā ∈ F . Let A =
{m : P({X = m}) > P({Y = m})}. We show that A achieves the supremum in the definition above.
Take any other set B ∈ F and assume without loss of generality that P({X ∈ B}) ≥ P({Y ∈ B}).
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Then

P({X ∈ B})− P({Y ∈ B})
= P({X ∈ A ∩B}) + P({X ∈ Ā ∩B})− (P({Y ∈ A ∩B}) + P({Y ∈ Ā ∩B}))
= P({X ∈ A ∩B})− P({Y ∈ A ∩B}) + P({X ∈ Ā ∩B})− P({Y ∈ Ā ∩B}))
≤ P({X ∈ A ∩B})− P({Y ∈ A ∩B})
≤ P({X ∈ A})− P({Y ∈ A})

Finally,

1

2

∑
m≥0

|pX(m)− pY (m)| = 1

2

∑
m∈A

(pX(m)− pY (m)) +
1

2

∑
m∈Ā

(pY (m)− pX(m))

=
1

2
dTV (X,Y ) +

1

2
dTV (X,Y ) = dTV (X,Y )

c) (4 points) (Optimal coupling) Let Ω = {1, . . . k}, F = P(Ω) , and P(ω) = 1
k ∀ω ∈ Ω. Suppose

that X is Bernoulli
(
k−1
k

)
and Y is Bernoulli

(
2
k

)
. What is dTV (X,Y )?

Construct an explicit mappings X : Ω → {0, 1} and Y : Ω → {0, 1} so that the bound in part a) is
satisfied with equality.

Solution: By using the formula in part b) we see that

dTV (X,Y ) =
1

2

(∣∣∣∣k − 1

k
− 2

k

∣∣∣∣+ ∣∣∣∣1k − k − 2

k

∣∣∣∣) =
k − 3

k

One possible mapping that achieves this is

X(ω) =

{
1 ω ∈ {1, 2, . . . , k − 1}
−1 otherwise

and

Y (ω) =

{
1 ω ∈ {1, 2}
−1 otherwise

In this case X(ω) = Y (ω) for ω ∈ {1, 2, k}.

d) (4 points) Let P({X = 1}) = P({X = −1}) = 1
2 and Y ∼ N (0, 1). What is dTV (X,Y )?

Solution: Letting A = {−1, 1} we see that dTV (X,Y ) = 1, which is the maximum value possible.
In other words, X and Y have essentially complementary supports (and this would be true for any
pair of discrete and continuous random variables).

e) (4 points) Let (Xn, n ≥ 1) be a sequence of random variables and X be another random

variable on (Ω,F ,P). Show that if limn→∞ dTV (Xn, X) = 0 then Xn
d→

n→∞
X.

Solution: For any t for which FY (t) is continuous, we have

|FXn(t)− FY (t)| = |P({Xn ≤ t})− P({Y ≤ t})| ≤ sup
A∈B(R)

|(P(Xn ∈ A)− P(Y ∈ A))| = dTV (Xn, Y )
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Thus, we see that |FXn(t)− FY (t)| → 0, and thus Xn converges in distribution to Y .

f) (4 points) Is the converse true? That is, if Xn
d→

n→∞
X then limn→∞ dTV (Xn, X) = 0. If yes,

prove the statement. If no, provide a counter example.

Solution: No, the converse is not true. Consider Zn iid with P({Z1 = 1}) = P({Z1 = −1}) = 1
2

and define Sn = Z1 + Z2 + · · ·+ Zn. The random variable Xn = Sn√
n
converges to X ∼ N (0, 1) by

CLT. However, Xn is a discrete random variable for any finite n. By an argument analogous to
part d) we see that dTV (Xn, X) = 1 for all n.

Exercise 3. (22 points)

Let (Ω,F ,P) be a probability space and X : Ω → R be an F-measurable random variable on this
space. For this problem, you may wish to recall Hölder’s inequality from the mid-term exam:

E(|XY |) ≤ (E(|X|p))1/p(E(|Y |q))1/q

for p, q ≥ 1 such that 1
p + 1

q = 1.

a) (5 points) (Lyapunov’s inequality) Show that for every 1 ≤ r < s < ∞ we have

E(|X|r))1/r ≤ E(|X|s))1/s.

Solution: This inequality can be proved using either the Jensen’s inequality or the Holder’s
inequality. Let’s see both the proofs.

