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Last name First name SCIPER Nr Points

Problem 1: Prediction and coding

After observing a binary sequence u1, . . . , ui , that contains n0(u
i) zeros and n1(u

i) ones, we are asked
to estimate the probability that the next observation, ui+1 will be 0. One class of estimators are of the
form

P̂Ui+1|Ui(0|ui) =
n0(u

i) + α

n0(ui) + n1(ui) + 2α
P̂Ui+1|Ui(1|ui) =

n1(u
i) + α

n0(ui) + n1(ui) + 2α
.

We will consider the case α = 1/2 , this is known as the Krichevsky–Trofimov estimator. Note that for
i = 0 we get P̂U1

(0) = P̂U1
(1) = 1/2 .

Consider now the joint distribution P̂ (un) on {0, 1}n induced by this estimator,

P̂ (un) =

n∏
i=1

P̂Ui|Ui−1(ui|ui−1).

(a) Show, by induction on n that, for any n and any un ∈ {0, 1}n ,

P̂ (u1, . . . , un) ≥
1

2
√
n

(n0

n

)n0
(n1

n

)n1

,

where n0 = n0(u
n) and n1 = n1(u

n) .

[Hint: if 0 ≤ m ≤ n , then (1 + 1/n)n+1/2 ≥ m+1
m+1/2 (1 + 1/m)m ]

(b) Conclude that there is a prefix-free code C : U → {0, 1}∗ such that

length C(u1, . . . , un) ≤ nh2

(
n0(u

n)

n

)
+

1

2
log n+ 2,

with h2(x) = −x log x− (1− x) log(1− x) .

(c) Show that if U1, . . . , Un are i.i.d. Bernoulli, then

1

n
E[length C(U1, . . . , Un)] ≤ H(U1) +

1

2n
log n+

2

n

Solution 1. (a) For n = 1 , we have P̂ (u1) = P̂U1(ui) =
1
2 . If u1 = 0 , n0(u1) = 1 and n1(u1) = 0 .

Hence, P̂ (u1) =
1
2 = 1

2
√
n
(n0

n )n0(n1

n )n1 . It is easy to show that for u1 = 1 , the inequality still holds with

equality.
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For n = k ≥ 1 , let’s assume that P̂ (u1, . . . , uk) ≥ 1
2
√
k

(
n0

k

)n0
(

n1

k

)n1

. For n = k + 1 , it is sufficient to

check uk+1 = 0 , as the case ui+1 = 1 is the same if we also exchange the roles of n0 and n1 . In this
case, n0(u

k+1) = n0(u
k) + 1 and n1(u

k+1) = n1(u
k) .

P̂ (u1, . . . , uk, 0) = P̂Uk+1|Uk(0|uk)P̂Uk(uk)

≥
n0(u

k) + 1
2

n0(uk) + n1(uk) + 1

1

2
√
k

(n0(u
k)

k

)n0(u
k)(n1(u

k)

k

)n1(u
k)

=
(k + 1)k+1/2

kk+1/2

(n0(u
k) + 1

2 )n0(u
k)n0(u

k)

(n0(uk) + 1)n0(uk)+1︸ ︷︷ ︸
f(uk)

1

2
√
k + 1

(
n0(u

k+1)

k + 1

)n0(u
k+1) (

n1(u
k+1)

k + 1

)n1(u
k+1)

We need to show that f(uk) ≥ 1 for any uk ∈ {0, 1}k , but this follows from the hint. Therefore, we
proved that our induction hypothesis is true for any n = k + 1 , given the condition that n = k cases is
satisfied. By induction, we have for any integer n ≥ 1

P̂ (u1, . . . , un) ≥
1

2
√
n

(n0

n

)n0
(n1

n

)n1

,

Proof the hint: We need to show that:(
1 +

1

k

)k+1/2

≥ n0(u
k) + 1

n0(uk) + 1
2

(
1 +

1

n0(uk)

)n0(u
k)

︸ ︷︷ ︸
g(n0(uk))=g(n0)

.

Now, consider the function g(x) = x+1
x+ 1

2

(1 + 1
x )

x for x ≥ 1 . Since we have that n0(u
k) ≤ k , if g(x) is

an increasing function then we would have:

g(n0(u
k)) ≤ g(k) =

k + 1

k + 1
2

(1 +
1

k
)k =

k + 1

(k + 1
2 )
√

1 + 1
k

(1 +
1

k
)k+1/2

=

√
k(k + 1)

k + 1
2

(1 +
1

k
)k+1/2

<

(
1 +

1

k

)k+1/2

,

and the result would follow (the last inequality is due to
√
k(k + 1) <

√
k(k + 1) + 1/4 = k + 1/2 ) .

