
Foundations of Data Science Ecole Polytechnique Fédérale, Lausanne: Fall 2024
Gastpar & Urbanke November 15, 2024

Problem Set 7 (Graded) —Due Tuesday, Dec 17, before class starts
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Last name First name SCIPER Nr Points

Problem 1: Inner Products

Consider the standard n -dimensional vector space Rn.

1. Characterize the set of matrices W for which yTWx is a valid inner product for any x,y ∈ Rn.

2. Prove that every inner product ⟨x,y⟩ on Rn can be expressed as yTWx for an approriately chosen
matrix W.

3. For a subspace of dimension k < n, spanned by the basis b1,b2, . . . ,bk ∈ Rn, express the orthog-
onal projection operator (matrix) with respect to the general inner product ⟨x,y⟩ = yTWx. Hint:

For any vector x ∈ Rn, express its projection as x̂ =
∑k

j=1 αjbj .

Solution 1. 1. Looking at the lecture notes on the Hilbert space framework, an inner product must
satisfy linearity properties, which clearly hold for all matrices W. The symmetry property ⟨x,y⟩ =
⟨y,x⟩ only holds if the matrix W is symmetric, i.e., WT = W. The crucial requirement is the
last property, namely, ⟨x,x⟩ ≥ 0, with equality if and only if x = 0. To tackle this, note that W
has to be symmetric, so it has a spectral decomposition W = UΛUH . Hence, it is a clever idea to
express the vectors x and y in terms of the eigenvectors of W. Then, clearly, if all eigenvalues of
W are strictly positive, then the property is satisfied. Conversely, if there is a eigenvalue equal to
zero, or a negative eigenvalue, then there exists a choice x ̸= 0 for which ⟨x,x⟩ = 0. In conclusion,
yTWx is a valid inner product if and only if W is a symmetric and positive definite.

2. To prove this, use the standard basis vectors to express x = x1e1 + . . . + xnen, and likewise for
y. Then, using the properties of the inner product, we find ⟨x,y⟩ =

∑
i,j xiyi⟨ei, ej⟩ . Notice that

this is equal to

∑
i,j

xiyj⟨ei, ej⟩ = xT


⟨e1, e1⟩ ⟨e1, e2⟩ . . . ⟨e1, en⟩
⟨e2, e1⟩ ⟨e2, e2⟩ . . . ⟨e2, en⟩

...
...

...
...

⟨en, e1⟩ ⟨en, e2⟩ . . . ⟨en, en⟩

y.

3. As we have seen in class, the error x − x̂ must be orthogonal to the estimate x̂, or, equivalently,
orthogonal to all of the basis vectors bi. That is,

⟨x− x̂,bi⟩ = 0. (1)
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Plugging in the hint x̂ =
∑k

j=1 αjbj , we get

⟨x−
k∑

j=1

αjbj ,bi⟩ = 0, (2)

and using the standard properties of the inner product,

⟨x,bi⟩ −
k∑

j=1

αj⟨bj ,bi⟩ = 0. (3)

Defining the n× k matrix

B = (b1,b2, . . . ,bk), (4)

we can collect all k conditions (for i = 1, 2, . . . , k ) into

BHWx−BHWBα = 0, (5)

where α denotes the column vector of all the coefficients αi. Hence,

α =
(
BHWB

)−1
BHWx, (6)

where we note that BHWB is invertible since the vectors bj constitute a basis. Finally, we observe
that we can write

x̂ = Bα = B
(
BHWB

)−1
BHWx, (7)

which is thus the desired projection matrix.

Problem 2: Canonical Correlation Analysis

Let X and Y be zero-mean real-valued random vectors with covariance matrices RX and RY, re-
spectively. Moreover, let RXY = E[XYT ]. Our goal is to find vectors u and v such as to maximize the
correlation between uTX and vTY, that is,

max
u,v

E[uTXYTv]√
E[|uTX|2]

√
E[|vTY|2]

. (8)

Show how we can find the optimizing choices of the vectors u and v from the problem parameters
RX, RY, and RXY.

Hint: Recall for the singular value decomposition that

max
v

∥Av∥
∥v∥

= max
∥v∥=1

∥Av∥ = σ1(A), (9)

where σ1(A) denotes the maximum singular value of the matrix A. The corresponding maximizer is the
right singular vector v1 (i.e., eigenvector of ATA ) corresponding to σ1(A).

Solution 2. Adapting the hint to this scenario, we prove that max∥u∥=∥v∥=1 u
HAv = σ1(A) for a normal

matrix A . Observe that |uHAv|2 = (uHAv)H(uHAv) = (uHAv)(uHAv)H , the first one gives vHAHAv
and the second one uHAAHu , both of these quantities are upper bounded by σ1(A)2 since this is the
largest eigenvalue of AHA = AAH . Now finally if u = v = v1(A) then uHAv = σ1(A) which achieves
the bound.
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We are now ready to prove the result using the decomposition RX = R
1/2
X R

1/2
X

max
u,v

E[uHXY Hv]√
E[|uHX|2]

√
E[|vHY |2]

= max
u,v

uHE[XY H ]v√
uHE[XXH ]u

√
vHE[Y Y H ]v

= max
u,v

uHRXY v√
uHRXu

√
vHRY v

= max
u,v

uHR
−1/2
X RXY R

−1/2
Y v√

uHu
√
vHv

(10)

= max
∥u∥=∥v∥=1

uHR
−1/2
X RXY R

−1/2
Y v

= σ1(R
−1/2
X RXY R

−1/2
Y )

and the corresponding values for original u and v (after equation (10) we apply the respective transfor-

mations R
−1/2
X and R

−1/2
Y ) are u = R

−1/2
X v1(R

−1/2
X RXY R

−1/2
Y ) and v = R

−1/2
Y v1(R

−1/2
X RXY R

−1/2
Y ) .

