Final exam

Exercise 1. Quiz. (25 points) Answer each short question below. For yes/no questions explicitly say if the statement is true of false and provide a brief justification (proof or counter-example) for your answer. For other questions, provide the result of you computation, as well as a brief justification for your answer.

- a) Let $\Omega = \{1, 2, ..., 6\}$ and $\mathcal{A} = \{\{1, 2, 3\}, \{1, 3, 5\}\}$. Let $\mathcal{F} = \sigma(\mathcal{A})$ be the σ -field generated by \mathcal{A} . What are the atoms of \mathcal{F} ?
- **b)** Let $\Omega = [0,1]^2$, $\mathcal{F} = \mathcal{B}([0,1]^2)$, and \mathbb{P} be the probability measure on (Ω, \mathcal{F}) defined as

$$\mathbb{P}(|a,b| \times |c,d|) = (b-a) \cdot (d-c), \text{ for } 0 \le a < b \le 1 \text{ and } 0 \le c < d \le 1$$

which can be extended uniquely to all Borel sets in $\mathcal{B}([0,1]^2)$, according to Caratheodory's extension theorem. Let us now consider the following random variable defined on $(\Omega, \mathcal{F}, \mathbb{P})$:

$$X(\omega_1, \omega_2) = \frac{\omega_1 - \omega_2}{2}.$$

Compute the cdf F_X of X.

- c) Let X be a random variable supported on $\{-1,1\}$ with $\mathbb{P}(\{X=1\}) = \mathbb{P}(\{X=-1\}) = \frac{1}{2}$. Let $Z \sim \mathcal{N}(0,1)$ and assume that X and Z are independent. Then, is (XZ,Z) a Gaussian random vector?
- d) Let X and Z be as in part (c). Then, is (XZ, Z) a continuous random vector?
- e) Let X and Y be integrable random variables. If Y = g(X) for some measurable function $g: \mathbb{R} \to \mathbb{R}$, then is it true that $\mathbb{E}(X|Y) = h(X)$ for some function $h: \mathbb{R} \to \mathbb{R}$?
- f) Let X and Y be two independent Bernoulli random variables with parameter $0 \le p \le 1$. Let Z be defined as

$$Z = \begin{cases} 1, & \text{if } X + Y = 0, \\ 0, & \text{otherwise.} \end{cases}$$

Are $\mathbb{E}(X|Z)$ and $\mathbb{E}(Y|Z)$ independent?

g) Let $(S_n, n \in \mathbb{N})$ be the simple symmetric random walk and let $(\mathcal{F}_n, n \in \mathbb{N})$ be its natural filtration. Define a random time

$$T = \inf\{n \colon S_n = S_{n-2}, n \ge 2\}.$$

Is T a stopping time?

Exercise 2. (15 points)

Let X and Y be random variables defined on common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define

$$d(X,Y) = \mathbb{E}\left(\log_2\left(1 + \frac{|X - Y|}{1 + |X - Y|}\right)\right).$$

a) First, we would like to confirm that d(X,Y) is a distance metric. Show that d(X,Y) satisfies the triangle inequality. That is, $d(X,Z) \leq d(X,Y) + d(Y,Z)$ for any X,Y, and Z.

Hint: the function $f(x) = \log_2(1+x)$ is sub-additive, e.g. $f(x+y) \le f(x) + f(y)$.

Next, we would like to check if convergence with respect to d(X,Y) is equivalent to convergence in probability (a distance metric with this property is sometimes called a Ky-Fan metric).

- b) Let $(X_n, n \ge 1)$ be sequence of random variables and X be another random variable, all defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that if $X_n \xrightarrow[n \to \infty]{\mathbb{P}} X$ then $\lim_{n \to \infty} d(X_n, X) = 0$.
- c) Is the converse true? That is, if $\lim_{n\to\infty} d(X_n, X) = 0$ then $X_n \stackrel{\mathbb{P}}{\underset{n\to\infty}{\longrightarrow}} X$. If yes, prove the statement. If no, provide a counter example.