Hence, we just need to show that g(x) is an increasing function, i.e. that d
dxg(x) ≥ 0 . A simple way

of doing this is by showing that ln g(x) is an increasing function, which would then imply the result for
g(x) . If we compute the differentiation of ln g(x) , we get

d

dx
ln g(x) =

1

x+ 1
− 1

x+ 1
2

+ ln

(
1 +

1

x

)
− 1

x+ 1
= ln(x+ 1)− lnx− 1

x+ 1
2

Now observe:

ln(x+ 1)− lnx =

∫ x+1

x

1

u
du = E

[
1

U

]
,

where U is a unifom random variable between x and x+ 1 . Also,

1

x+ 1/2
=

1

E[U ]
.

Thus:
d

dx
ln g(x) = E

[
1

U

]
− 1

E[U ]
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and the positivity of d
dx ln g(x) follows from the convexity of the function u → 1/u (and Jensen’s

inequality).

(b) Consider the code with length function L(un) = ⌈− log P̂ (un)⌉ . We can check that such code satisfies
the Kraft Inequity. ∑

un

2−L(un) =
∑
un

2−⌈− log P̂ (un)⌉ ≤
∑
un

P̂ (un) = 1

Hence, there exists a prefix-free code with length function L(un) .

length C(u1, . . . , un) = ⌈− log P̂ (un)⌉ ≤ − log P̂ (un) + 1

≤ − log

(
1

2
√
n

(n0

n

)n0
(n1

n

)n1
)
+ 1

= 2 +
1

2
log n+ n

[
−n0

n
log(

n0

n
)− n1

n
log

n1

n

]
= 2 +

1

2
log n+ nh2(

n0

n
)

(c) Let Pr(Ui = 0) = θ , ∀i ∈ {1, . . . , n} . Since U1, . . . , Un are i.i.d, we have E[n0(u
n)] =

∑n
i=1 E[n0(ui)] =

nθ and H(Ui) = h2(θ) for all i .

E[length C(U1, . . . , Un)] ≤ E[nh2(
n0(u

n)

n
) +

1

2
log n+ 2]

= nE[h2(
n0(u

n)

n
)] +

1

2
log n+ 2

≤ nh2(
E[n0(u

n)]

n
) +

1

2
log n+ 2

= nh2(θ) +
1

2
log n+ 2

= nH(U1) +
1

2
log n+ 2

Therefore,

1

n
E[length C(U1, . . . , Un)] ≤ H(U1) +

1

2n
log n+

2

n

Problem 2: Lower bound on Expected Length

Suppose U is a random variable taking values in {1, 2, . . . } . Set L = ⌊log2 U⌋ . (I.e., L = j if and only
if 2j ≤ U < 2j+1 ; j = 0, 1, 2, . . . .

(a) Show that H(U |L = j) ≤ j , j = 0, 1, . . . .

(b) Show that H(U |L) ≤ E[L] .

(c) Show that H(U) ≤ E[L] +H(L) .

(d) Suppose that Pr(U = 1) ≥ Pr(U = 2) ≥ . . . . Show that 1 ≥ iPr(U = i) .

(e) With U as in (d), and using the result of (d), show that E[log2 U ] ≤ H(U) and conclude that
E[L] ≤ H(U) .

(f) Suppose that N is a random variable taking values in {0, 1, . . . } with distribution pN and E[N ] =
µ . Let G be a geometric random variable with mean µ , i.e., pG(n) = µn/(1 + µ)1+n , n ≥ 0 .
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Show that H(G) − H(N) = D(pN∥pG) , and conclude that H(N) ≤ g(µ) with g(x) = (1 +
x) log2(1 + x)− x log2 x .

[Hint: Let f(n, µ) = − log2 pG(n) = (n+ 1) log2(1 + µ)− n log2(µ) . First show that E[f(G,µ)] =
E[f(N,µ)] , and consequently H(G) =

∑
n pN (n) log2(1/pG(n)) .]

(g) Show that for U as in (d) and g(x) as in (f),

E[L] ≥ H(U)− g(H(U)).

