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Last name First name SCIPER Nr Points

Problem 1: Inner Products

Consider the standard n -dimensional vector space Rn.

1. Characterize the set of matrices W for which yTWx is a valid inner product for any x,y ∈ Rn.

2. Prove that every inner product ⟨x,y⟩ on Rn can be expressed as yTWx for an approriately chosen
matrix W.

3. For a subspace of dimension k < n, spanned by the basis b1,b2, . . . ,bk ∈ Rn, express the orthog-
onal projection operator (matrix) with respect to the general inner product ⟨x,y⟩ = yTWx. Hint:

For any vector x ∈ Rn, express its projection as x̂ =
∑k

j=1 αjbj .

Solution 1. 1. Looking at the lecture notes on the Hilbert space framework, an inner product must
satisfy linearity properties, which clearly hold for all matrices W. The symmetry property ⟨x,y⟩ =
⟨y,x⟩ only holds if the matrix W is symmetric, i.e., WT = W. The crucial requirement is the
last property, namely, ⟨x,x⟩ ≥ 0, with equality if and only if x = 0. To tackle this, note that W
has to be symmetric, so it has a spectral decomposition W = UΛUH . Hence, it is a clever idea to
express the vectors x and y in terms of the eigenvectors of W. Then, clearly, if all eigenvalues of
W are strictly positive, then the property is satisfied. Conversely, if there is a eigenvalue equal to
zero, or a negative eigenvalue, then there exists a choice x ̸= 0 for which ⟨x,x⟩ = 0. In conclusion,
yTWx is a valid inner product if and only if W is a symmetric and positive definite.

2. To prove this, use the standard basis vectors to express x = x1e1 + . . . + xnen, and likewise for
y. Then, using the properties of the inner product, we find ⟨x,y⟩ =

∑
i,j xiyi⟨ei, ej⟩ . Notice that

this is equal to

∑
i,j

xiyj⟨ei, ej⟩ = xT


⟨e1, e1⟩ ⟨e1, e2⟩ . . . ⟨e1, en⟩
⟨e2, e1⟩ ⟨e2, e2⟩ . . . ⟨e2, en⟩

...
...

...
...

⟨en, e1⟩ ⟨en, e2⟩ . . . ⟨en, en⟩

y.

3. As we have seen in class, the error x − x̂ must be orthogonal to the estimate x̂, or, equivalently,
orthogonal to all of the basis vectors bi. That is,

⟨x− x̂,bi⟩ = 0. (1)
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Plugging in the hint x̂ =
∑k

j=1 αjbj , we get

⟨x−
k∑

j=1

αjbj ,bi⟩ = 0, (2)

and using the standard properties of the inner product,

⟨x,bi⟩ −
k∑

j=1

αj⟨bj ,bi⟩ = 0. (3)

Defining the n× k matrix

B = (b1,b2, . . . ,bk), (4)

we can collect all k conditions (for i = 1, 2, . . . , k ) into

BHWx−BHWBα = 0, (5)

where α denotes the column vector of all the coefficients αi. Hence,

α =
(
BHWB

)−1
BHWx, (6)

where we note that BHWB is invertible since the vectors bj constitute a basis. Finally, we observe
that we can write

x̂ = Bα = B
(
BHWB

)−1
BHWx, (7)

which is thus the desired projection matrix.

Problem 2: Canonical Correlation Analysis

Let X and Y be zero-mean real-valued random vectors with covariance matrices RX and RY, re-
spectively. Moreover, let RXY = E[XYT ]. Our goal is to find vectors u and v such as to maximize the
correlation between uTX and vTY, that is,

max
u,v

E[uTXYTv]√
E[|uTX|2]

√
E[|vTY|2]

. (8)

Show how we can find the optimizing choices of the vectors u and v from the problem parameters
RX, RY, and RXY.

Hint: Recall for the singular value decomposition that

max
v

∥Av∥
∥v∥

= max
∥v∥=1

∥Av∥ = σ1(A), (9)

where σ1(A) denotes the maximum singular value of the matrix A. The corresponding maximizer is the
right singular vector v1 (i.e., eigenvector of ATA ) corresponding to σ1(A).

