Analyse I – Série 13

Echauffement. (Formules d'intégration)

- a) Retrouver la formule du changement de variable à partir de la dérivée dérivée d'une composition de fonctions.
- b) Retrouver la formule d'intégration par parties à partir de la dérivée d'un produit de fonctions.

Sol.:

a) La formule pour la dérivée de la fonction composée $g \circ f$ est

$$(g \circ f)'(x) = g'(f(x))f'(x).$$

En prenant l'intégrale des deux côtés on obtient

$$\int (g \circ f)'(x) dx = \int g'(f(x))f'(x) dx.$$

Comme $g \circ f$ est une primitive de $(g \circ f)'$, on a

$$(g \circ f)(x) + C = \int g'(f(x))f'(x) dx.$$

Puisque la notation de l'intégrale indéfinie vue au cours désigne l'ensemble de toutes les primitives d'une fonction, la constante C peut être absorbée dans la notation de l'intégrale indéfinie à droite, d'où la formule voulue

$$g(f(x)) = \int g'(f(x))f'(x) dx.$$

b) La dérivée du produit des fonctions f et g s'écrit

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x).$$

En prenant l'intégrale des deux côtés on obtient

$$\int (f(x)g(x))' dx = \int f'(x)g(x) dx + \int f(x)g'(x) dx.$$

Le côté gauche vaut f(x)g(x) + C si bien qu'on trouve la formule d'intégration par parties en absorbant de nouveau la constante dans une des deux autres intégrales indéfinies :

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx.$$

Exercice 1. (Intégration par parties)

Calculer les intégrales suivantes :

a)
$$\int x^2 \cos(x) \, dx$$

b) (*)
$$\int e^{ax} \cos(bx) dx$$
 $(a \neq 0)$

Indication : la question b) est plus difficile. En appelant $I_{a,b}$ l'intégrale en question, on cherchera à trouver une équation satisfaite par $I_{a,b}$ en intégrant deux fois par parties (ce qui fera réapparaître $I_{a,b}$).

Sol.:

a) Par intégration par parties d'abord avec $f'(x) = \cos(x) \not \Rightarrow f(x) = \sin(x) \not$, $g(x) = x^2 \not \Rightarrow g'(x) = 2x \not$ et puis avec $f'(x) = \sin(x) \not \Rightarrow f(x) = -\cos(x) \not$, $g(x) = x \not \Rightarrow g'(x) = 1 \not$, il vient

$$\int x^2 \cos(x) \, dx = \sin(x) \, x^2 - 2 \int \sin(x) \, x \, dx = \sin(x) \, x^2 - 2 \left(-\cos(x) \, x + \int \cos(x) \, dx \right)$$
$$= \left(x^2 - 2 \right) \sin(x) + 2x \cos(x) + C$$

b) Posons $I_{a,b} = \int e^{ax} \cos(bx) dx$ et intégrons deux fois par parties avec $f'(x) = e^{ax}$ [$\Rightarrow f(x) = \frac{1}{a} e^{ax}$] ainsi que $g(x) = \cos(bx)$ [$\Rightarrow g'(x) = -b\sin(bx)$]:

$$I_{a,b} = \frac{1}{a} e^{ax} \cos(bx) + \frac{b}{a} \int e^{ax} \sin(bx) dx$$

Cette dernière intégrale doit aussi être intégrée par parties avec $f(x) = e^{ax}$ et $g(x) = \sin(bx)$ $\Rightarrow g'(x) = b\cos(bx)$

$$\int e^{ax} \sin(bx) dx = \frac{1}{a} e^{ax} \sin(bx) - \frac{b}{a} \int e^{ax} \cos(bx) dx$$