[Hint: combine (f), (e), (c).]

(h) Now suppose U is a random variable taking values on an alphabet U , and c : U → {0, 1}∗ is an
injective code. Show that

E[length c(U)] ≥ H(U)− g(H(U)).

[Hint: the best injective code will label U = {a1, a2, a3, . . . } so that Pr(U = a1) ≥ Pr(U = a2) ≥
. . . , and assign the binary sequences λ, 0, 1, 00, 01, 10, 11, ... to the letters a1, a2, . . . in that order.
Now observe that the i ’th binary sequence in the list λ, 0, 1, 00, 01, . . . is of length ⌊log2 i⌋ .]

Solution 2. (a) We know that if L = j then 2j ≤ U < 2j+1 , meaning that if L = j then U can take
at most 2j+1 − 2j = 2j values. We also know that the entropy of a discrete random variable is at most
the logarithm of the number of possible values it assumes. Thus,

H(U |L = j) ≤ log2(2
j) = j. (1)

(b) We have that:

H(U |L) =
∑
j

pL(j)H(U |L = j) (2)

≤
∑
j

pL(j)j (3)

= E[L]. (4)

(c) We have that:

H(U) ≤ H(UL) (5)

= H(L) +H(U |L) (6)

≤ H(L) + E[L]. (7)

Where (7) follows from (b). Notice that Ineq. (5) is actually an equality, since L is a function of U (and
thus, H(L|U) = 0 ).

(d) For random variable U with Pr(U = 1) ≥ Pr(U = 2) ≥ . . . , we have

1 =
∑
j

Pr(U = j) ≥
i∑

j=1

Pr(U = j) ≥ iPr(U = i). (8)

(e) From (d) we get that for a given i , log2 i ≤ − log2 Pr(U = i) . Thus:
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E[⌊log2 U⌋] =
∑
i

Pr(U = i)⌊log2 i⌋ (9)

≤
∑
i

Pr(U = i) log2 i (10)

≤ −
∑
i

Pr(U = i) log2 Pr(U = i) (11)

= H(U) (12)

(f) It is easy to see that, for any integer valued random variable Q :

E[f(Q,µ)] =
∑
n

((n+ 1) log(1 + µ)− n logµ)pQ(n) (13)

= log(1 + µ)
∑
n

(n+ 1)pQ(n)− logµ
∑
n

npQ(n) (14)

= log(1 + µ)(E[Q] + 1)− logµE[Q] (15)

Thus, since E[N ] = E[G] , we have that E[f(N,µ)] = E[f(G,µ)] .

This implies that H(G) =
∑

n pN (n) log(1/pG(n)) as H(G) = EG[− log(pG)] = EN [− log(pG)] . Com-
puting the difference:

H(G)−H(N) =
∑
n

pN (n)

(
log

1

pG(n)
− log

1

pN (n)

)
(16)

=
∑
n

pN (n) log

(
pN (n)

pG(n)

)
(17)

= D(pN∥pG). (18)

To conclude:

H(N) = H(G)−D(pN∥pG) ≤ H(G) = (1 + µ) log(1 + µ)− µ logµ = g(µ). (19)

(g) Let us denote with µ = E[L] . L takes values in {0, 1, . . .} and from (f) we know that

H(L) ≤ g(µ). (20)

From (e) we have that
µ = E[L] ≤ H(U). (21)

As g(x) a non-decreasing function for x > 0 (the derivative is log2(1 + x)− log2(x) > 0 for x > 0 ), we
can see that

g(µ) = g(E[L]) ≤ g(H(U)). (22)

To conclude, from (c) we have that:

E[L] ≥ H(U)−H(L) (23)

≥ H(U)− g(µ) (24)

≥ H(U)− g(H(U)). (25)

(h) Consider the following random variable V taking values in the alphabet V = {1, 2, . . .} and such
that Pr (V = i) =Pr (U = ai) for every i = 1, 2 . . . , i.e. a bijective mapping from U to V . We have
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that E[length c(U)] = E[⌊log2 V ⌋]. Let us denote with L̂ = ⌊log2 V ⌋ : this random variable will play the
same role played by L until now. We can say that:

E[length c(U)] = E[L̂] (26)

≥ H(V )− g(H(V )) (27)

= H(U)− g(H(U)). (28)

Where (27) follows from (g) and (28) is true since V is a bijective function of U and entropy is preserved
under bijective mappings.