Solution 2. We may write out:

max
u,v

E[uHXY Hv]√
E[|uHX|2]

√
E[|vHY |2]

= max
u,v

uHE[XY H ]v√
uHE[XXH ]u

√
vHE[Y Y H ]v

= max
u,v

uHRXY v√
uHRXu

√
vHRY v
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Now, let R
1/2
X be the matrix satisfying R

1/2
X R

1/2
X = RX , and likewise, for R

1/2
Y . With this, define

ũ = R
1/2
X u and ṽ = R

1/2
Y v. With this,

max
u,v

E[uHXY Hv]√
E[|uHX|2]

√
E[|vHY |2]

= max
ũ,ṽ

ũHR
−1/2
X RXY R

−1/2
Y ṽ√

ũH ũ
√
ṽH ṽ

= max
∥ũ∥=∥ṽ∥=1

ũHR
−1/2
X RXY R

−1/2
Y ṽ. (10)

This last optimization problem is a classic question. Let us tackle this generally as

max
∥ũ∥=∥ṽ∥=1

ũHAṽ.

We can solve this in a number of different ways. Closest to the class, let us simply leverage the singular
value decomposition A = UΣV H . In terms of this, our problem becomes

max
∥ũ∥=∥ṽ∥=1

ũHUΣV H ṽ.

Now, define u = UH ũ and v = V H ṽ. Clearly, since U and V are unitary, the vectors u and v are also
of unit length. Therefore, we may rewrite our problem as

max
∥u∥=∥v∥=1

uHΣv.

Without loss of generality, let us assume that the diagonal entries in Σ are ordered from largest singular
value to smallest singular value. Then, the solution is easy: the optimal choices are u∗ = (1, 0, . . . , 0)T

and v∗ = (1, 0, . . . , 0)T . Of course, plugging back in, this means that the optimizing ũ∗ and ṽ∗ are
simply the left and right singular vectors corresponding to the largest singular value of the matrix A.

Now, to get back to our concrete problem, we have A = R
−1/2
X RXY R

−1/2
Y . Let us denote the left and right

singular vectors corresponding to the largest singular value of this matrix as ũ1(R
−1/2
X RXY R

−1/2
Y ) and

ṽ1(R
−1/2
X RXY R

−1/2
Y ). These are the optimizing choices for the optimization problem in Equation (10).

Finally, the optimizing choices for our original problem are therefore given by

u∗ = R
−1/2
X ũ1(R

−1/2
X RXY R

−1/2
Y )

v∗ = R
−1/2
Y ṽ1(R

−1/2
X RXY R

−1/2
Y ) (11)

Problem 3: Minimum-norm Solutions

In this problem, we consider an underdetermined system of linear equations, i.e., Ax = b, where
Am×n is a “fat” matrix (m < n ) and b is chosen such that a solution exists. As you know, in this case,
there exist infinitely many solutions. Prove that the one solution x that has the minimum 2-norm can
be expressed as

xMN = V Σ−1UHb, (12)

where, as usual, the SVD of A = UΣV H , and Σ−1 is the matrix Σ where all non-zero diagonal entries
are inverted.

Hint: Clearly, A is not a full-rank matrix, and thus cannot be inverted. However, it might be possible to
construct a matrix A′ such that A′x = b′ has a solution, A is a submatrix of A′ and b is a subvector
of b′ . What will be the norm of x in such a case?
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Solution 3. Consider the singular value decomposition (SVD) A = UΣV H . Here, U is an m × m
unitary matrix and Σ is given by

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σm

 . (13)

We assume that A is full rank, meaning that σi > 0 for all i. Finally, V is a matrix of dimension n×m
whose columns are orthonormal, i.e., V HV = Im.

Note that Ax = b has infinitely many solutions. Our goal is to find the one solution with the smallest
2-norm.

