Fall 2024: Final Project COM-309: Quantum Information Processing

This homework should be done by teams of two students. The implementation should be done with PennyLane **AND** Qiskit. Only one of the team's students should upload on Moodle a PDF with the answers to the theory questions and the two notebooks. The name of the two students and their SCIPER should be written in the PDF.

1 Werner state

The goal of this mini-project is to study the entanglement properties of mixed states. A mixed state ρ can be seen as a statistical mixture of pure states,

$$\rho = \sum_{i} p_{i} |\phi_{i}\rangle \langle\phi_{i}|, \quad p_{i} \in [0, 1], \quad \sum_{i} p_{i} = 1$$

$$\tag{1}$$

and can be represented by density matrices which are positive semi-definite, self-adjoint matrices of trace 1.

In this mini-project, we will focus on a specific class of states, called the Werner states. A Werner state ρ_W is a convex combination of the completely mixed state I and the maximally entangled Bell state $\rho_{11} = |B_{11}\rangle \langle B_{11}|$ where $|B_{11}\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$. This mixture will depend on a parameter $w \in [0, 1]$ such that

$$\rho_W(w) = (1 - w)\frac{\mathbf{I}}{4} + w\rho_{11}.$$
(2)

Question Theory 1: Give the matrix representation of $\rho_W(w)$, compute its eigenvalues, and check that $\rho_W(w)$ is a valid state.

Solution.

$$\rho_W(w) = \begin{pmatrix} \frac{1-w}{4} & 0 & 0 & 0\\ 0 & \frac{1+w}{4} & -\frac{w}{2} & 0\\ 0 & -\frac{w}{2} & \frac{1+w}{4} & 0\\ 0 & 0 & 0 & \frac{1-w}{4} \end{pmatrix}$$

Its eigenvalues are $\frac{1-w}{4}$ with eigenvectors $|00\rangle$, $\frac{|01\rangle+|10\rangle}{\sqrt{2}}$, $|11\rangle$ and $\frac{1+3w}{4}$ with eigenvector $\frac{|01\rangle-|10\rangle}{\sqrt{2}}$. We can trivially verify that $\rho_W(w) = \rho_W(w)^{\top,*}$ and $\operatorname{Tr} \rho_W(w) = 1$; $\rho_W(w) \succeq 0$ follows from the fact that all its eigenvalues are nonnegative. Therefore, $\rho_W(w)$ is indeed a valid state.

Werner state can be constructed with the following circuit

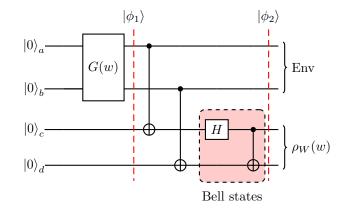


Figure 1: How to prepare Werner states

where G(w) is the unitary such that $G(w)|00\rangle = \sqrt{\frac{1-w}{4}}(|00\rangle + |01\rangle + |10\rangle) + \sqrt{\frac{1+3w}{4}}|11\rangle$. The two qubits *a* and *b* can be considered as the environment acting on our system, the two qubits *c* and *d*. In the red box in Figure 1, you can recognize the Bell state preparation.

Question Theory 2: Compute the state $|\phi_2\rangle$ and check that $\rho_W(w) = \text{Tr}_{a,b}(|\phi_2\rangle \langle \phi_2|)$.

Solution.

$$\begin{aligned} |\phi_{1}\rangle &= \left(\sqrt{\frac{1-w}{4}} \left(|00\rangle + |01\rangle + |10\rangle\right) + \sqrt{\frac{1+3w}{4}} \,|11\rangle\right) \otimes |00\rangle \\ \text{CNOT}_{b,d} \text{CNOT}_{a,c} \,|\phi_{1}\rangle &= \sqrt{\frac{1-w}{4}} \left(|0000\rangle + |0101\rangle + |1010\rangle\right) + \sqrt{\frac{1+3w}{4}} \,|1111\rangle \\ |\phi_{2}\rangle &= \sqrt{\frac{1-w}{4}} \left(|00\rangle \,|B_{00}\rangle + |01\rangle \,|B_{01}\rangle + |10\rangle \,|B_{10}\rangle\right) + \sqrt{\frac{1+3w}{4}} \,|11\rangle \,|B_{11}\rangle \end{aligned}$$

