Corrigé Test 3 - Nb complexes, optimisation et structures algébriques 17.01.2

Problème 1. (4 + 5 + 6 = 15 points)

a) Décrire l'image par la détermination principale du logarithme complexe du cercle de rayon r > 0 centré en l'origine (et privé du point -r).

Considérons les points $re^{i\theta}$ où r > 0 et $\theta \in]-\pi,\pi[$.

Alors, par application du logarithme, on a $\ln |r| + i\theta$.

En laissant θ parcourir] $-\pi,\pi$ [, cet ensemble de point correspond à un "segment vertical" de longueur 2π ayant pour milieu le point $(\ln(r),0)$.

b) Ecrire l'équation dans \mathbb{C} de la composition de l'homothétie de centre 5+3i et de rapport 2 suivie de la rotation d'angle π .

En considérant que le centre de rotation est 5+3i, comme celui de l'homothétie, on obtient $f(z) = (\cos(\pi) + i\sin(\pi)) \ 2(z-(5+3i))+(5+3i)) = -2(z-5-3i)+5+3i = -2z+15+9i$.

En considérant que le centre de rotation est O, on obtient

$$f(z) = (\cos(\pi) + i\sin(\pi)) (2(z - (5+3i)) + (5+3i)) = -2z - 10 - 6i + 5 + 3i = -2z + 5 + 3i.$$

c) Caractériser géométriquement la similitude d'équation $f(z) = (1+i)\bar{z} + 1 - i$.

 \bar{z} est multiplié par $1+i=\sqrt{2}$ cis $\frac{\pi}{4}$.

Il s'agit d'une homothétie de rapport $\sqrt{2}$ composée avec une symétrie d'axe de pente tan $\frac{\pi}{8}$ et passant par le centre c d'homothétie.

Le centre c = a + bi est un point fixe. Il vérifie donc l'équation f(z) = z:

$$(1+i)(a-bi) + 1 - i = a + bi \iff (a+b+1) + (a-b-1)i = a + bi \iff$$

$$\begin{cases} a+b+1=a \\ a-b-1=b \end{cases} \Leftrightarrow \begin{cases} b=-1 \\ a=-1 \end{cases}.$$

Ainsi, le centre d'homothétie est C(-1, -1) et l'axe de symétrie la droite d: y = x.

Problème 2. (4 (pour +) + 5 (pour *) + 1 (b) = 10 points)

a) Compléter les tables des lois de composition + et * sachant que (D; +) est un groupe abélien et que la loi * est distributive par rapport à la loi +.

+	a	b	c	d
a	a	b	c	d
b	b	a	d	С
С	c	d	a	b
d	d	С	b	a

*	a	b	С	d
a	a	a	a	a
b	a	b	c	d
С	a	a	a	a
d	a	b	С	d

b) (D; +; *) est-il un anneau? Justifier la réponse.

(D; +; *) n'est pas un anneau car il n'y a pas d'élément neutre pour *.

Problème 3. $(10 + 2 = 12 \ points)$

On veut construire une maison de base carrée et telle que son volume habitable soit un parallélépipède rectangle de 768 m³. La perte de chaleur par unité de surface est trois fois plus élevée pour le plafond que pour les murs. On suppose qu'il n'y a pas de perte de chaleur par le plancher.

a) Quelles doivent être les dimensions de la maison pour que la perte de chaleur soit minimale? On pose x = côt'e de la base, y = hauteur de la maison.

$$V = x^2 \cdot y = 768$$
 d'où $y = \frac{768}{x^2}$. Contraintes : x et y sont strictement positifs.

La superficie du plafond est de x^2 et celle de chacun des quatre murs xy.

Ainsi, la perte de chaleur est proportionnelle à $p = 3x^2 + 4 \cdot xy$ d'où

$$p(x) = 3x^2 + 4 \cdot x \cdot \frac{768}{x^2} = 3x^2 + 4 \cdot \frac{768}{x} = \frac{3x^3 + 4 \cdot 768}{x} = 3 \cdot \frac{x^3 + 1024}{x}$$

$$p'(x) = 3 \cdot \frac{3x^2 \cdot x - (x^3 + 1024) \cdot 1}{x^2} = 3 \cdot \frac{2x^3 - 1024}{x^2} = 6 \cdot \frac{x^3 - 512}{x^2}$$

p' s'annule en $x = \sqrt[3]{512} = 8$.

x = 8 définit un minimum de p.

x	0 8
p'(x)	- 0 +
p(x)	Min

La perte de chaleur est minimale si x = 8 et $y = \frac{768}{8^2} = 12$.

Les dimensions de la maison devrait être de 8 m \times 8 m \times 12 m.

b) Est-ce réaliste? Expliquer votre réponse.
Ces dimensions correspondent à une maison de 4 étages avec une surface au sol de 64 m² ce qui n'est pas réaliste pour la stabilité de l'immeuble.