On remarque alors que l'intégrale à droite est $I_{a,b}$. Ainsi on peut combiner les deux équations précédentes et isoler $I_{a,b}$. On obtient

$$I_{a,b} = \frac{1}{a} e^{ax} \cos(bx) + \frac{b}{a} \left(\frac{1}{a} e^{ax} \sin(bx) - \frac{b}{a} I_{a,b} \right)$$

$$\Leftrightarrow \left(1 + \frac{b^2}{a^2} \right) I_{a,b} = \frac{e^{ax}}{a} \left(\cos(bx) + \frac{b}{a} \sin(bx) \right)$$

et donc

$$I_{a,b} = \frac{e^{ax}}{a^2 + b^2} \Big(a\cos(bx) + b\sin(bx) \Big) + C, \quad \text{of } c \in \mathbb{R} \text{ est une constante.}$$

Exercice 2. (Intégrales récurrentes)

Trouver une formule de récurrence pour les intégrales suivantes $(n \in \mathbb{N})$:

a)
$$I_n(x) = \int x^n \sin(2x) dx$$
 b) $I_n(x) = \int \log(x)^n dx$

Sol.:

1. On a
$$I_0 = -\frac{1}{2}\cos(2x) + C$$
, et
$$I_1 = -\frac{1}{2}x\cos(2x) + \frac{1}{4}\sin(2x) + C \quad (par \ parties \ avec \ f'(x) = \sin(2x) \ et \ g(x) = x)$$

et si $n \ge 2$ (encore deux fois par parties),

$$I_{n} = \int x^{n} \sin(2x) dx \stackrel{(1)}{=} -\frac{1}{2} x^{n} \cos(2x) + \frac{1}{2} n \int x^{n-1} \cos(2x) dx$$

$$\stackrel{(2)}{=} -\frac{1}{2} x^{n} \cos(2x) + \frac{n}{2} \left[\frac{1}{2} x^{n-1} \sin(2x) - \frac{1}{2} (n-1) \int x^{n-2} \sin(2x) dx \right]$$

$$= \frac{x^{n-1}}{4} \left(n \sin(2x) - 2x \cos(2x) \right) - \frac{n(n-1)}{4} I_{n-2},$$

 $où(1): f'(x) = \sin(2x)$ et $g(x) = x^n$ et $(2): f'(x) = \cos(2x)$ et $g(x) = x^{n-1}$.

2. Posons $I_n = \int \operatorname{Log}(x)^n dx$. Alors $I_0 = x + C$. Pour $n \ge 1$ on intègre par parties avec f'(x) = 1 et $g(x) = \operatorname{Log}(x)^n$:

$$I_n = \int 1 \cdot \log(x)^n \, dx = x \log(x)^n - n \int x \log(x)^{n-1} \frac{1}{x} \, dx = x \log(x)^n - n I_{n-1}.$$

Exercice 3. (Changement de variable)

Trouver des primitives pour les fonctions f données ci-dessous en utilisant le changement de variable $x = \varphi(u)$ indiqué :

a)
$$f(x) = \frac{1}{\sqrt{1-x^2}}$$
, $x = \sin(u)$ b) $f(x) = \frac{1}{1+x^2}$, $x = \operatorname{tg}(u)$

c)
$$f(x) = \frac{1}{e^x + 1}$$
, $x = \text{Log}(t)$ d) $f(x) = x\sqrt{x - 1}$, $x = t^2 + 1$

Sol.: La formule pour le changement de variable $x = \varphi(u)$ est $\int f(x) dx = \int f(\varphi(u)) \varphi'(u) du$.

a) Pour
$$x = \varphi(u) = \sin(u)$$
 on a $f(\varphi(u)) = \frac{1}{\sqrt{1 - \sin(u)^2}} = \frac{1}{\sqrt{\cos(u)^2}} = \frac{1}{\cos(u)}$ et $\varphi'(u) = \cos(u)$. Ainsi

$$\int \frac{1}{\sqrt{1-x^2}} dx = \int \frac{\cos(u)}{\cos(u)} du = \int du = u + C = Arcsin(x) + C,$$

où on a utilisé que $u = \varphi^{-1}(x) = Arcsin(x)$.

b) Pour $x = \varphi(u) = \operatorname{tg}(u)$ on a $f(\varphi(u)) = \frac{1}{1 + \operatorname{tg}(u)^2} = \frac{\cos(u)^2}{\cos(u)^2 + \sin(u)^2} = \cos(u)^2$ et $\varphi'(u) = \frac{1}{\cos(u)^2}$. Ainsi

$$\int \frac{1}{1+x^2} dx = \int \frac{\cos(u)^2}{\cos(u)^2} du = \int du = u + C = \text{Arctg}(x) + C,$$

où on a utilisé que $u = \varphi^{-1}(x) = \text{Arctg}(x)$.

