Problem Set 8 For the Exercise Session on Dec 17

Last name	First name	SCIPER Nr	Points

Problem 1: Prediction and coding

After observing a binary sequence u_1, \ldots, u_i , that contains $n_0(u^i)$ zeros and $n_1(u^i)$ ones, we are asked to estimate the probability that the next observation, u_{i+1} will be 0. One class of estimators are of the form

$$\hat{P}_{U_{i+1}|U^{i}}(0|u^{i}) = \frac{n_{0}(u^{i}) + \alpha}{n_{0}(u^{i}) + n_{1}(u^{i}) + 2\alpha} \quad \hat{P}_{U_{i+1}|U^{i}}(1|u^{i}) = \frac{n_{1}(u^{i}) + \alpha}{n_{0}(u^{i}) + n_{1}(u^{i}) + 2\alpha}$$

We will consider the case $\alpha = 1/2$, this is known as the Krichevsky–Trofimov estimator. Note that for i = 0 we get $\hat{P}_{U_1}(0) = \hat{P}_{U_1}(1) = 1/2$.

Consider now the joint distribution $\hat{P}(u^n)$ on $\{0,1\}^n$ induced by this estimator,

$$\hat{P}(u^n) = \prod_{i=1}^n \hat{P}_{U_i|U^{i-1}}(u_i|u^{i-1}).$$

(a) Show, by induction on n that, for any n and any $u^n \in \{0, 1\}^n$,

$$\hat{P}(u_1,\ldots,u_n) \ge \frac{1}{2\sqrt{n}} \left(\frac{n_0}{n}\right)^{n_0} \left(\frac{n_1}{n}\right)^{n_1},$$

where $n_0 = n_0(u^n)$ and $n_1 = n_1(u^n)$. [Hint: if $0 \le m \le n$, then $(1 + 1/n)^{n+1/2} \ge \frac{m+1}{m+1/2}(1 + 1/m)^m$]

(b) Conclude that there is a prefix-free code $\mathcal{C}: \mathcal{U} \to \{0,1\}^*$ such that

length
$$\mathcal{C}(u_1, \ldots, u_n) \le nh_2\left(\frac{n_0(u^n)}{n}\right) + \frac{1}{2}\log n + 2,$$

with $h_2(x) = -x \log x - (1-x) \log(1-x)$.

(c) Show that if U_1, \ldots, U_n are i.i.d. Bernoulli, then

$$\frac{1}{n}\mathbb{E}[\operatorname{length} \mathcal{C}(U_1,\ldots,U_n)] \le H(U_1) + \frac{1}{2n}\log n + \frac{2}{n}$$

Problem 2: Lower bound on Expected Length

Suppose U is a random variable taking values in $\{1, 2, ...\}$. Set $L = \lfloor \log_2 U \rfloor$. (I.e., L = j if and only if $2^j \leq U < 2^{j+1}$; j = 0, 1, 2, ...

- (a) Show that $H(U|L = j) \le j, \ j = 0, 1, ...$
- (b) Show that $H(U|L) \leq \mathbb{E}[L]$.
- (c) Show that $H(U) \leq \mathbb{E}[L] + H(L)$.
- (d) Suppose that $\Pr(U=1) \ge \Pr(U=2) \ge \dots$. Show that $1 \ge i \Pr(U=i)$.
- (e) With U as in (d), and using the result of (d), show that $\mathbb{E}[\log_2 U] \leq H(U)$ and conclude that $\mathbb{E}[L] \leq H(U)$.
- (f) Suppose that N is a random variable taking values in $\{0, 1, ...\}$ with distribution p_N and $\mathbb{E}[N] = \mu$. Let G be a geometric random variable with mean μ , i.e., $p_G(n) = \mu^n / (1+\mu)^{1+n}$, $n \ge 0$. Show that $H(G) - H(N) = D(p_N || p_G)$, and conclude that $H(N) \le g(\mu)$ with $g(x) = (1 + x) \log_2(1+x) - x \log_2 x$. [Hint: Let $f(n,\mu) = -\log_2 p_G(n) = (n+1) \log_2(1+\mu) - n \log_2(\mu)$. First show that $\mathbb{E}[f(G,\mu)] = \mathbb{E}[f(N,\mu)]$, and consequently $H(G) = \sum_n p_N(n) \log_2(1/p_G(n))$.]
- (g) Show that for U as in (d) and g(x) as in (f),

$$E[L] \ge H(U) - g(H(U)).$$

[Hint: combine (f), (e), (c).]

(h) Now suppose U is a random variable taking values on an alphabet \mathcal{U} , and $c: \mathcal{U} \to \{0,1\}^*$ is an injective code. Show that

$$E[\operatorname{length} c(U)] \ge H(U) - g(H(U)).$$

[Hint: the best injective code will label $\mathcal{U} = \{a_1, a_2, a_3, ...\}$ so that $\Pr(U = a_1) \ge \Pr(U = a_2) \ge \ldots$, and assign the binary sequences $\lambda, 0, 1, 00, 01, 10, 11, \ldots$ to the letters a_1, a_2, \ldots in that order. Now observe that the *i*'th binary sequence in the list $\lambda, 0, 1, 00, 01, \ldots$ is of length $\lfloor \log_2 i \rfloor$.]

Problem 3: Tighter Generalization Bound

[10pts] Let $D = X_1, ..., X_n$ iid from an unknown distribution P_X , let \mathcal{H} be a hypothesis space, and $\ell : \mathcal{H} \times \mathcal{X} \to \mathbb{R}$ be a σ^2 -subgaussian loss function for every h. In the lecture we have seen that the generalization error can be upper bounded using the mutual information.

$$\left|\mathbb{E}_{P_{DH}}\left[L_{P_{X}}(H) - L_{D}(H)\right]\right| \leq \sqrt{\frac{2\sigma^{2}I(D;H)}{n}}$$

(i) Modify the proof of the Mutual Information Bound (11.2.2) to show that if for all $h \in \mathcal{H}$, $\ell(h, X)$ is σ^2 -subgaussian in X, then

$$|\mathbb{E}_{P_{DH}}[L_{P_X}(H) - L_D(H)]| \le \sqrt{\frac{2\sigma^2 \sum_{i=1}^n I(X_i; H)}{n}}.$$

Hint: Recall from the lecture notes that

$$\left|\mathbb{E}_{P_{DH}}\left[L_{P_{X}}(H) - L_{D}(H)\right]\right| \leq \frac{1}{n} \sum_{i=1}^{n} \left|\mathbb{E}_{P_{X_{i}H}}\left[\ell(H, X_{i})\right] - \mathbb{E}_{P_{X_{i}}P_{H}}\left[\ell(H, X_{i})\right]\right|.$$

(ii) Show that, this new bound is never worse than the previous bound by showing that,

$$I(D;H) \ge \sum_{i=1}^{n} I(X_i;H)$$

(iii) Let us consider an example. Assume that $D = X_1, ..., X_n$, n > 1, are i.i.d. from $\mathcal{N}(\theta, 1)$, and that we do not know θ . We want to learn θ assuming the loss $\ell(h, x) = \min(1, (h - x)^2)$ (which is bounded) and $\mathcal{H} = \mathbb{R}$. Our learning algorithm outputs $H = \frac{1}{n} \sum_{i=1}^{n} X_i$. Use the new bound to show that

$$|\mathbb{E}_{P_{DH}}[L_{P_X}(H) - L_D(H)]| \le \sqrt{\frac{1}{4(n-1)}}.$$

How does the old bound perform in this example?

Hint: Adding independent gaussian random variables, you get a gaussian random variable.