Problem 3: Minimum-norm Solutions

In this problem, we consider an underdetermined system of linear equations, i.e., Ax = b, where
Am×n is a “fat” matrix (m < n ) and b is chosen such that a solution exists. As you know, in this case,
there exist infinitely many solutions. Prove that the one solution x that has the minimum 2-norm can
be expressed as

xMN = V Σ−1UHb, (11)

where, as usual, the SVD of A = UΣV H , and Σ−1 is the matrix Σ where all non-zero diagonal entries
are inverted.

Hint: Clearly, A is not a full-rank matrix, and thus cannot be inverted. However, it might be possible to
construct a matrix A′ such that A′x = b′ has a solution, A is a submatrix of A′ and b is a subvector
of b′ . What will be the norm of x in such a case?

Solution 3. Let the SVD of A = UΣV H . Hence, U and V are unitary matrices, i.e. U−1 = UH and
V −1 = V H . Any x that satisfies Ax = b should also satisfy UΣV Hx = b . Since A is a fat matrix
(m < n) , there does not exists left inverse of Σ . And the only the first m diagonal entries of Σ can be
non-zeros.

Σ =


σ1 0 . . . 0 . . . 0
0 σ2 . . . 0 . . . 0
...

...
. . .

...
. . .

...
0 0 . . . σm . . . 0

 (12)

Let VA denote the first m rows of V and VB denote the last n−m rows of V . Since the last n−m
columns of Σ are all zeros, it does not matter what VB is. Since the dimensions of each row vector of
A is n , it is possible to add n−m linearly independent row vectors to A . The new SVD can be[

A
B

]
=

[
UA

UB

] [
ΣA 0
0 ΣB

] [
VA

VB

]H
(13)

Let bB = Bx and bA = b , then[
A
B

]
x =

[
UA

UB

] [
ΣA 0
0 ΣB

] [
VA

VB

]H
x =

[
bA

bB

]
(14)
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Now we have

x =

[
VA

VB

] [
ΣA 0
0 ΣB

]−1 [
UA

UB

]H [
bA

bB

]
(15)

Therefore, the square of the 2-norm of x is

||x||22 = xHx =

[
bA

bB

]H [
UA

UB

] [
ΣH

A 0
0 ΣH

B

]−1 [
VA

VB

]H [
VA

VB

] [
ΣA 0
0 ΣB

]−1 [
UA

UB

]H [
bA

bB

]
(16)

= ||bA||22 + ||bB ||22 (17)

Thus, the 2-norm of x achieves minimum ||bA||2 = ||b||2 , when ||bB ||2 = 0 . Also, ||bB ||2 = 0 requires
that every entry of bB is 0. Hence in such case,

xMN =

[
VA

VB

] [
ΣA 0
0 ΣB

]−1 [
UA

UB

]H [
bA

0

]
= VAΣ

−1
A UH

A bA = V Σ−1UHb (18)

Problem 4:

(Johnson-Lindenstrauss for subgaussians)

(a) In preparation for this problem, establish the following facts:

– If U is a subexponential random variable with parameters (ν, b), then αU (where we assume
α > 0 ) is a subexponential random variable with parameters (αν, αb).

– If U and V are independent subexponential random variables with parameters (νu, bu)
and (νv, bv), respectively, then U + V is a subexponential random variable with parame-
ters (

√
ν2u + ν2v ,max(bu, bv)).

In this problem, we reconsider the Johnson-Lindenstrauss Lemma (Lemma 10.5 in the lecture notes).
The only change is that inside the real-valued k× d matrix X in the proof of the Lemma, we no longer
assume that the entries are independent Gaussians. We still assume the entries Xij to be independent.
We also still assume that they each have mean zero and variance 1. But beyond this, we only assume
that they are subgaussian with variance proxy σ2.

To proceed, exactly as in the Johnson-Lindenstrauss Lemma, consider an arbitrary real-valued vector u
of length d. As in the proof of the Johnson-Lindenstrauss Lemma, we define, for i = 1, 2, . . . , k,

Zi =
1

∥u∥2

d∑
j=1

ujXij .

(b) Show the following facts (short justifications are sufficient, and you may refer freely to the lecture
notes)

– The random variables Zi are independent of each other.

– Each Zi is subgaussian. Find the corresponding variance proxy.

– We have E[Z2
i ] = 1.