 $c) \ \ Pour \ \ x=\varphi(t)=\operatorname{Log}(t) \ \ on \ a \ \ f(\varphi(t))=\frac{1}{e^{\operatorname{Log}(t)}+1}=\frac{1}{1+t} \ \ et \ \varphi'(t)=\frac{1}{t}. \ Ainsi$

$$\int \frac{1}{e^x + 1} dx = \int \frac{1}{t(1+t)} dt = \int \frac{1}{t} - \frac{1}{t+1} dt = \text{Log}(t) - \text{Log}(t+1) + C$$
$$= \text{Log}\left(1 - \frac{1}{t+1}\right) + C = \text{Log}\left(1 - \frac{1}{e^x + 1}\right) + C = -\text{Log}\left(1 + e^{-x}\right) + C.$$

où on a utilisé que $t = \varphi^{-1}(x) = e^x$.

d) Pour $x = \varphi(t) = t^2 + 1$ on a $f(\varphi(t)) = (t^2 + 1)\sqrt{t^2 + 1 - 1} = t(t^2 + 1)$ et $\varphi'(t) = 2t$. Ainsi $\int x\sqrt{x - 1} \, dx = \int 2t^2(t^2 + 1) \, dt = \int 2t^4 + 2t^2 \, dt = \frac{2t^5}{5} + \frac{2t^3}{3} + C$ $= \frac{2(x - 1)^{\frac{5}{2}}}{5} + \frac{2(x - 1)^{\frac{3}{2}}}{3} + C$

où on a utilisé que $t = \varphi^{-1}(x) = \sqrt{x-1}$.

Exercice 4. (Changement de variable)

Calculer les intégrales définies suivantes

a)
$$\int_0^{\pi/2} \sin(x)^5 dx$$
 b) $\int_2^3 \frac{\sqrt{x+1}}{x} dx$ c) $\int_{\pi^2/16}^{\pi^2/9} \cos(\sqrt{x}) dx$

Indication: pour a), on peut utiliser $\cos(x)^2 + \sin(x)^2 = 1$ puis le changement de variable $t = \varphi(x) = \cos(x)$. Pour b) on peut poser $x = \varphi(u) = u^2 - 1$. Pour c) on peut poser $x = \varphi(u) = u^2$.

Sol.:

a) En utilisant que $\sin(x)^2 + \cos(x)^2 = 1$, on observe que

$$\sin(x)^5 = \left(1 - \cos(x)^2\right)^2 \sin(x) = -f(\varphi(x))\varphi'(x)$$

avec $t = \varphi(x) = \cos(x)$ et $f(t) = (1 - t^2)^2$.

Comme les bornes de x sont $\alpha = 0$ et $\beta = \frac{\pi}{2}$, les bornes de t sont $a = \varphi(\alpha) = 1$ et $b = \varphi(\beta) = 0$. Ainsi

$$\int_0^{\pi/2} \left(1 - \cos(x)^2\right)^2 \sin(x) \, dx = -\int_1^0 (1 - t^2)^2 \, dt = \int_0^1 (1 - 2t^2 + t^4) \, dt$$
$$= \left[t - \frac{2}{3}t^3 + \frac{1}{5}t^5\right]_0^1 = \frac{8}{15}.$$

b) On pose $x = \varphi(u) = u^2 - 1$, $\varphi'(u) = 2u$. Comme x varie entre $a = 2 = \varphi(\sqrt{3})$ et $b = 3 = \varphi(2)$, les bornes de u sont $\alpha = \sqrt{3}$ et $\beta = 2$. Ainsi

$$\int_{2}^{3} \frac{\sqrt{x+1}}{x} dx = 2 \int_{\sqrt{3}}^{2} \frac{u^{2}}{u^{2}-1} du = 2 \int_{\sqrt{3}}^{2} \left(1 + \frac{1}{u^{2}-1}\right) du$$