Problème 4. (4 + 1 + 3 = 8 points)

Dans \mathbb{Q} , on définit la loi de composition * par x * y = x + xy + y.

a) Montrer que * est une loi de composition dans \mathbb{Q} et qu'elle est associative. Il s'agit bien d'une loi de composition car $\forall x,y\in\mathbb{Q},\ x*y=x+xy+y\in\mathbb{Q}.$ Associativité :

$$(x*y)*z = (x + xy + y)*z = (x + xy + y) + (x + xy + y)z + z$$

$$= x + xy + y) + xz + xyz + yz + z = x + y + z + xy + xz + yz + xyz$$

$$x*(y*z) = x*(y + yz + z) = x + x(y + yz + z) + (y + yz + z)$$

$$= x + xy + xyz + xz + y + yz + z = x + y + z + yz + xy + xz + xyz.$$

Les deux résultats sont égaux, donc la loi de composition est associative.

- b) Déterminer son élément neutre. L'élément neutre est 0, car x * 0 = x = 0 * x
- c) Est-ce que $(\mathbb{Q}, *)$ forme un groupe? Justifier la réponse. Soit $x \in \mathbb{Q}$. Déterminons son inverse, s'il existe : $x*x' = 0 \Leftrightarrow x + xx' + x' = 0 \Leftrightarrow x + x'(x+1) = 0 \stackrel{x \neq -1}{\Leftrightarrow} x' = -\frac{x}{x+1}$ Ainsi, -1 n'admet pas d'inverse et donc $(\mathbb{Q}, *)$ n'est pas un groupe.

Problème 5. $(1 + 2 = 3 \ points)$

On donne $A = \{x + y\sqrt{5} \mid x, y \in \mathbb{Z}\}.$

- a) Montrer que tout élément de A possède un symétrique pour +. Le symétrique de $x+y\sqrt{5}$ pour l'addition est $-x-y\sqrt{5}$
- b) (A; +; ·) est-il un corps? Justifier la réponse.
 (A; +; ·) n'est pas un corps car (A − {0}; ·) n'est pas un groupe car certains éléments de A − {0} n'ont pas de symétrique pour · dans A − {0}.
 Par exemple, √5 ∈ A − {0} mais 1/√5 = √5/5 ∉ A.

Problème 6. (3 + 3 = 6 points)

Soit $(A, +, \cdot)$ un anneau. Montrer que pour tout $x \in A$,

a) $0 \cdot x = 0 = x \cdot 0$. On écrit 0 = 0 + 0. Alors,

$$0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$$

L'élément $0 \cdot x$ a un inverse pour l'addition (son opposé est $-0 \cdot x$) que nous pouvons ajouter de part et d'autre de cette égalité. Ainsi $0 = 0 \cdot x + 0 = 0 \cdot x$. De même $x \cdot 0 = 0$.

b) $(-1) \cdot x = -x = x \cdot (-1)$. En utilisant a), on obtient

$$0 = 0 \cdot x = (1 + (-1)) \cdot x = 1 \cdot x + (-1) \cdot x = x + (-1) \cdot x$$

3

Par conséquent, $(-1) \cdot x$ est l'opposé -x de x.

Problème 7. (3 points)

Soit V un K-espace vectoriel et $W \subset V$.

Quelles conditions faut-il vérifier pour prouver que W est un sous-espace vectoriel de V?

 $W \subset V$ est un sous-espace vectoriel de V si et seulement si

- 1. $0 \in W$;
- 2. $x + y \in W$ pour tous $x, y \in W$;
- 3. $\lambda x \in W$ pour tous $\lambda \in K$ et $x \in W$.

Problème 8. (3 + 3 = 6 points)

Dans chacun des cas suivants, déterminer les conditions sur a et b pour que l'ensemble W soit un sous-espace vectoriel de V.

Justifier vos réponses.

a) $K = \mathbb{R}, V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ et $W = \{ f \in V \mid f(a) = b \}.$

Pour que la fonction nulle soit dans W, il faut que b=0. Ensuite, il n'y a pas de restriction sur a, donc $a \in \mathbb{R}$ car si f(a)=0 et g(a)=0 alors $\lambda f(a)=0$ et f(a)+g(a)=0 $\forall \lambda, a, \in \mathbb{R}$. Ainsi, $a \in \mathbb{R}$ et b=0.

b) $K = \mathbb{C}, V = \mathcal{F}(\mathbb{C}, \mathbb{C})$ et $W = \{ f \in V \mid f(a) = f(b) \}.$

La fonction nulle vérifie $f(a)=f(b)\ \forall a,b\in\mathbb{C}$. Elle est donc dans $W\ \forall a,b\in\mathbb{C}$ De plus, si f(a)=f(b) et g(a)=g(b) alors $\lambda f(a)=\lambda f(b)$ et $f(a)+g(a)=f(b)+g(b)\ \forall \lambda a,b\in\mathbb{C}$.

Ainsi, W est un sous-espace vectoriel de $V \, \forall a, b \in \mathbb{C}$.