To continue, we will need the following theorem:

Theorem. If Y is subgaussian with variance proxy σ2, then Y 2 with mean E[Y 2] is subexponential
with parameters (cσ2, dσ2) for some absolute constants c and d.
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(c) Exactly as in the proof of the Johnson-Lindenstrauss Lemma, we next need to analyze S =
1
k

∑k
i=1 Z

2
i . Leveraging the theorem, show that S is subexponential with mean 1 and find the

corresponding parameters.

(d) Give a concentration bound, that is, an upper bound of the form

P

{∣∣∣∣∣1k
k∑

i=1

Z2
i − 1

∣∣∣∣∣ > δ

}
≤ . . .

(e) Discuss the differences of the resulting lemma with respect to what is proved in the lecture notes.

Solution 4.

(a) We prove the two facts in turn, noting that the proof argument are identical to the proof of Parts
(ii) and (iii) of Lemma 2.1 in the lecture notes:

– First, observe that the mean of αU is simply αµu, where µu denotes the mean of U. Hence,
we need to study

E[eλ(αU−αµu)] = E[eλα(U−µu)].

Now, since U is a subexponential random variable with parameters (ν, b), we know that we
can upper bound this as

E[eλ(αU−αµu)] = E[eλα(U−µu)] ≤ e(λα)
2ν2/2,

as long as |λα| < 1/b. Now, we rewrite this just slightly. Namely, we can upper bound

E[eλ(αU−αµu)] ≤ eλ
2(αν)2/2,

as long as |λ| < 1/(αb). Which is exactly the same as saying “αU is a subexponential random
variable with parameters (αν, αb) ”.

– First, observe that the mean of U + V is simply the sum of the means of U and V. Hence,
looking at the definition of subexponential, we need to study

E[eλ(U+V−µu−µv)] = E[eλ(U−µu)eλ(V−µv)] = E[eλ(U−µu)]E[eλ(V−µv)],

where the last step follows because U and V are independent. Next, since U and V are
subexponential, we can upper bound the two factors as

E[eλ(U+V−µu−µv)] = E[eλ(U−µu)]E[eλ(V−µv)] ≤ eν
2
uλ

2/2eν
2
vλ

2/2,

which holds whenever |λ| < 1/bu and at the same time also |λ| < 1/bv. Arranging terms, we
can thus conclude that

E[eλ(U+V−µu−µv)] ≤ e

(√
ν2
u+ν2

v

)2
λ2/2

,

whenever |λ| < min(1/bu, 1/bv). Which is exactly the same as saying “U + V is a subexpo-
nential random variable with parameters (

√
ν2u + ν2v ,max(bu, bv)) ”.

(b) We take up the claims in turn:

– The random variables Zi are independent of each other because Zi are merely (weighted)
sums of the Xij , no Xij appears in more than one of the Zi, and the Xij are by assumption
independent of each other.
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– Each Zi is subgaussian simply because it is a (weighted) sum of subgaussian random variables,
see Lemma 2.1 in the lecture notes. From that same lemma, we directly find that the variance
proxy of Zi is σ2.

– We have E[Z2
i ] =

1
∥u∥2

2

∑d
j=1 u

2
jE[X2

ij ], since the Xij are independent of each other and have

mean zero. Moreover, we have E[X2
ij ] = 1 for all i and j, and thus, E[Z2

i ] = 1.

(c) We know that each Zi is subgaussian with variance proxy σ2. Therefore, using the theorem, we
know that each Z2

i is subexponential with mean 1 and parameters (cσ2, dσ2). Moreover, all the
Z2
i are independent of each other. Now, using the second half of Part (a), we can observe that∑k
i=1 Z

2
i is subexponential with mean k and parameters (

√
kcσ2, dσ2). Then, using the first half

of Part (a), we can observe that S = 1
k

∑k
i=1 Z

2
i is subexponential with mean 1 and parameters

( cσ
2

√
k
, dσ2

k ).

Alternatively, we could directly observe that the mean of S is 1 and write out, leveraging the fact
that the Z2

i are independent of each other:

E[eλ(S−1)] = E[eλ(
1
k

∑k
i=1 Z2

i −1)]

=

k∏
i=1

E[e
λ
k (Z2

i −1)]

≤
(
e

c2

2 σ4(λ
k )

2)k

= e
c2σ4λ2

2k ,

which holds for |λk | <
1

dσ2 . That is, S with mean 1 is subexponential with parameters ( cσ
2

√
k
, dσ2

k ).

(d) Here, we can directly leverage Lemma 2.6 from the Lecture Notes to conclude

P

{∣∣∣∣∣1k
k∑

i=1

Z2
i − 1

∣∣∣∣∣ > δ

}
≤ 2e−

δ2k
2c2σ4 ,

which holds whenever

δ ≤

(
cσ2
√
k

)2

dσ2

k

=
c2

d
σ2.

More precisely, we apply Lemma 2.6 from the Lecture Notes separately to the positive and to the
negative deviations. Since these are disjoint events, we can just add up the probabilities, which
leads to the leading factor of 2 in our expression. This is an argument we have seen several times
in the class.

(e) Discuss the differences of the resulting lemma with respect to what is proved in the lecture notes.
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