Thus,

$$\begin{aligned} \operatorname{Tr}_{a,b}(|\phi_{2}\rangle\langle\phi_{2}|) &= \frac{1-w}{4} \left(\operatorname{Tr}(|00\rangle\langle00|) |B_{00}\rangle\langle B_{00}| + \operatorname{Tr}(|01\rangle\langle01|) |B_{01}\rangle\langle B_{01}| \\ &+ \operatorname{Tr}(|10\rangle\langle10|) |B_{10}\rangle\langle B_{10}| \right) + \frac{1+3w}{4} \operatorname{Tr}(|11\rangle\langle11|) |B_{11}\rangle\langle B_{11}| \\ &= \frac{1-w}{4} \left(|B_{00}\rangle\langle B_{00}| + |B_{01}\rangle\langle B_{01}| + |B_{10}\rangle\langle B_{10}| \right) + \frac{1+3w}{4} |B_{11}\rangle\langle B_{11}| \\ &= \frac{1-w}{4} \mathbf{I} + w\rho_{11} \end{aligned}$$

Question Implementation 1: Implement the circuit to construct Werner states in Pennylane and Qiskit. How to implement G(w) is given in the notebooks.

2 Separability and the Peres criterion

A pure state $|\psi\rangle_{c,d}$ is a product state if it can be decomposed as the tensor product of $|\psi_1\rangle_c$ and $|\psi_2\rangle_d$ such that $|\psi\rangle = |\psi_1\rangle_c \otimes |\psi_2\rangle_d$. The state is otherwise entangled. This notion can be generalized to mixed states.

A mixed state ρ is *separable* if it can be written in the form

$$\rho_{c,d} = \sum_{i} p_i \rho_c^{(i)} \otimes \rho_d^{(i)}, \quad p_i \in [0,1], \quad \sum_{i} p_i = 1.$$
(3)

You can easily check that a product state is separable.

One can identify if a state is separable or not thanks to the **Peres criterion**: A two-qubit state $\rho_{c,d}$ is entangled if and only if $(\mathbf{I}_c \otimes T_d)\rho_{c,d}$ has a negative eigenvalue. Here, T_d is the operator that applies a transposition to the system d. In higher dimension, this criterion does not hold.

Question Theory 3: Prove that for a separable state $\rho_{c,d}$, $(\mathbf{I}_c \otimes T_d)\rho_{c,d}$ has only nonnegative eigenvalues. We will admit the other direction of the proof. *Hint 1:* What can you say about the eigenvalues of the transpose matrix ? *Hint 2:* Remind that for a semi-positive definite matrix M, for any $|\phi\rangle$, we have $\langle \phi | M | \phi \rangle \geq 0$.

Solution. If $\rho_{c,d}$ is separable, $(\mathbf{I}_c \otimes T_d)\rho_{c,d} = \sum_i p_i \rho_c^{(i)} \otimes \rho_d^{(i)T}$. For any square matrix, its eigenvalues are equal to the eigenvalues of its transpose matrix. (Since they have the same characteristic polynomial). Since for each i, $\rho_c^{(i)}$ and $\rho_d^{(i)}$ are positive semidefinite matrices, the eigenvalues of $\rho_c^{(i)} \otimes \rho_d^{(i)T}$ are non negative.

Using Hint 2, for two semidefinite positive matrices A, B, and for any $|\phi\rangle$, we have $\langle \phi | A + B | \phi \rangle = \langle \phi | A | \phi \rangle + \langle \phi | B | \phi \rangle \ge 0$ and thus A + B is semidefinite.