We will now construct a new matrix which is of dimension n× n and of full rank. To this end, pick any
unitary matrix UB of dimension (n − m) × (n − m) and any diagonal matrix ΣB , also of dimension
(n−m)×(n−m), with strictly positive entries on the diagonal. Moreover, pick a matrix VB of dimension
n× (n−m) whose columns are orthonormal and at the same time orthogonal to all of the columns in V.
(It is easy to see that such a matrix exists.) Define the matrix B = UBΣBV

H
B . With this, we can now

stack up A and B, and they satisfy[
A
B

]
=

[
U 0
0 UB

] [
Σ 0
0 ΣB

] [
V H

V H
B

]
, (14)

where we also note that the last expression is indeed the singular value decomposition of the stacked
matrix. Select any vector bB of length n−m. Now consider solutions x to the system[

A
B

]
x =

[
U 0
0 UB

] [
Σ 0
0 ΣB

] [
V H

V H
B

]
x =

[
b
bB

]
. (15)

Since the matrix

[
A
B

]
is full rank by construction, thus invertible, the solution is given by

x =
[
V, VB

] [Σ 0
0 ΣB

]−1 [
U 0
0 UB

]H [
b
bB

]
. (16)

Moreover, note that this solution x also satisfies Ax = b, so it is a solution to our original system of
equations. The square of the 2-norm of x is

||x||22 = xHx =

[
b
bB

]H [
U 0
0 UB

] [
ΣH 0
0 ΣH

B

]−1 [
V H

V H
B

] [
V, VB

] [Σ 0
0 ΣB

]−1 [
U 0
0 UB

]H [
b
bB

]
= ||V Σ−1UHb||22 + ||VBΣ

−1
B UH

B bB ||22 (17)

Both summands in the last expression are non-negative. Since the first summand is fixed, the expression
is minimized if we can make the second summand zero. To do so, we select bB = 0. Hence in such case,

xMN =

[
V
VB

] [
Σ 0
0 ΣB

]−1 [
U 0
0 UB

]H [
bA

0

]
= V Σ−1UHb. (18)

Problem 4:

(Johnson-Lindenstrauss for subgaussians)

(a) In preparation for this problem, establish the following facts:

– If U is a subexponential random variable with parameters (ν, b), then αU (where we assume
α > 0 ) is a subexponential random variable with parameters (αν, αb).

4



– If U and V are independent subexponential random variables with parameters (νu, bu)
and (νv, bv), respectively, then U + V is a subexponential random variable with parame-
ters (

√
ν2u + ν2v ,max(bu, bv)).

In this problem, we reconsider the Johnson-Lindenstrauss Lemma (Lemma 10.5 in the lecture notes).
The only change is that inside the real-valued k× d matrix X in the proof of the Lemma, we no longer
assume that the entries are independent Gaussians. We still assume the entries Xij to be independent.
We also still assume that they each have mean zero and variance 1. But beyond this, we only assume
that they are subgaussian with variance proxy σ2.

To proceed, exactly as in the Johnson-Lindenstrauss Lemma, consider an arbitrary real-valued vector u
of length d. As in the proof of the Johnson-Lindenstrauss Lemma, we define, for i = 1, 2, . . . , k,

Zi =
1

∥u∥2

d∑
j=1

ujXij .

(b) Show the following facts (short justifications are sufficient, and you may refer freely to the lecture
notes)

– The random variables Zi are independent of each other.

– Each Zi is subgaussian. Find the corresponding variance proxy.

– We have E[Z2
i ] = 1.

To continue, we will need the following theorem:

Theorem. If Y is subgaussian with variance proxy σ2, then Y 2 with mean E[Y 2] is subexponential
with parameters (cσ2, dσ2) for some absolute constants c and d.

(c) Exactly as in the proof of the Johnson-Lindenstrauss Lemma, we next need to analyze S =
1
k

∑k
i=1 Z

2
i . Leveraging the theorem, show that S is subexponential with mean 1 and find the

corresponding parameters.

(d) Give a concentration bound, that is, an upper bound of the form

P

{∣∣∣∣∣1k
k∑

i=1

Z2
i − 1

∣∣∣∣∣ > δ

}
≤ . . .

(e) Discuss the differences of the resulting lemma with respect to what is proved in the lecture notes.

Solution 4.

(a) We prove the two facts in turn, noting that the proof argument are identical to the proof of Parts
(ii) and (iii) of Lemma 2.1 in the lecture notes:

– First, observe that the mean of αU is simply αµu, where µu denotes the mean of U. Hence,
we need to study

E[eλ(αU−αµu)] = E[eλα(U−µu)].

