
Information, Computation, Communication

Learning Python

Examples, Exam-Like Questions

1CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Agenda

• Types and Operators

• Dictionaries
• 2a: Dictionaries and loops

• 2b: Dictionaries and recursion

• Mutability, variable scope

• One-line code solutions

2CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

Types and Operators

3CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock© kras99 / Adobe Stock

E
X
A
M
P
L
E
S

Example 1: Types and Operators

• What is the type of the variable my_var?

• What does this program print?

a = -2000

b = 4001

c = 6002

my_var = c // a, b or a, c % a

c, b, a = my_var

print(a, b, c)

4CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Q2: Suggested answers

(a)-4 True 2

(b)-1998 4001 -4

(c) 2 True -3

(d)-1998 4001 -3

E
X
A
M
P
L
E
S

Solution 1: Types and Operators

my_var type is tuple

Below is a shorter equivalent version without using my_var

a = -2000

b = 4001

c = 6002

c, b, a = c // a, b or a, c % a

c // a => 6002 // (-2000)

= -4 (the result of integer division is rounded toward lower values!)

b or a => 4001 or -2000

= 4001 (the first non zero number if True)

c % a => 6002 % (-2000)

= 6002 – (-4)*(-2000) = -1998

c, b, a = -4, 4001, -1998

print(a, b, c) # -1998 4001 -4

5CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Dictionaries

6CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock© kras99 / Adobe Stock

E
X
A
M
P
L
E
S

Example 2a: Dictionaries

• What does this code do (explain the functionality)?

• What does it print?

s = "Abrakadabra"

d = {}

for c in s:

if c in d.keys():

d[c] = d[c] + 1

else:

d[c] = 1

print(d)

7CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Solution 2a: Dictionaries

It counts unique characters in the given string and fills in a dictionary.

s = "Abrakadabra"

d = {} # create an empty dictionary

for c in s: # for every character in string s

if c in d.keys(): # if char c is already a key in d

d[c] = d[c] + 1 # increment the corresponding value

else: # if c is NOT already a key in d

d[c] = 1 # create new key-value pair; initialize the value to 1

print(d)

Answer: d keeps the total count of unique characters in s
{'A': 1, 'b': 2, 'r': 2, 'a': 4, 'k': 1, 'd': 1}
d is unordered; only key-value pairs matter to be correct, not the order

8CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Recursion

9CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock© kras99 / Adobe Stock

E
X
A
M
P
L
E
S

Example 2b: Dictionaries and Recursion

Write a recursive function count_chars_recursive(s), which
takes a string, counts the unique characters in the string, and returns
a corresponding dictionary

Example usage

s = "Abrakadabra"

d_recursive = count_chars_recursive(s)

print(d_recursive)

10CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Solution 2b: Dictionaries and Recursion

• In every new recursive call:
• Read one new character

• Update the dictionary accordingly

• Make a recursive call with the part of the string not yet analyzed

• Base case (when not to make a recursive call?):
• When the current function call is reading and analyzing the last character

• Will have to create the dictionary and pass it as the function
argument to the recursive calls
• Create an empty dictionary to start with

• Dictionaries are mutable (just like lists), so every function call will be able
to modify our dictionary when passed as the function argument

11CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example 2b: Dictionaries and Recursion

Example usage

s = "Abrakadabra"

d_recursive = count_chars_recursive(s)

print(d_recursive)

• Recall the usage example and notice that the first call to the
recursive function takes only the string as the argument…
• What about the dictionary that needs to be read and updated?

• What about the index of the string to know which character to read?
• We will make them function arguments and assign them a default value to

be used when nothing else is specified

12CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Solution 2b: Dictionaries and Recursion

def count_chars_recursive(s, index=0, d=None):

if d is None:

d = {} # Create a dictionary before updating it

Base case: we've reached the end of the string

if index == len(s):

return d

c = s[index] # Current character

if c in d:

d[c] += 1

else:

d[c] = 1

Recursive call for the next character

return count_chars_recursive(s, index + 1, d)

13CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Solution 2b: Dictionaries and Recursion

def count_chars_recursive(s, index=0, d=None):

if d is None:

d = {}

if index == len(s):

return d

c = s[index]

if c in d:

d[c] += 1

else:

d[c] = 1

return count_chars_recursive(s, index + 1, d)

14CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

1st call: count_chars_recursive("Abrakadabra")
• index = 0, d = None → d = { }, c = 'A', d['A'] = 1, d = {'A':1}
2nd call: count_chars_recursive("Abrakadabra", 1, d)
• index = 1, c = 'b', d['b']=1, d = {'A':1, 'b':1}
3rd call: count_chars_recursive("Abrakadabra", 2, d)
• index = 2, c = 'r', d['r'] = 1, d = {'A':1, 'b':1, 'r':1}
4th call: count_chars_recursive("Abrakadabra", 3, d)
• index = 3, c = 'a', d['a'] = 1, d = {'A':1, 'b':1, 'r':1, 'a':1}
5th call: count_chars_recursive("Abrakadabra", 4, d)
• index = 4, c = 'k', d['k'] = 1, d = {'A':1, 'b':1, 'r':1, 'a':1, 'k':1}
6th call: count_chars_recursive("Abrakadabra", 5, d)
• index = 5, c = 'a', d['a'] = 2, d = {'A':1, 'b':1, 'r':1, 'a':2, 'k':1}
…
12th call: count_chars_recursive("Abrakadabra", 11, d)
• return d

Mutability, Variable Scope

15CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock© kras99 / Adobe Stock

E
X
A
M
P
L
E
S

Example 3: Mutable Objects, Variable Scope

Let's manage a candy stash

candies = 10

Function definitions

print(restock_candies(50))

print(eat_candies(3))
bag_of_candies = ["chocolate", "gum"]

print(share_candies(bag_of_candies))

print(f"Bag of candies after sharing: {bag_of_candies}")

16CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def restock_candies(amount):
candies = amount
return f"Restocked to {candies} candies."

def eat_candies(amount):
global candies
if candies >= amount:

candies -= amount
return f"Ate {amount} candies.

Remaining stash: {candies}."
else:

return f"Not enough candies to eat {amount}!
Stash: {candies}."

def share_candies(bag):
bag.append("shared")
return f"Candies in the bag after sharing: {bag}"

E
X
A
M
P
L
E
S

Solution 3: Mutable Objects, Variable Scope

Let's manage a candy stash!

candies = 10

Function definitions

print(restock_candies(50))

17CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def restock_candies(amount):
candies = amount
return f"Restocked to {candies} candies."

Code execution:
• local variable amount = 50
• local variable candies = amount = 50
• Restocked to 50 candies

E
X
A
M
P
L
E
S

Solution 3: Mutable Objects, Variable Scope

Let's manage a candy stash!

candies = 10

Function definitions

print(restock_candies(50))

print(eat_candies(3))

18CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def eat_candies(amount):
global candies
if candies >= amount:

candies -= amount
return f"Ate {amount} candies.

Remaining stash: {candies}."
else:

return f"Not enough candies to eat {amount}!
Stash: {candies}."

Code execution:
• local variable amount = 3
• global variable candies = 10
• if condition evaluates to True

• candies = candies – 3 = 7
• Ate 3 candies. Remaining stash: 7.

E
X
A
M
P
L
E
S

Solution 3: Mutable Objects, Variable Scope

Let's manage a candy stash!

candies = 10

Function definitions

print(restock_candies(50))

print(eat_candies(3))
bag_of_candies = ["chocolate", "gum"]

print(share_candies(bag_of_candies))

print(f"Bag of candies after sharing: {bag_of_candies}")

19CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def share_candies(bag):
bag.append("shared")
return f"Candies in the bag after sharing: {bag}"

Code execution:
• local variable bag = ["chocolate", "gum"]
• bag = ["chocolate", "gum", "shared"]
• Candies in the bag after sharing: ["chocolate",

"gum", "shared"]

E
X
A
M
P
L
E
S

Let's manage a candy stash!

candies = 10

Function definitions

…

…
bag_of_candies = ["chocolate", "gum"]

print(share_candies(bag_of_candies)) # bag_of_candies modified by the function

print(f"Bag of candies after sharing: {bag_of_candies}")

…

…

Candies in the bag after sharing: ['chocolate', 'gum', 'shared']

Bag of candies after sharing: ['chocolate', 'gum', 'shared']

Solution 3: Mutable Objects, Variable Scope

20CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

One-Line Solutions

21CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock© kras99 / Adobe Stock

E
X
A
M
P
L
E
S

Example 4: Removing Duplicates & Sorting

Write one line of Python code that transforms a string s into a list
sorted_chars containing unique characters from s (no repetitions)
sorted in reverse alphabetical order.

22CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Solution 4: Removing Duplicates & Sorting

Answer (complete script)

Input string

s = "crepes are awesome"

Convert string to a set to remove duplicates

Convert set to a list and sort it in reverse alphabetical order

sorted_chars = sorted(list(set(s)), reverse=True)

Print the result

print(sorted_chars)

['w', 's', 'r', 'p', 'o', 'm', 'e', 'c', 'a', ' ']

23CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Next:
Final Exam

24CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock© kras99 / Adobe Stock