We could also have used a similar fact for Hermitian matrices. For two hermitian matrices H_1 and H_2 , we have $\lambda_{min}(H_1 + H_2) \geq \lambda_{min}(H_1) + \lambda_{min}(H_2)$ where $\lambda_{min}(\cdot)$ is the smallest eigenvalue. We can prove this property. Since H_1 and H_2 are hermitian, they can be written $H_i = \sum_j \lambda_j(H_i) |x_j^i\rangle \langle x_j^i|$ where $(|x_j^i\rangle)_j$ form a basis and the $(\lambda_j(H_i))_j$ are real. Then for any state $|\phi\rangle = \sum_j \phi_j^1 |x_j^1\rangle = \sum_j \phi_j^2 |x_j^2\rangle$, we have

$$\langle \phi | H_1 + H_2 | \phi \rangle = \langle \phi | H_1 | \phi \rangle + \langle \phi | H_2 | \phi \rangle \tag{4}$$

$$=\sum_{j}\sum_{j'}\phi_{j}^{1}\phi_{j'}^{1}\langle x_{j}^{1}|H_{1}|x_{j'}^{1}\rangle +\sum_{j}\sum_{j'}\phi_{j}^{2}\phi_{j'}^{2}\langle x_{j}^{2}|H_{2}|x_{j'}^{2}\rangle$$
(5)

$$=\sum_{j} (\phi_{j}^{1})^{2} \lambda_{j}(H_{1}) + \sum_{j} (\phi_{j}^{2})^{2} \lambda_{j}(H_{2})$$
(6)

$$\geq \lambda_{\min}(H_1) + \lambda_{\min}(H_2) \tag{7}$$

Choosing $|\phi\rangle$ as the eigenvector of the smallest eigenvalue of $H_1 + H_2$ gives the result. With this property, we find that the smallest eigenvalue of $\rho_{c,d}$ is nonnegative, and thus all the other eigenvalues are also.

Question Implementation 2: Implement the Peres criterion to the Werner state for $w \in [0,1]$. For which w is $\rho_W(w)$ separable?

To implement $\mathbf{I}_c \otimes T_d$ it might be useful to note that the action of $\mathbf{I}_c \otimes T_d$ on a general state $\rho = \sum_{ijkl} \rho_{kl}^{ij} |ij\rangle \langle kl|$ is

$$\begin{aligned} (\mathbf{I}_{c} \otimes T_{d})\rho &= (\mathbf{I}_{c} \otimes T_{d}) \sum_{ijkl} \rho_{kl}^{ij} |ij\rangle \langle kl| \\ &= (\mathbf{I}_{c} \otimes T_{d}) \sum_{ijkl} \rho_{kl}^{ij} |i\rangle \langle k|_{c} \otimes |j\rangle \langle l|_{d} \\ &= \sum_{ijkl} \rho_{kl}^{ij} |i\rangle \langle k|_{c} \otimes |l\rangle \langle j|_{d} \\ &= \sum_{ijkl} \rho_{kj}^{il} |i\rangle \langle k|_{c} \otimes |j\rangle \langle l|_{d} \,. \end{aligned}$$

Question Theory 4: Check your implementation by studying the eigenvalues of $(\mathbf{I}_c \otimes T_d) \rho_W(w)$.

Solution.

$$(\mathbf{I}_c \otimes T_d)\rho_W(w) = \begin{pmatrix} \frac{1-w}{4} & 0 & 0 & -\frac{w}{2} \\ 0 & \frac{1+w}{4} & 0 & 0 \\ 0 & 0 & \frac{1+w}{4} & 0 \\ -\frac{w}{2} & 0 & 0 & \frac{1-w}{4} \end{pmatrix}$$

The eigenvalues are $\frac{1+w}{4}$ with eigenvectors $|01\rangle$, $|10\rangle$, $1/\sqrt{2}(|00\rangle - |11\rangle)$ and $\frac{1-3w}{4}$ with $1/\sqrt{2}(|00\rangle + |11\rangle)$ The smallest eigenvalues is $\frac{1-3w}{4}$ which is negative for w > 1/3.