Exercise 3. (25 points)

Recall that the moment-generating function of a random variable X is defined for every $t \in \mathbb{R}$ as

$$M_X(t) = \mathbb{E}\left(e^{tX}\right).$$

a) Show that if $X \sim \mathcal{N}(0, \sigma^2)$, then

$$M_X(t) = \exp\left(\frac{1}{2}t^2\sigma^2\right).$$

We now introduce the concept of sub-gaussianity. A random variable X is called sub-gaussian if, for every t > 0,

$$M_X(t) \le \exp\left(\frac{1}{2}t^2\eta^2\right)$$

for some $\eta \in \mathbb{R}^+$. (Note that η^2 need not be the variance of X!).

- **b)** Show that if $X \sim \mathcal{U}([-a,a])$ for some a > 0, then X is sub-gaussian with $\eta = a$. Hint: Recall that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.
- c) Show that if X is sub-gaussian for some $\eta \in \mathbb{R}^+$, then for every t > 0,

$$\mathbb{P}(|X| \ge t) \le 2 \exp\left(-\frac{t^2}{2\eta^2}\right).$$

2

d) Prove the following generalization of Hoeffding's inequality. Let $X_i, i \in \{1, 2, ..., n\}$ be independent random variables, where for each $i, X_i - \mathbb{E}(X_i)$ is sub-gaussian for some $\eta_i \in \mathbb{R}^+$. Let also $S_n = \sum_{i=1}^n X_i$. Show that for every t > 0,

$$\mathbb{P}(|S_n - \mathbb{E}(S_n)| \ge t) \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^n \eta_i^2}\right).$$

e) Let $X_i, i \in \{1, 2, ..., n\}$ be sub-gaussian random variables with the same $\eta \in \mathbb{R}^+$. Show that

$$\mathbb{E}\left(\max_{i} X_{i}\right) \leq \eta \sqrt{2 \ln n}.$$

Hint: Start by rewriting $\mathbb{E}(\max_i X_i) = \frac{1}{t}\mathbb{E}(\ln \exp(t \max_i X_i))$.

Exercise 4. (25 points)

- a) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\{\mathcal{F}_n, n \in \mathbb{N}\}$ be a filtration on this space. Let $A \in \mathcal{F}$ and define $Y_n = \mathbb{E}(1_A | \mathcal{F}_n)$. Show that $(Y_n, n \in \mathbb{N})$ is a martingale with respect to the filtration $\{\mathcal{F}_n, n \in \mathbb{N}\}$.
- **b)** Is it true that

$$Y_n \to Y_\infty$$
, a.s.

for some random variable Y_{∞} ? Why or why not? Could we say something about convergence in distribution to Y_{∞} ?

Next, we will use this martingale to prove Kolmogorov's zero-one law. Let X_0, X_1, \ldots be independent random variables. Recall that the tail σ -field is

$$\mathcal{T} = \bigcap_{n=0}^{\infty} \mathcal{H}_n$$

where $\mathcal{H}_n = \sigma(X_n, X_{n+1}, \dots)$ and assume $A \in \mathcal{T}$. Our goal will be to prove that $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

c) Let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ and \mathcal{F}_{∞} be the smallest σ -field that contains every \mathcal{F}_n . A standard measure-theoretic argument could be used to show that $Y_{\infty} = \mathbb{E}(1_A|\mathcal{F}_{\infty})$, but we will take it as a fact here

Assume $Y_{\infty} = \mathbb{E}(1_A | \mathcal{F}_{\infty})$. Show, furthermore, that for all $A \in \mathcal{T}$,

$$Y_{\infty} := \mathbb{E}\left(1_A | \mathcal{F}_{\infty}\right) = 1_A.$$

d) Show that

$$Y_n := \mathbb{E}(1_A | \mathcal{F}_n) = \mathbb{P}(A).$$

Hint: How are the σ -fields \mathcal{T} and \mathcal{F}_n related to each other?

e) Combine the ingredients above to prove Kolmogorov's zero-one law.