$$= 2 \int_{\sqrt{3}}^{2} du + \int_{\sqrt{3}}^{2} \frac{u+1-(u-1)}{(u+1)(u-1)} du$$

$$= 2 \int_{\sqrt{3}}^{2} du + \int_{\sqrt{3}}^{2} \frac{1}{u-1} du - \int_{\sqrt{3}}^{2} \frac{1}{u+1} du$$

$$= \left[2u + \operatorname{Log}\left(\left|\frac{u-1}{u+1}\right|\right)\right]_{\sqrt{3}}^{2} = 4 - 2\sqrt{3} + \operatorname{Log}\left(\frac{\sqrt{3}+1}{3(\sqrt{3}-1)}\right).$$

c) Le changement de variable à poser est $x=\varphi(u)=u^2, \ \varphi'(u)=2u.$ Comme x varie entre $a=\frac{\pi^2}{16}=\varphi\left(\frac{\pi}{4}\right)$ et $b=\frac{\pi^2}{9}=\varphi\left(\frac{\pi}{3}\right)$, les bornes de u sont $\alpha=\frac{\pi}{4}$ et $\beta=\frac{\pi}{3}$.

$$\int_{\pi^2/16}^{\pi^2/9} \cos(\sqrt{x}) \, dx = 2 \int_{\pi/4}^{\pi/3} u \cos(u) \, du \stackrel{(*)}{=} 2 \left[u \sin(u) \right]_{\pi/4}^{\pi/3} - 2 \int_{\pi/4}^{\pi/3} \sin(u) \, du$$
$$= 2 \left[u \sin(u) + \cos(u) \right]_{\pi/4}^{\pi/3} = 1 - \sqrt{2} - \frac{\pi\sqrt{2}}{4} + \frac{\pi\sqrt{3}}{3} ,$$

oî on a intégré (*) par parties avec $f'(u) = \cos(u)$, g(u) = u.

Exercice 5. (Intégrale définie)

Calculer l'intégrale

$$\int_0^{\pi^{1/33}} \sin(\sin(x^{33})) \, \cos(x^{33}) \, x^{32} \, dx \, .$$

Sol.: La formule du changement de variable pour $x = \varphi(u)$ avec $\varphi \colon [\alpha, \beta] \to [a, b]$ est

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du \quad avec \quad \varphi(\alpha) = a, \ \varphi(\beta) = b.$$

On pose alors le changement de variable $x=\varphi(u)=u^{1/33}$. Ainsi on a $a=0=\varphi(\alpha)$ et $b=\pi^{1/33}=\varphi(\beta)$ si bien que les nouvelles bornes de l'intégrale par rapport à u sont $\alpha=0$ et $\beta=\pi$.

Comme

$$\varphi'(u) = \frac{1}{33} u^{1/33-1},$$

on a

$$\varphi(u)^{32}\varphi'(u) = u^{32/33} \cdot \frac{1}{33} u^{1/33-1} = \frac{1}{33}$$

et l'expression à intégrer en u est

$$\sin\left(\sin\left(\varphi(u)^{33}\right)\right)\cos\left(\varphi(u)^{33}\right)\varphi(u)^{32}\varphi'(u) = \frac{1}{33}\sin(\sin(u))\cos(u).$$

L'intégrale est alors

$$\int_0^{\pi^{1/33}} \sin(\sin(x^{33})) \cos(x^{33}) x^{32} dx = \frac{1}{33} \int_0^{\pi} \sin(\sin(u)) \cos(u) du$$

$$= \frac{1}{33} \Big[-\cos(\sin(u)) \Big]_0^{\pi} car \left(\sin(u)\right)' = \cos(u)$$

$$= \frac{1}{33} \Big(-\cos(\sin(\pi)) + \cos(\sin(0)) \Big)$$

$$= \frac{1}{33} (-\cos(0) + \cos(0)) = 0.$$

Exercice 6. (Intégration de développements limités)