3 Bell (CHSH) inequality

In the lectures, we discussed the Bell inequalities. They are derived in relation to the experiments on quantum systems: if the results of an experiment can be explained by the local hidden-variable (LHV) model, such inequality should be satisfied. Its violation shows that in fact, LHV theory does not hold. Particularly, we looked at the CHSH inequality: in the corresponding experiment, Alice and Bob shared the two-qubit (pure) *Bell* state $|\Psi\rangle$ and estimated the correlation coefficient $\chi = \langle \Psi | \mathcal{B} | \Psi \rangle$ by measuring the observable

$$\mathcal{B} = A \otimes B + A \otimes B' - A' \otimes B + A' \otimes B',$$

where A, A', B, B' are observables

$$\begin{aligned} A &= \left| \alpha \right\rangle \left\langle \alpha \right| - \left| \alpha_{\perp} \right\rangle \left\langle \alpha_{\perp} \right|, \quad A' &= \left| \alpha' \right\rangle \left\langle \alpha' \right| - \left| \alpha'_{\perp} \right\rangle \left\langle \alpha'_{\perp} \right|, \\ B &= \left| \beta \right\rangle \left\langle \beta \right| - \left| \beta_{\perp} \right\rangle \left\langle \beta_{\perp} \right|, \quad B' &= \left| \beta' \right\rangle \left\langle \beta' \right| - \left| \beta'_{\perp} \right\rangle \left\langle \beta'_{\perp} \right|. \end{aligned}$$

and $\{|\alpha\rangle, |\alpha_{\perp}\rangle\}, \{|\alpha'\rangle, |\alpha'_{\perp}\rangle\}, \{|\beta\rangle, |\beta_{\perp}\rangle\}, \{|\beta'\rangle, |\beta'_{\perp}\rangle\}$ are pairs of orthogonal states. The CHSH inequality states that $|\chi_{\rm LHV}| \leq 2$, but in practice, with certain choice of configuration $\alpha, \alpha', \beta, \beta', |\chi_{\rm QM}|$ can reach up to $2\sqrt{2}!$ In fact, one can prove that for any two-qubit pure *entangled* state $|\Psi\rangle$ there exists such configuration that the CHSH inequality is violated.

However, now we consider mixed states as well, so the correlation coefficient is now expressed as

$$\chi = \operatorname{Tr}\left(\rho\mathcal{B}\right).$$

Question Theory 5: In homework 6, you have shown that the inequality $\langle \Psi | \mathcal{B} | \Psi \rangle \leq 2\sqrt{2}$ holds for any pure state $|\Psi\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2$ (Tsirelson's bound). i.e. $\chi(w) \leq 2\sqrt{2}$, holds. Using this, show that it holds for arbitrary two-qubit mixed state as well, i.e. $\chi(w) \leq 2\sqrt{2}$.

Solution. Using the representation of a mixed state from above,

$$\chi(w) = \operatorname{Tr}\left(\rho\mathcal{B}\right) = \operatorname{Tr}\left(\sum_{i} p_{i} |\phi_{i}\rangle \langle\phi_{i}|\mathcal{B}\right) = \sum_{i} p_{i} \operatorname{Tr}\left(|\phi_{i}\rangle \langle\phi_{i}|\mathcal{B}\right) = \sum_{i} p_{i} \langle\phi_{i}|\mathcal{B} |\phi_{i}\rangle \leq \frac{\operatorname{Tsirelson's}}{\sum_{bound} \sum_{i} p_{i} \cdot 2\sqrt{2}} = 2\sqrt{2} \cdot \underbrace{\left(\sum_{i} p_{i}\right)}_{=1} = 2\sqrt{2}.$$

One can show that if the mixed state ρ is separable, the CHSH inequality is satisfied. This does not work in reverse: mixed non-separable states can satisfy CHSH inequality for any configuration. In this problem, we will see this with the example of Werner states, i.e. we will measure correlation coefficient

$$\chi(w) = \operatorname{Tr}\left(\rho_W(w) \ \mathcal{B}\right).$$

Question Theory 6: Show that the optimal configuration $\alpha, \alpha', \beta, \beta'$ does not depend on value of w.

