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Problem Set 8

For the Exercise Session on Dec 17

Last name First name SCIPER Nr Points

Problem 1: Prediction and coding

After observing a binary sequence ug,...,u;, that contains ng(u’) zeros and ni(u’) ones, we are asked
to estimate the probability that the next observation, w;y; will be 0. One class of estimators are of the

form .
ny(u') + «

no(ut) +ny(u?) + 20

no(u') + a
no(u?) + nq(u?) + 2«
We will consider the case a = 1/2, this is known as the Krichevsky-Trofimov estimator. Note that for
i=0 we get Py,(0) =Py, (1) =1/2.

Consider now the joint distribution P(u™) on {0,1}" induced by this estimator,

Py, i (0]u') = Py, v (1]u’) =

P(u™) =[] Py (wilu' ™).
i=1

(a) Show, by induction on n that, for any n and any u™ € {0,1}",

~ 1 no\"™0 /np\™
Pl ) = 5 (1) (1)
(1 Un) 2 2y/n\n n

where ng = ng(u™) and ny = ny(u™).

[Hint: if 0 <m <mn, then (1+1/n)"+1/2> %(1 +1/m)™]

(b) Conclude that there is a prefix-free code C : U — {0,1}* such that
" 1
lengthC(uy, ..., u,) < nhy (Tloglu)> + B logn + 2,
with ho(z) = —zlogx — (1 — x)log(1 — ).
(¢) Show that if Uy,...,U, are ii.d. Bernoulli, then

1 1 2

—E[length C(Un,...,U,)] < H(Uy) + — logn + —

n 2n n
Problem 2: Lower bound on Expected Length

Suppose U is a random variable taking values in {1,2,...}. Set L = |log, U] . (Le., L = j if and only
if 22 <U<27*; j=0,1,2,....



Show that H{U|L=35)<j, j=0,1,....
Show that H(U|L) < E[L].

)
)
(¢) Show that H(U) < E[L] + H(L).
) Suppose that Pr(U =1) > Pr(U =2) > ... . Show that 1> iPr(U =1i).
)

With U as in (d), and using the result of (d), show that E[log, U] < H(U) and conclude that
E[L) < H(U).

(f) Suppose that N is a random variable taking values in {0,1,...} with distribution py and E[N] =
p. Let G be a geometric random variable with mean p, i.e., pg(n) = p™/(1+ p)t*", n > 0.
Show that H(G) — H(N) = D(pn|lpc), and conclude that H(N) < g(u) with g(z) = (1 +
x)logy(1+ ) — xlogy .

[Hint: Let f(n,u) = —logypa(n) = (n+ 1)logy(1 + ) — nlogy(u) . First show that E[f(G, u)] =
E[f(N,p)], and consequently H(G) = 3_, pn(n)log,(1/pa(n)) ]

(g) Show that for U asin (d) and g(z) as in (f),

E[L] = H(U) — g(H(U)).

[Hint: combine (f), (e), (¢).]

(h) Now suppose U is a random variable taking values on an alphabet U, and ¢ : U — {0,1}* is an
injective code. Show that
Ellengthc(U)] > HU) — g(H(U)).
[Hint: the best injective code will label U = {aj,as,as,...} so that Pr(U = a;) > Pr(U = ag) >
., and assign the binary sequences \,0,1,00,01,10, 11, ... to the letters a1, as,... in that order.
Now observe that the i’th binary sequence in the list A,0,1,00,01,... is of length |log, ] .]

Problem 3: Tighter Generalization Bound

[10pts] Let D = Xy, ..., X,, iid from an unknown distribution Px, let H be a hypothesis space, and
?:H x X — R be a 02— subgaussian loss function for every h. In the lecture we have seen that the
generalization error can be upper bounded using the mutual information.

2021(D; H)

[Eppy [Lpy (H) = Lp(H)]| < -

(i) Modify the proof of the Mutual Information Bound (11.2.2) to show that if for all h € H, £(h, X)
is 02— subgaussian in X , then

Eppy, [LPX(H)_LD(H)]|<\/2022?_#(&;}1).

Hint: Recall from the lecture notes that

iy L () = Lo(H))| < & 3 [By, [0, X0) ~ B,y (0. X
=1

(ii) Show that, this new bound is never worse than the previous bound by showing that,

I(D;H)ZiI(XZ-;H)
=1

[\



(iii) Let us consider an example. Assume that D = X1,.., X,,, n > 1, are i.i.d. from AN(6,1), and that
we do not know 6. We want to learn 6 assuming the loss ¢(h,x) = min(1, (h — z)?) (which is
bounded) and H = R. Our learning algorithm outputs H = %ZZL:I X;. Use the new bound to
show that

|EPDH [LPX (H) - LD(H>] | < m

How does the old bound perform in this example?
Hint: Adding independent gaussian random variables, you get a gaussian random variable.