Calculer le développement limité d'ordre 7 autour de 0 de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

a)
$$f(x) = \int_0^x \text{Log}(1+t^2) dt$$
 b) $f(x) = \int_0^{x^2} e^{\sin(t)} dt$

Sol.:

a) Par le théorème fondamental du calcul intégral on a $f'(x) = \text{Log}(1+x^2)$. On va donc trouver le développement limité d'ordre 6 de f' autour de 0 et ensuite intégrer comme vu durant le cours. Puisque

$$Log(1+x^{2}) = x^{2} - \frac{1}{2}x^{4} + \frac{1}{3}x^{6} + x^{6}\varepsilon(x),$$

on obtient en intégrant

$$f(x) = \frac{1}{3}x^3 - \frac{1}{10}x^5 + \frac{1}{21}x^7 + x^7\varepsilon(x).$$

Pour l'intégration du reste $x^n \varepsilon(x)$, il faut utiliser le théorème de la moyenne (cf. démonstration vue au cours).

b) On commence par écrire f comme composée de deux fonctions :

$$f(x) = \int_0^{x^2} e^{\sin(t)} dt = (h \circ g)(x)$$
 avec $g(x) = x^2$ et $h(u) = \int_0^u e^{\sin(t)} dt$.

Pour calculer le développement limité d'ordre 7 (ou 8) de f, il suffit donc de calculer le développement limité d'ordre 4 de h ou, par le théorème fondamental du calcul intégral, le développement limité d'ordre 3 de $e^{\sin(t)}$. On a

$$\sin(t) = t - \frac{1}{6}t^3 + t^3\varepsilon(t) .$$

Il faut substituer ce développement limité dans celui de la fonction e^s autour de $\sin(0) = 0$, c'est-à-dire dans

$$e^{s} = 1 + s + \frac{1}{2}s^{2} + \frac{1}{6}s^{3} + s^{3}\varepsilon(s)$$
.

On obtient alors

$$\begin{split} e^{\sin(t)} &= 1 + \left(t - \frac{1}{6}t^3 + t^3\varepsilon(t)\right) + \frac{1}{2}\left(t - \frac{1}{6}t^3 + t^3\varepsilon(t)\right)^2 + \frac{1}{6}\left(t - \frac{1}{6}t^3 + t^3\varepsilon(t)\right)^3 + t^3\varepsilon(t) \\ &= 1 + \left(t - \frac{1}{6}t^3\right) + \frac{1}{2}t^2 + \frac{1}{6}t^3 + t^3\varepsilon(t) \\ &= 1 + t + \frac{1}{2}t^2 + t^3\varepsilon(t) \,. \end{split}$$

En intégrant on trouve le développement limité de la fonction h autour de u=0,

$$h(u) = \int_0^u \left(1 + t + \frac{1}{2}t^2 + t^3 \varepsilon(t) \right) dt = u + \frac{1}{2}u^2 + \frac{1}{6}u^3 + u^4 \varepsilon(u) ,$$

 $et \ donc$

$$f(x) = h(x^2) = x^2 + \frac{1}{2}x^4 + \frac{1}{6}x^6 + x^8\varepsilon(x)$$
.

Exercice 7. (Fonctions rationnelles)

Calculer les intégrales indéfinies suivantes :

a)
$$\int \frac{x-2}{x(x+1)^2} dx$$
 b) $\int \frac{x^3}{(1+x^2)^2} dx$ c) $\int \frac{x^2-2}{x^3-x^2} dx$ d) $\int \frac{4x}{x^4-1} dx$

Sol.: Pour intégrer des fractions polynomiales du type i), ii) et iii), la méthode des éléments simples est particulièrement adaptée.

a) La décomposition en éléments simples est

$$\frac{x-2}{x(x+1)^2} = \frac{\alpha}{x} + \frac{\beta}{x+1} + \frac{\gamma}{(x+1)^2}$$
, avec $\alpha = -2$, $\beta = 2$, $\gamma = 3$.

