Série 16

Pour le 22 janvier 2025

Exercice 1

Calcule dans chacun des cas suivants la dimension du \mathbb{C} -espace vectoriel V et justifie ta réponse en donnant une base.

- a) $V = M_2(\mathbb{C})$;
- b) V est l'espace des polynômes à coefficients complexes de degré ≤ 3 qui s'annulent en 1 et en 7;
- c) $V = \mathbb{C}^5$;
- d) $V = \mathbb{C}[x];$
- e) V est le sous-espace de \mathbb{C}^3 des triplets (z;z';z'') qui vérifient l'équation z+z'+z''=0;
- f) V est l'ensemble de toutes les applications linéaires $f:\mathbb{C}\to\mathbb{C}\,;$

Exercice 2

On définit l'application $trace\ \mathrm{Tr}:M_2(K)\to K$ de la façon suivante :

$$\operatorname{Tr}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d$$

- a) Montre que la trace est linéaire;
- b) Trouve une base de $\ker \operatorname{Tr}$;
- c) Trouve une base de ImTr.

Exercice 3

Détermine dans chacun des cas suivants si $f: \mathbb{C} \to \mathbb{C}$ est une application (\mathbb{R} ou \mathbb{C} -) linéaire.

- a) $f(z) = \bar{z}$;
- b) f(z) = |z|;
- c) f(z) = az + b avec $a, b \in \mathbb{C}$;
- d) $f(z) = z^2$;
- e) $f(z) = e^z$.

Exercice 4

Soient L et M les sous-espaces suivants de \mathbb{R}^4 :

$$L = <(0; 0; 1; 2), (4; 2; 1; 2), (-6; -3; 2; 4) >$$

$$M = <(3; 5; 5; 3), (2; 3; 3; 2), (-1; 1; 1; -1) >$$

Trouve une base de L, de M, de $L \cap M$ et de L + M. Donne les dimensions de chacun de ces sous-espaces et utilise la formule qui permet de calculer la dimension de L + M pour contrôler ta réponse.

Exercice 5

Vrai ou faux? Justifie brièvement tes réponses, en construisant un contre-exemple élémentaire lorsque c'est possible.

- a) Une application d'anneaux $f: A \to B$ telle que f(ab) = f(a)f(b) et f(a+b) = f(a) + f(b) est un homomorphisme d'anneaux.
- b) Il n'y a qu'un homomorphisme d'anneaux de \mathbb{Z} dans \mathbb{Z} .
- c) Si dim $V > \dim W$, alors $f: V \to W$ ne peut être injective.
- d) Il y a une infinité d'applications K-linéaires de K dans K pour certains corps.
- e) Il y a une infinité d'applications K-linéaires de K dans K pour tous les corps.
- f) La dimension de l'espace vectoriel de toutes les applications linéaires $\mathcal{L}(V, W)$ est finie pour tout V et tout W.

Exercice 6

On définit l'application $f: \mathbb{R}^3 \to \mathbb{R}^2$ par f(x, y, z) = (x - 2y, 6y - 3x).

- a) Montre que f est linéaire;
- b) Trouve une base de ker f;
- c) Trouve une base de Im f.

Exercice 7

Trouve un isomorphisme entre \mathbb{C} et le sous-anneau de $M_2(\mathbb{R})$ des matrices de la forme $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.

Exercices théoriques

Exercice 8

Les polynômes. Soit K un corps. Nous travaillons avec l'ensemble V = K[x] de tous les polynômes à coefficients dans K.

- a) Montre que K[x] est un K-espace vectoriel. Donne la forme explicite de l'addition et de l'action.
- b) Montre que l'ensemble $K[x]^{\leq n}$ de tous les polynômes de degré $\leq n$ est un sous-espace vectoriel de K[x].
- c) Trouve une base de $K[x]^{\leq 4}$. Existe-il une base où aucun polynôme n'est de degré 3?
- d) L'ensemble des polynômes de la forme $ax^2 + bx^7$ avec $a, b \in K$ est-il un sous-espace vectoriel? Si oui, trouves-en une base.
- e) L'ensemble des polynômes de degré pair est-il un sous-espace vectoriel? Si oui, trouves-en une base.
- f) L'ensemble des polynômes de la forme $x^2p(x)$ avec $p(x) \in K[x]$ est-il un sous-espace? Si, oui trouves-en une base.

Exercice 9

Projecteurs. Soit V un K-espace vectoriel. Une application linéaire $p:V\to V$ est un projecteur si $p\circ p=p$.

- a) Montre que la projection orthogonale de \mathbb{R}^2 sur une droite passant par l'origine est un projecteur.
- b) Montre que $\ker p \oplus \operatorname{Im} p = V$ pour tout projecteur p.
- c) Donne une description explicite de cette somme directe dans le cas de la projection orthogonale sur la droite x = y dans \mathbb{R}^2 .

Exercice 10

Si V est de dimension finie n, montre que toute famille de n vecteurs linéairement indépendants forme une base de V.

Exercice 11

Soit $\alpha:V\to W$ une application linéaire et $U\subset V$ un sous-espace. Montre que $\alpha(U)$ est un sous-espace de W.

Exercice 12

Espace dual. Soit V un K-espace vectoriel. L'espace dual $V^* = \mathcal{L}(V, K)$ est l'espace vectoriel de toutes les applications linéaires de V dans K.

- a) Lorsque dim V = n, calcule la dimension de V^* en explicitant une base.
- b) Lorsque $V = \mathbb{R}$, montre que V^* est formé de toutes les applications $f : \mathbb{R} \to \mathbb{R}$ de la forme f(v) = av pour un certain nombre réel a.
- c) Lorsque $V = \mathbb{R}^2$, trouve une application telle que f(av) = af(v) pour tout v et pour tout a, mais qui n'est pas linéaire.