Now, since U is a subexponential random variable with parameters (ν, b), we know that we
can upper bound this as

E[eλ(αU−αµu)] = E[eλα(U−µu)] ≤ e(λα)
2ν2/2,
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as long as |λα| < 1/b. Now, we rewrite this just slightly. Namely, we can upper bound

E[eλ(αU−αµu)] ≤ eλ
2(αν)2/2,

as long as |λ| < 1/(αb). Which is exactly the same as saying “αU is a subexponential random
variable with parameters (αν, αb) ”.

– First, observe that the mean of U + V is simply the sum of the means of U and V. Hence,
looking at the definition of subexponential, we need to study

E[eλ(U+V−µu−µv)] = E[eλ(U−µu)eλ(V−µv)] = E[eλ(U−µu)]E[eλ(V−µv)],

where the last step follows because U and V are independent. Next, since U and V are
subexponential, we can upper bound the two factors as

E[eλ(U+V−µu−µv)] = E[eλ(U−µu)]E[eλ(V−µv)] ≤ eν
2
uλ

2/2eν
2
vλ

2/2,

which holds whenever |λ| < 1/bu and at the same time also |λ| < 1/bv. Arranging terms, we
can thus conclude that

E[eλ(U+V−µu−µv)] ≤ e

(√
ν2
u+ν2

v

)2
λ2/2

,

whenever |λ| < min(1/bu, 1/bv). Which is exactly the same as saying “U + V is a subexpo-
nential random variable with parameters (

√
ν2u + ν2v ,max(bu, bv)) ”.

(b) We take up the claims in turn:

– The random variables Zi are independent of each other because Zi are merely (weighted)
sums of the Xij , no Xij appears in more than one of the Zi, and the Xij are by assumption
independent of each other.

– Each Zi is subgaussian simply because it is a (weighted) sum of subgaussian random variables,
see Lemma 2.1 in the lecture notes. From that same lemma, we directly find that the variance
proxy of Zi is σ2.

– We have E[Z2
i ] =

1
∥u∥2

2

∑d
j=1 u

2
jE[X2

ij ], since the Xij are independent of each other and have

mean zero. Moreover, we have E[X2
ij ] = 1 for all i and j, and thus, E[Z2

i ] = 1.

(c) We know that each Zi is subgaussian with variance proxy σ2. Therefore, using the theorem, we
know that each Z2

i is subexponential with mean 1 and parameters (cσ2, dσ2). Moreover, all the
Z2
i are independent of each other. Now, using the second half of Part (a), we can observe that∑k
i=1 Z

2
i is subexponential with mean k and parameters (

√
kcσ2, dσ2). Then, using the first half

of Part (a), we can observe that S = 1
k

∑k
i=1 Z

2
i is subexponential with mean 1 and parameters

( cσ
2

√
k
, dσ2

k ).

Alternatively, we could directly observe that the mean of S is 1 and write out, leveraging the fact
that the Z2

i are independent of each other:

E[eλ(S−1)] = E[eλ(
1
k

∑k
i=1 Z2

i −1)]

=

k∏
i=1

E[e
λ
k (Z2

i −1)]

≤
(
e

c2

2 σ4(λ
k )

2)k

= e
c2σ4λ2

2k ,

which holds for |λk | <
1

dσ2 . That is, S with mean 1 is subexponential with parameters ( cσ
2

√
k
, dσ2

k ).
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(d) Here, we can directly leverage Lemma 2.6 from the Lecture Notes to conclude

P

{∣∣∣∣∣1k
k∑

i=1

Z2
i − 1

∣∣∣∣∣ > δ

}
≤ 2e−

δ2k
2c2σ4 ,

which holds whenever

δ ≤

(
cσ2
√
k

)2

dσ2

k

=
c2

d
σ2.

More precisely, we apply Lemma 2.6 from the Lecture Notes separately to the positive and to the
negative deviations. Since these are disjoint events, we can just add up the probabilities, which
leads to the leading factor of 2 in our expression. This is an argument we have seen several times
in the class.

(e) Discuss the differences of the resulting lemma with respect to what is proved in the lecture notes.

7


