Série 17

Pour le 29 janvier 2025

Exercice 1

On considére le \mathbb{R} -espace vectoriel $V = \mathbb{R}[x]^{\leq 1}$ des polynômes à coefficients réels de degré ≤ 1 . Montre que (1+x,1-x) forme une base de V et utilise-la pour construire un isomorphisme $\alpha:V\to\mathbb{R}^2$.

Indication. Définis d'abord l'image des vecteurs (ici ce sont des polynômes) de base, puis "étend par linéarité" pour définir $\alpha(ax+b)$ pour tous $a,b \in \mathbb{R}$.

Exercice 2

On considère l'application linéaire trace, $\mathrm{Tr}:M_2(\mathbb{C})\to\mathbb{C}$, définie par

$$\operatorname{Tr}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d.$$

- a) Choisis les bases canoniques de $M_2(\mathbb{C})$ et de \mathbb{C} pour construire la matrice de la trace.
- b) Calcule ker Tr.
- c) Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C})$ et $\alpha : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ l'application définie par $\alpha(X) = AX$. Montre que α est linéaire et calcule sa matrice (pour la base canonique).
- d) Soit $\beta: M_2(\mathbb{C}) \to \mathbb{C}$ la composition $\operatorname{Tr} \circ \alpha$. Explique pourquoi cette application est linéaire et calcule sa matrice (pour les bases canoniques).
- e) Calcule le rang de β en fonction des coefficients a, b, c et d de la matrice A.

Exercice 3

Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire définie par f(x; y; z) = (x + y + z; x - 2y).

- a) Montre que $g_1=(1;0;0), g_2=(0;0;1)$ et $g_3=(-2;1;1)$ forment une base \mathcal{B} de \mathbb{R}^3 .
- b) Montre que $u_1 = (1; 1)$ et $u_2 = (1; 0)$ forment une base \mathcal{C} de \mathbb{R}^2 .
- c) Trouve la matrice de f par rapport aux bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 .
- d) Trouve la matrice de f par rapport aux bases \mathcal{B} et \mathcal{C} .

Exercice 4

Vrai ou faux? Justifie brièvement tes réponses, en construisant un contre-exemple élémentaire lorsque c'est possible.

- a) Le \mathbb{R} -espace vectoriel \mathbb{C} est isomorphe à \mathbb{R}^2 .
- b) Le \mathbb{F}_7 -espace vectoriel $M_2(\mathbb{F}_7)$ est isomorphe au \mathbb{F}_{11} -espace vectoriel $\mathbb{F}_{11}[x]^{\leq 3}$.
- c) Le produit AB, où $A \in M_{n \times 1}(K)$ et $B \in M_{1 \times n}(K)$ est une matrice $n \times n$ dont le rang vaut au plus 1.
- d) Lorsque $\alpha:V\to W$ et $\beta:W\to U$ sont non-nulles, le rang de $\beta\circ\alpha$ vaut au moins 1.
- e) La matrice de la dérivation $D: \mathbb{R}[x]^{\leq 4} \to \mathbb{R}[x]^{\leq 4}$ est inversible (rappelons que D(p(x)) = p'(x)).

Exercice 5

Soit $\alpha:\mathbb{Q}^4\to\mathbb{Q}^3$ l'application linéaire donnée par

$$\alpha(x; y; z; t) = (x + y + z + t; x + 2y - t; x - y + 3z + 5t).$$

- a) Trouve la matrice A telle que $A \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} x+y+z+t \\ x+2y-t \\ x-y+3z+5t \end{pmatrix}$.
- b) Calcule $\alpha(1;2;2;-1)$, $\alpha^{-1}(1;3;-3)$ et $\alpha^{-1}(0;0;0)$.
- c) Calcule l'image par α du sous-espace < (1;2;2;-1),(1;1;0;0)>.

Exercice 6

Soient $\alpha: \mathbb{R}^2 \to \mathbb{R}^3$ et $\beta: \mathbb{R}^3 \to \mathbb{R}^2$ les applications linéaires données par $\alpha(x;y) = (2x+y;x-y;3x)$ et $\beta(a;b;c) = (a+b-c;b+2c)$. On utilise les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .

- a) Calcule les matrices A de α et B de β .
- b) Calcule la matrice de $\beta \circ \alpha$.
- c) Calcule le rang de $\beta \circ \alpha$.

Exercice 7

Soient $\alpha: \mathbb{R}^3 \to \mathbb{R}^2$ et $\beta: \mathbb{R}^2 \to \mathbb{R}^3$ les applications linéaires données par

$$\alpha(x; y; z) = (2x + y + z; y - z)$$
 et $\beta(a; b) = (a + b; a - b; b)$.

On utilise les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .

- a) Calcule les matrices A de α et B de β .
- b) Calcule la matrice de $\beta \circ \alpha$.
- c) Calcule le rang de $\beta \circ \alpha$.

Exercice 8

Les matrices suivantes sont-elles inversibles? Attention, on ne demande pas de calculer l'inverse s'il existe, mais seulement d'expliquer pourquoi telle matrice est ou n'est pas inversible!

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 6 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$

Indication. Tu pourras considérer ces matrices comme étant celles d'applications linéaires et travailler avec les vecteurs colonnes de ces matrices.

Exercices théoriques

Exercice 9

Soit V un K-espace vectoriel et $\alpha: V \to V$ un isomorphisme (linéaire). Montre que l'application réciproque $\alpha^{-1}: V \to V$ est K-linéaire. Est-ce un isomorphisme?

Exercice 10

Opérations élémentaires. On travaille avec des matrices A, $E_{ij}(\lambda)$, P_{ij} et $D_i(\mu)$ de $M_n(K)$.

- a) Montre que $E_{ij}(\lambda)E_{ij}(\mu)=E_{ij}(\lambda+\mu)$ et calcule l'inverse de la matrice $E_{ij}(1)$.
- b) Calcule $E_{ij}(\lambda)E_{jk}(1)E_{ij}(-\lambda)E_{jk}(-1)$.
- c) Décris la matrice $AE_{ij}(\lambda)$.
- d) Décris la matrice $AD_i(\mu)$.
- e) Décris la matrice AP_{ij} .

Exercice 11

Soient $A, B \in M_n(K)$. Montre que BA est une matrice inversible si et seulement si A et B sont inversibles.

Une piste possible. Si BA est inversible, considérer les applications linéaires $\alpha: K^n \to K^n$ et $\beta: K^n \to K^n$ dont A et B sont les matrices, respectivement. Le but est de montrer que α et β sont des isomorphismes. On peut le faire par exemple en calculant le noyau de α et l'image de β .