1. Proof using Jensen’s:
Apply Jensen’s inequality to the random variable Y := |X|s with the concave function f(Y ) :=
Y r/s (since r/s < 1). Let’s have a detailed look:

E(f(Y )) ≤ f(E(Y ))

E(|X|r) ≤ f(E(|X|s))
E(|X|r) ≤ (E(|X|s))r/s

(E(|X|r))1/r ≤ (E(|X|s))1/s

2. Proof using Holder’s:
Apply Holder’s inequality with Y := 1, X := |Z|r (where Z be a dummy random variable on
(Ω,F ,P)) and p := s/r (which implies q = s/(s− r)). Thus, we have that:

E(|X|) ≤ (E(|X|p))1/p

E(|Z|r) ≤ (E(|Z|pr))1/p

E(|Z|r) ≤ (E(|Z|s))r/s

(E(|Z|r))1/r ≤ (E(|Z|s))1/s

Recall that Xn
Lr

→
n→∞

X if E(|Xr
n|) < ∞ for all n and

E(|Xn −X|r) →
n→∞

0.
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b) (5 points) Assume Xn
Ls

→
n→∞

X. Show that Xn
Lr

→
n→∞

X for every 1 ≤ r < s < ∞.

Solution: Given Xn
Ls

→
n→∞

X, to show that Xn
Lr

→
n→∞

X, we need to prove two conditions i.e.,

E(|Xr
n|) < ∞ for all n and E(|Xn −X|r) →

n→∞
0.

Note that the first condition follows from the Exercise 4 (Part A) from the mid-term exam (see
solutions for more details). The second part too, was a part of the graded homework problem from
the problem set 9. (See Homework 9 for the full proof). It follows from Jensen’s inequality; you
could also use the result from part (a), alternatively.

c) (5 points) (Minkowski’s inequality) Show that for every r ≥ 1 and any two F-measurable
random variables X and Y such that E(|X|r),E(|Y |r) < ∞, we have

(E(|X + Y |r))1/r ≤ (E(|X|r))1/r + (E(|Y |r))1/r.

Hint: Start by writing |X +Y |r = |X|X +Y |r−1+Y |X +Y |r−1|. Then, apply Hölder’s inequality .

Solution: From the hint, we have the following:

|X + Y |r ≤ |X||X + Y |r−1 + |Y ||X + Y |r−1

Therefore,

E(|X + Y |r) ≤ E(|X||X + Y |r−1) + E(|Y ||X + Y |r−1)

Now, on applying Holder’s inequality on both the terms on the R.H.S of the previous equation we
have that

E(|X + Y |r) ≤ ((E(|X|r))1/r + (E(|Y |r))1/r)(E(|X + Y |r))(r−1)/r

(E(|X + Y |r))1−
r−1
r ≤ ((E(|X|r))1/r + (E(|Y |r))1/r)

(E(|X + Y |r))1/r ≤ ((E(|X|r))1/r + (E(|Y |r))1/r)

This proves Minkowski’s inequality.

d) (7 points) Assume that Xn
Lr

→
n→∞

X and Yn
Lr

→
n→∞

Y for some r ≥ 1. Show that Xn + Yn
Lr

→
n→∞

X + Y .

Solution: We have that

lim
n→∞

(E(|Xn −X|)r) = 0 and lim
n→∞

(E(|Yn − Y |)r) = 0

and so

lim
n→∞

(E(|Xn −X|)r)1/r = 0 and lim
n→∞

(E(|Yn − Y |)r)1/r = 0

since f(x) = x1/r is a continuous function in the neighborhood of zero. Then, by Minkowski’s
inequality

E(|(Xn + Yn)− (X + Y )|)r)1/r = E(|(Xn −X) + (Yn − Y )|r)1/r

≤ E(|Xn −X|r)1/r + E(|Yn − Y |r)1/r.
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So

lim
n→∞

(E(|(Xn + Yn)− (X + Y |)r)1/r = 0

which implies that

lim
n→∞

E(|(Xn + Yn)− (X + Y |)r = 0,

and this proves the result.

Exercise 4. (26 points)

Let {Xn, n ≥ 1} be an i.i.d. sequence such that E(|X1|) < ∞. Let {Fn, n ∈ N} be the natural
filtration and τ be a stopping time with respect to this filtration.

a) (Wald’s) Given E(τ) < ∞, show that

E

(
τ∑

n=1

Xn

)
= E(τ)E(X1).