Problem 3: Tighter Generalization Bound

[10pts] Let D = X1, ..., Xn iid from an unknown distribution PX , let H be a hypothesis space, and
ℓ : H × X → R be a σ2− subgaussian loss function for every h . In the lecture we have seen that the
generalization error can be upper bounded using the mutual information.

|EPDH
[LPX

(H)− LD(H)] | ≤
√

2σ2I(D;H)

n

(i) Modify the proof of the Mutual Information Bound (11.2.2) to show that if for all h ∈ H , ℓ(h,X)
is σ2− subgaussian in X , then

|EPDH
[LPX

(H)− LD(H)] | ≤
√

2σ2
∑n

i=1 I(Xi;H)

n
.

Hint: Recall from the lecture notes that

|EPDH
[LPX

(H)− LD(H)]| ≤ 1

n

n∑
i=1

∣∣EPXiH
[ℓ(H,Xi)]− EPXi

PH
[ℓ(H,Xi)]

∣∣ .
Solution:

||EPDH
[LPX

(H)− LD(H)] || ≤ 1

n

n∑
i=1

∣∣EPXiH
[ℓ(H,Xi)]− EPXi

PH
[ℓ(H,Xi)]

∣∣
≤ 1

n

n∑
i=1

EPH

[∣∣∣EPXi|H
[ℓ(H,Xi)]− EPXi

[ℓ(H,Xi)]
∣∣∣] (11.14)

≤ 1

n

n∑
i=1

EPH

[√
2σ2D(PXi|H ||PXi

)
]

(11.12)

≤ 1

n

n∑
i=1

√
2σ2EPH

[
D(PXi|H ||PXi

)
]

(11.15)

=
1

n

n∑
i=1

√
2σ2I(Xi;H) (11.15)

≤
√

2σ2
∑n

i=1 I(Xi;H)

n

(ii) Show that, this new bound is never worse than the previous bound by showing that,

I(D;H) ≥
n∑

i=1

I(Xi;H).

6



Solution:

I(D;H) = I(X1, ..., Xn;H) =

n∑
i=1

I(Xi;H|Xi−1) (chain rule for MI)

=

n∑
i=1

I(Xi;HXi−1) (independence of Xi’s)

≥
n∑

i=1

I(Xi;H) (chain rule and non-negativity of MI)

Therefore the new upper bound is never larger than the previous upper bound.

(iii) Let us consider an example. Assume that D = X1, .., Xn, n > 1, are i.i.d. from N (θ, 1) , and that
we do not know θ . We want to learn θ assuming the loss ℓ(h, x) = min(1, (h − x)2) (which is
bounded) and H = R . Our learning algorithm outputs H = 1

n

∑n
i=1 Xi . Use the new bound to

show that

|EPDH
[LPX

(H)− LD(H)] | ≤

√
1

4(n− 1)
.

How does the old bound perform in this example?
Hint: Adding independent gaussian random variables, you get a gaussian random variable.
Solution: Note that the learning algorithm is a deterministic one, that is given a training set D ,

the learning algorithm outputs a deterministic number. Note also that by property of Gaussian,
H ∼ N (θ, 1/n) . Therefore,

I(D;H) = h(H)− h(H|D) =
1

2
log(2πe

1

n
)− 1

2
log(2πe0) = ∞ (29)

which gives a vacuous bound. Let us compute I(X1;H) = h(H)− h(H|X1) . Fix x1 , Then,

H =
1

n
x1 +

1

n

n∑
i=2

Xi (30)

which is Gaussian around some mean (which we do not care about) and with variance (n− 1)/n2 ,
and note that the variance does not depend on x1 . Therefore the mutual information can be
computed as,

I(X1;H) = h(H)− h(H|X1) =
1

2
log(2πe

1

n
)− 1

2
log(2πe

n− 1

n2
) =

1

2
log(

n

n− 1
) (31)

This is true for all I(Xi;H) . Also, this loss function is bounded between 0 − 1 therefore it is
1/4− subgaussian. We get the bound,

|EPDH
[LPX

(H)− LD(H)] | ≤
√

2σ2
∑n

i=1 I(Xi;H)

n
=

√
2σ2n 1

2 log(
n

n−1 )

n
(32)

=

√
1

4
log(

n

n− 1
) (33)

=

√
1

4
log(1 +

1

n− 1
) (34)

≤
√

1

4

1

n− 1
(35)
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