Ainsi

$$\int \frac{x-2}{x(x+1)^2} dx = \int \left(-\frac{2}{x} + \frac{2}{x+1} + \frac{3}{(x+1)^2}\right) dx = -2\log|x| + 2\log|x+1| - \frac{3}{x+1} + C.$$

b) La décomposition en éléments simples est

$$\frac{x^3}{(1+x^2)^2} = \frac{\alpha x + \beta}{1+x^2} + \frac{\gamma x + \delta}{(1+x^2)^2} , \quad avec \quad \alpha = 1, \quad \beta = 0, \quad \gamma = -1, \quad \delta = 0,$$

 $d'o\hat{\imath}$

$$\int \frac{x^3}{(1+x^2)^2} dx = \int \left(\frac{x}{1+x^2} + \frac{-x}{(1+x^2)^2}\right) dx = \frac{1}{2} \operatorname{Log}(1+x^2) + \frac{1}{2(1+x^2)} + C.$$

c) La décomposition en éléments simples est

$$\frac{x^2 - 2}{x^3 - x^2} = \frac{\alpha}{x} + \frac{\beta}{x^2} + \frac{\gamma}{x - 1}, \quad avec \quad \alpha = 2, \quad \beta = 2, \quad \gamma = -1.$$

On obtient donc

$$\int \frac{x^2 - 2}{x^3 - x^2} dx = \int \left(\frac{2}{x} + \frac{2}{x^2} - \frac{1}{x - 1}\right) dx = 2\operatorname{Log}(|x|) - \operatorname{Log}(|x - 1|) - \frac{2}{x} + C.$$

d) La décomposition en éléments simples est

$$\frac{4x}{x^4 - 1} = \frac{\alpha}{x - 1} + \frac{\beta}{x + 1} + \frac{\gamma x + \delta}{x^2 + 1}, \quad avec \quad \alpha = 1, \quad \beta = 1, \quad \gamma = -2, \quad \delta = 0,$$

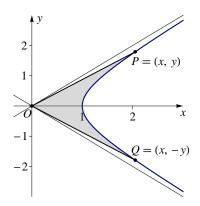
 $d'o\hat{\imath}$

$$\int \frac{4x}{x^4 - 1} \, dx = \int \left(\frac{1}{x - 1} + \frac{1}{x + 1} - \frac{2x}{x^2 + 1} \right) \, dx = \operatorname{Log}\left(\frac{|x^2 - 1|}{x^2 + 1} \right) + C.$$

Exercice 8. (Fonctions hyperboliques)

Soient P = (x, y) et Q = (x, -y) des points de l'hyperbole $x^2 - y^2 = 1$ $(x \ge 1)$ et t l'aire de la région comprise entre l'hyperbole et les rayons OP et OQ (aire grise sur la figure ci-contre). Montrer que $x = \operatorname{ch}(t)$ et $y = \operatorname{sh}(t)$.

7



Sol.: Soit la fonction $f:[1,\infty)\longrightarrow \mathbb{R}$ définie par $y=f(x)=\sqrt{x^2-1}$. L'aire cherchée est alors

$$t = xy - 2\int_{1}^{x} f(w) dw = xy - 2\int_{1}^{x} \sqrt{w^{2} - 1} dw.$$

On pose $w = \varphi(u) = \operatorname{ch}(u)$. Ainsi $\varphi'(u) = \operatorname{sh}(u)$ et u varie entre 0 et $a := \operatorname{Arccosh}(x)$ car $\varphi(0) = 1$ et $\varphi(a) = x$. L'intégrale devient

$$2\int_{1}^{x} \sqrt{w^{2}-1} \, dw = 2\int_{0}^{a} \sqrt{\cosh(u)^{2}-1} \cdot \sinh(u) \, du = 2\int_{0}^{a} \sinh(u)^{2} \, du =: I.$$

Pour calculer I, on intègre par parties avec $f'(u) = g(u) = \operatorname{sh}(u)$:

$$I = 2 \int_0^a \sinh(u)^2 du = 2 \left[\cosh(u) \sinh(u) \right]_0^a - 2 \int_0^a \underbrace{\cosh(u)^2}_{=1 + \sinh(u)^2} du$$
$$= 2 \cosh(a) \sinh(a) - 2 \int_0^a 1 du - I.$$

Il suit que

$$I = \operatorname{ch}(a)\operatorname{sh}(a) - a = x\underbrace{\sqrt{x^2 - 1}}_{-x} - \operatorname{ch}(x) = xy - \operatorname{Arccosh}(x).$$

Ainsi $t = xy - I = \operatorname{Arccosh}(x)$ et donc $x = \operatorname{ch}(t)$, $y = \sqrt{x^2 - 1} = \operatorname{sh}(t)$.