Solution: We start by noting

τ∑
n=1

Xn =
∞∑
n=1

XnI{τ > n− 1},

where I{τ > n− 1} is the indicator random variable. This holds since I{τ > n− 1} ∈ Fn−1.

We take the sum out of the expectation, use the independence of I{τ > n− 1} and Xn, as well as
the fact that E(Xn) = E(X1), ∀n ∈ N:

E

(
τ∑

n=1

Xn

)
= E

( ∞∑
n=1

XnI{τ > n− 1}

)

=

∞∑
n=1

E (XnI{τ > n− 1})

=
∞∑
n=1

E (Xn)P({τ > n− 1})

= E(X1)

∞∑
n=1

P({τ > n− 1})

= E(X1)
∞∑
n=0

P({τ > n})

= E(X1)E(τ).

For the remaining parts of the problem, assume that {Xn} is uniformly distributed over the discrete
alphabet {1, 2, . . . , k}.
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b) Let S0 = 0 and Sn =
∑n

i=1Xi for n ≥ 1. Is the process {Sn, n ∈ N} a martingale with respect
to {Fn, n ∈ N}? Why?

If it is a martingale, set Mn = Sn for all n ∈ N. If not, find the unique predictable and increasing
process {An, n ∈ N} such that the process {Mn = Sn −An, n ∈ N} is a martingale with respect to
{Fn, n ∈ N}.

Solution: We check the conditions:

E(|Sn|) ≤ nk < +∞,∀n ∈ N
E(Sn+1|Fn) = E(Sn +Xn+1|Fn)

= Sn + E(Xn+1|Fn)

= Sn + E(Xn+1)

= Sn +
k + 1

2
̸= Sn

Since one of the conditions does not hold, Sn is not a martingale.

Using Doob’s decomposition theorem, we set A0 = 0 and An+1 = An + E(Sn+1|Fn)− Sn. We can
further calculate:

An+1 = An + E(Xn+1)

= An +
k + 1

2

= An−1 + 2
k + 1

2

= (n+ 1)
k + 1

2
.

Then, {Mn = Sn −An, n ∈ N} is a martingale.

c) Let τa = min{n ≥ 1 : Xn = a} for a fixed a ∈ {1, 2, . . . , k}. Is τa a stopping time? Explain why.

Solution: Yes, since {τa = n} = {Xi ̸= a,∀i ∈ {1, 2, . . . , n− 1} and Xn = a} ∈ Fn, ∀n ∈ N.

d) Find E(τa). Does it depend on a?

Solution: No, it does not depend on a. We first calculate P({τa + n}):

P({τa + n}) = P({Xi ̸= a,∀i ∈ {1, 2, . . . , n− 1} and Xn = a})
= P({X1 ̸= a})P({X2 ̸= a}) . . .P({Xn−1 ̸= a})P({Xn = a}) (independence)

=

(
k − 1

k

)n−1 1

k
. (uniformity)
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Then, using the formula
∞∑
n=1

nan = a/(1− a)2, ∀a < 1:

E(τa) =
∞∑
n=1

nP({τa + n})

=
1

k − 1

∞∑
n=1

n

(
k − 1

k

)n

=
1

k − 1

k−1
k(

1− k−1
k

)2
= k.

e) Using the previous parts, calculate E(Sτa) and E(Mτa).

Solution: Since E(τa) = k < ∞, we can use the result in part a).

E(Sτa) = E

(
τ∑

n=1

Xn

)
= E(τa)E(X1)

= k
k + 1

2

and

E(Mτa) = E(Sτa −Aτa)

= E

(
τ∑

n=1

Xn −
τ∑

n=1

E(Xn)

)
= E(τa)E(X1 − E(X1))

= 0.

f) Let τb = inf{n ≥ 1 : |Mn| ≥ b} for a fixed b ∈ {k, k+1, . . . , 3k}. Is τb a stopping time? Calculate
E(Mτb).

Solution: Yes, τb is a stooping time since {τb = n} ∈ Fn. Here, the optional stopping theorem,
version 3 holds since |Mn+1 −Mn| ≤ k and the stopped martingale with respect to τb is bounded.
Thus,

E(Mτb) = E(M0) = 0.
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