Solution. By linearity of trace,

$$\operatorname{Tr} \left\{ \rho_W(w)(A \otimes B) \right\} = \frac{1-w}{4} \operatorname{Tr} \left\{ \mathbf{I}(A \otimes B) \right\} + w \operatorname{Tr} \left\{ \rho_{11}(A \otimes B) \right\} = w \operatorname{Tr} \left\{ \rho_{11}(A \otimes B) \right\}$$

where the last equality follows from Tr $\{I(A \otimes B)\}$ = Tr $\{A\}$ Tr $\{B\}$ = 0. Thus,

$$\chi(w) = \operatorname{Tr} \{ \rho_W(w)(A \otimes B) \} + \operatorname{Tr} \{ \rho_W(w)(A \otimes B') \} - \operatorname{Tr} \{ \rho_W(w)(A' \otimes B) \} + \operatorname{Tr} \{ \rho_W(w)(A' \otimes B') \}$$

= w (Tr {\(\rho_{11}(A \otimes B)\)\)} + Tr {\(\rho_{11}(A \otimes B')\)\)} - Tr {\(\rho_{11}(A' \otimes B)\)\)} + Tr {\(\rho_{11}(A' \otimes B')\)\)}
= w Tr {\(\rho_{11}B\)\)},

and maximization of $\chi(w)$ is equivalent to maximization of Tr $\{\rho_{11}\mathcal{B}\}$.

One can prove that $\alpha = \frac{\pi}{4}, \alpha' = 0, \beta = -\frac{\pi}{8}, \beta' = -\frac{3\pi}{8}$ is an optimal configuration.

Question Theory 7: For this configuration, express A, A', B, B' as a linear combination of Pauli matrices. This will be used later for Pennylane and Qiskit implementations of observables.

Solution. For any γ , as $|\gamma\rangle = (\cos \gamma, \sin \gamma), |\gamma_{\perp}\rangle = (-\sin \gamma, \cos \gamma)$:

$$|\gamma\rangle\langle\gamma| - |\gamma_{\perp}\rangle\langle\gamma_{\perp}| = \begin{pmatrix} \cos^2\gamma & \cos\gamma\sin\gamma\\ \cos\gamma\sin\gamma & \sin^2\gamma \end{pmatrix} - \begin{pmatrix} \sin^2\gamma & -\sin\gamma\cos\gamma\\ -\sin\gamma\cos\gamma & \cos^2\gamma \end{pmatrix} = \begin{pmatrix} \cos(2\gamma) & \sin(2\gamma)\\ \sin(2\gamma) & -\cos(2\gamma) \end{pmatrix}$$

Thus,

$$A = X, A' = Z, B = \frac{1}{\sqrt{2}}(Z - X), B' = -\frac{1}{\sqrt{2}}(X + Z).$$

Question Implementation 3: Run the circuits and measure \mathcal{B} to evaluate $\chi(w)$ for $w \in [0, 1]$. Draw a plot of this dependence; compare it to 2 (validity of the CHSH inequality bound) and Tsirelson's bound. More details are provided in the corresponding notebooks.

Question Theory 8: From the implementation, what is the value of $\chi(0)$ and $\chi(1)$? What are the values of w s.t. the CHSH inequality is satisfied? Compare them with the values of w for those when $\rho_W(w)$ is separable.

Solution. $\chi(0) = 0$, $\chi(1) = 2\sqrt{2}$. The CHSH inequality is satisfied for $w \leq \frac{1}{\sqrt{2}}$. The Peres criterion shows that the Werner state is separable only for $w \leq \frac{1}{3}$. Thus, while for $\frac{1}{3} < w \leq \frac{1}{\sqrt{2}}$, $\rho_W(w)$ is not separable, we cannot conclude this by simply using the CHSH inequality.