Exercice 9. (V/F : Intégration)

Soit $I \subset \mathbb{R}$ un intervalle ouvert non-vide et borné et soit $f: I \to \mathbb{R}$ une fonction continue.

a)
$$f$$
 admet une primitive sur I . \Box

Dans la suite on restreint le domaine de f à l'intervalle $[a, b] \subset I$ où $a, b \in I$ tels que a < b.

b) Si
$$\int_a^b f(x) dx = 0$$
, alors f admet un zéro en $[a, b]$. \square
c) Si $\int_a^b f(x) dx \ge 0$, alors $f(x) \ge 0$ pour tout $x \in [a, b]$. \square

d) Si
$$f(x) < 0$$
 pour tout $x \in [a, b]$, alors $\int_a^b f(x) dx < 0$.

Soit encore F une primitive de f sur [a, b].

e) Si
$$f(x) \leq 0$$
 pour tout $x \in [a, b]$, alors $F(x) \leq 0$ pour tout $x \in [a, b]$. \square
f) Pour tout $x \in [a, b]$, on a $F(x) = \int_a^x f(t) dt$. \square

Sol.:

a) VRAI.

Soit $a \in I$ (donc a n'est pas une borne de I). On va montrer que pour tout $x \in I$, la fonction F définie par

$$F(x) = \int_{a}^{x} f(t) dt$$

est une primitive de f en vérifiant que F'(x) = f(x) à l'aide de la définition de la dérivée. En effet, on a

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \left(\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right)$$
$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt.$$

Noter que la dernière égalité reste vraie pour h < 0 car $\int_x^{x+h} f(t) dt = -\int_{x+h}^x f(t) dt$. Par le théorème de la moyenne (f est continue sur l'intervalle $[x, x+h] \subset I$ si h > 0 ou $[x+h, x] \subset I$ si h < 0), il suit que $\int_x^{x+h} f(t) dt = f(u_h)h$ pour un $u_h \in]x, x+h[$ si h > 0 ou $u_h \in]x+h, x[$ si h < 0. Ainsi on a

$$F'(x) = \lim_{h \to 0} \frac{1}{h} h f(u_h) = \lim_{h \to 0} f(u_h) = f(x)$$

parce que $u_h \to x$ quand $h \to 0$ et que f est continue sur I.

b) VRAI.

Par le théorème de la moyenne, il existe $u \in]a,b[$ tel que $0 = \int_a^b f(x) dx = f(u)(b-a)$. Comme b > a, on doit avoir f(u) = 0.

c) FAUX.

Prendre par exemple f(x) = x sur l'intervalle [-1, 2]. Alors $\int_{-1}^{2} f(x) dx = \left[\frac{x^{2}}{2}\right]_{-1}^{2} = \frac{3}{2} \ge 0$ mais f(-1) = -1 < 0.

d) VRAI.

Par le théorème de la moyenne, il existe $u \in]a,b[$ tel que $\int_a^b f(x) dx = f(u)(b-a)$. Comme on a f(u) < 0 et que b > a, le résultat suit.

e) FAUX.

Prendre par exemple f(x) = x sur l'intervalle [-2, -1]. Ainsi $f(x) \le 0$ sur [-2, -1] mais $F(x) = \frac{1}{2}x^2 > 0$ pour tout $x \in [-2, -1]$.

f) FAUX.

Considérer par exemple la fonction constante f(x) = 1 sur l'intervalle [0,1]. Alors F(x) = x + 1 est une primitive de f mais

$$\int_0^x f(t) dt = \int_0^x dt = x - 0 = x \neq x + 1 = F(x).$$